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Melting of micro/nanoparticles 
considering anisotropy of surface 
energy
C. M. Yang1, M. W. Chen1*, G. J. Zheng1 & Z. D. Wang2*

The effect of surface energy on the melting of micro/nanoparticles is studied using the asymptotic 
method. The asymptotic solution of the dynamic model for micro/nanoparticle melting reveals the 
dependence of the particle melting temperature on the particle size and the anisotropy of surface 
energy. Specifically, as the particle radius decreases, the isotropic surface energy reduces the melting 
temperature and accelerates the interface melting of the particle. Along certain crystal orientations, 
the anisotropy of surface energy enhances the melting temperature of the micro/nanoparticles, 
whereas depresses the melting temperature of the micro/nanoparticle along other crystal 
orientations. The anisotropy of surface energy enhances the melting speed of the micro/nanoparticles 
along certain crystal orientations, whereas reduces the melting speed of the micro/nanoparticles 
along other crystal orientations. The result of the asymptotic solution is in good agreement with the 
experimental data.

The melting of micro/nanoparticles initiates at the particle surface, and is greatly impacted by surface energy. 
The size dependence of melting temperature reduction has been verified experimentally for a number of differ-
ent metals including  In1–7,  Pb1,  Bi1,  Al8,9,  Sn1,10 (see Mei and  Lu11 for a more complete summary of experimental 
results). Samsonov et al.12–14 found the size dependence of the melting temperature reduction for Al, Sn and 
Cu nanoparticles when the surface tension (surface energy) effect is considered in thermodynamic models and 
the melting temperature of nanoparticles is determined by thermodynamic factors. Dippel et al.2 and Lai et al.8 
revealed that this melting behavior is originated from the positive solid–liquid surface energy from the thermo-
dynamic way for the self-assembled Al nanoparticles. With a model without any free parameter, Jiang et al.15–20 
found the size dependence of melting temperature reduction of Au, Sn, Al and Ag nanoparticles, and pointed out 
that the size dependence of melting temperature of the nanoparticles mainly depends on the ratio of the grain 
boundary energy to the surface energy. Ohashi et al.3 and Saka et al.4 investigated the melting of In nanoparticles 
embedded in Al and Fe matrices, and found that the melting temperature reduction strongly depends on the 
interface energy between the liquid In and the Fe matrix. Sasaki and  Saka5 observed the melting process of In 
nanoparticles embedded in an Al matrix by using in-situ high-resolution transmission electron microscopy and 
revealed that the In nanoparticles have an orientation dependence with the Al matrix and the melting of differ-
ent crystal surfaces occurs at different temperatures. Zhang and  Cantor6 experimentally found that the melting 
of In nanoparticles in melt-spun hypomonotectic A1-7 wt% In exhibits an orientation relationship with the A1 
matrix. In particular, the In nanoparticle melting temperature varied with the anisotropy of the Al–In surface 
energy, where the {100}Al surface energy was on average 36% greater than the {111}Al‖{111}ln surface energy and 
25% greater than the {111}Al surface energy. In addition to the experimental research, theoretical studies on the 
particle size dependence of the nanoparticles melting temperature have made significant progress. McCue et al.21 
and Back et al.22,23 investigated the melting of a spherical particle by solving a two-phase Stefan problem with 
the Gibbs–Thomson condition. They found that surface energy reduces the melting temperature of solid nano-
particles with decreasing particle radius. In the present work, we study the melting of micro/nanoparticles while 
considering anisotropy of surface energy. We include the anisotropy of surface energy in the Gibbs–Thomson 
condition of the dynamic model for melting a micro/nanoparticle. By using the asymptotic method, we find the 
asymptotic solution of the temperature and interface speed of the micro/nanoparticles and reveal the dependence 
of the melting temperature on size, crystal orientation and interface speed of the micro/nanoparticles.
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Results
We consider a single nanoparticle of radius R∗

I  and the temperature at infinity held at a constant T∗
∞ for all time. 

At the time t∗ = 0 , the temperature on the liquid–solid interface R∗ = R∗
I  is above the melting point, the particle 

will begin to melt. The interface function is represented by R∗ = R∗(θ ,ϕ, t∗) and grows from R∗ = R∗
I  towards 

the centre of the particle, where θ , ϕ are the azimuthal and polar angles in the spherical coordinate system whose 
center is the origin.

The problem is to solve for the temperature distributions T∗
L and T∗

S  in the liquid and solid phases, respectively, 
as well as the interface function R∗ = R∗(θ ,ϕ, t∗) . As we are assuming that heat diffuses through both liquid and 
solid phases via conduction, the governing equations are that

where κL and κS are the thermal diffusivities in the liquid and solid phases, respectively. ∇2 is the Laplacian 
operator. At the interface R∗ = R∗(θ ,ϕ, t∗) , the temperature is continuous between the liquid and solid phases

The Gibbs–Thomson condition holds that,

where T∗
I  and T∗

M are the temperatures at the interface and the bulk melting point, respectively. γ is the surface 
energy, K∗ is the mean curvature at the interface, S is the stiffness of the interface, �H is the latent heat per unit 
volume. U∗

I  is the local interface speed. µ is the surface attachment kinetics coefficient.
At the interface we have the energy conservation condition

where the thermodynamic constants kL and kS are respectively the heat conduction coefficients in the liquid and 
solid phases, ∇ is the Hamiltonian operator, n is the unit vector normal to the interface.

The far-field temperature condition is that

The initial condition for the interface is written as

It proves particularly insightful to scale the problem using the following dimensionless quantity transformation

where R∗
I  , VP , R∗

I /VP and �H/(cpLρL) are length, speed, time and temperature scales, respectively. 
VP=kL�T/(R∗

I�H) , �T = T∞ − T∗
M . ρL is the density in the liquid phase. cρL is the specific heat coefficient in 

the liquid phase. Equations (1)–(2) for the temperature fields in the liquid and solid phases are transferred into 
the following model.

The governing equations are that

which are subject to the following dimensionless boundary conditions.
At the interface R = R(θ ,ϕ, t) , the temperature is continuous between the liquid and solid phases

the Gibbs–Thomson condition holds that

(1)
∂T∗

L

∂t∗
= κL∇

2T∗
L , R∗(θ ,ϕ, t∗) < r∗ < ∞,

(2)
∂T∗

S

∂t∗
= κS∇

2T∗
S , 0 < r∗ < R∗(θ ,ϕ, t∗),

(3)T∗
L = T∗

S .

(4)T∗
I = T∗

M

(

1+
γ

�H
SK∗

)

−
1

µ
U∗
I ,

(5)�HU∗
I = (kS∇T∗

S − kL∇T∗
L ) · n,

(6)T∗
L → T∗

∞ > T∗
M as r∗ → ∞.

(7)R∗(θ ,ϕ, 0) = R∗
I at t∗ = 0.

r =
r∗

R∗
I

, UI=
U∗
I

VP
, t =

t∗

R∗
I /VP

,

(8)TL =
T∗
L − T∗

M

�H/(cpLρL)
, TS =

T∗
s − T∗

M

�H/(cpLρL)
, R=

R∗

R∗
I

,

(9)ε
∂TL

∂t
= ∇

2TL, R(θ ,ϕ, t) < r < ∞,

(10)ε�T
∂TS

∂t
= ∇

2TS, 0 < r < R(θ ,ϕ, t),

(11)TL = TS ,

(12)TL = εŴKS − εME−1UI ,
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and the energy conservation condition holds that

The far-field condition holds that

The initial condition for the interface is that

Here, the dimensionless parameters are defined as the following notations

where ε is a dimensionless relative superheating parameter. �T is the ratio of the thermal diffusivities of the liquid 
and solid phases. kT is the ratio of the thermal conductivities of the solid and liquid phases. cρS is the specific 
heat parameter in the solid phase. ρS is the density in the solid phase. Ŵ is the surface energy parameter. E is the 
relative superheating parameter, M is the interfacial kinetics parameter. By nondimensionalizing our problem 
(1)–(7) according to the transformation (8), the resulting dimensionless parameters in (16) can be determined.

Numerical Results
By using the asymptotic method, we solve the model in Eqs. (9)–(15) for the melting of a single micro/nano-
particle. The asymptotic solution of the temperature in the liquid and solid phases, the interface speed, and the 
interface function are expressed as

A detailed representation of the asymptotic solution is shown in the “Methods” section.
To illustrate our theoretical results, we used the physical parameters of pure indium and aluminum nano-

particles in Table 1. The parameters of specific heat of solid and liquid phases of indium particles are from the 
open material property data (website is http:// www. matweb. com/# openn ewwin dow).

The solid–liquid phase specific heat parameters of indium particles are derived from open material property data.
Figure 1 shows the comparison of the size dependence of the melting temperature reduction of indium 

nanoparticles obtained from the experimental data and simulation data made by Lu and  Jin7 with the asymptotic 
solution (17). In our asymptotic solution, when the surface energy is neglected (solid red line in Fig. 1, γ0 = 0 ), 
the size dependence of the melting temperature reduction of indium nanoparticles is lower than that of the bulk 
melting point (the black dashed line in Fig. 1). When surface energy is considered (solid black line in Fig. 1, 
γ0 = 0.21 J  m−2) the predictions of the asymptotic solution agree very well with the experimental  data7, only 
exhibiting a slight deviation for 20 < R < 40 nm. This suggests that the deviation of the size dependence of the 
melting temperature reduction is caused by the anisotropic effect of surface energy.

Figure 2 shows the size dependence of melting temperature reduction of indium nanoparticle which corre-
sponds to the experimental data made by Lu and  Jin7. When the anisotropy of surface energy is disregarded, the 
curve of the asymptotic solution (17) has a significant deviation to the experimental data in the range of more 
than 20 nm and less than 40 nm for indium nanoparticle. When the anisotropy of surface energy is considered, 
the curve of the asymptotic solution corresponds to more experimental data for indium nanoparticle along the 
<010> crystal orientations (red solid line in Fig. 2, α4 = 0.2).

Figure 3 plots the size dependence of the melting temperature reduction of Al nanoparticle which corresponds 
to the experimental data made by Lai et al.8. When the anisotropy of surface energy is disregarded, the curve 
of the asymptotic solution has a significant deviation to the experimental data in the range of more than 15 nm 
and less than 25 nm for Al nanoparticle. When the anisotropy of surface energy is considered in the asymptotic 

(13)εUI = (kT∇TS −∇TL) · n.

(14)TL → ε as r → ∞.

(15)R(θ ,ϕ, 0) = 1 at t = 0.

ε =
�T

�H/(cρLρL)
, �T =

κL

κS
, kT =

kS

kL
, κS =

kS

cρSρS
,

(16)κL =
kL

cρLρL
, Ŵ =

γT∗
M

R∗
I�H�T

, M =
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µT∗
M

, E =
�T

T∗
M

,

(17)TL = εTL0 + ε2(TL1∗ + TL1)+ O
(

ε3
)

, TS = εTS0 + ε2(TS1∗ + TS1)+ O
(

ε3
)

,

(18)
∂R

∂t
=

dR0

dt
+ ε

∂R1

∂t
+ O

(

ε2
)

, R = R0 + εR1 + O
(

ε2
)

.

Table 1.  Approximate physical parameter values for In and Al.

TM(K)
kL 
(Wm-1  K-1) kS(Wm-1  K-1) ρL (kg  m-3) ρS (kg  m-3) cρL (kg  K-1) cρS (kg  K-1)

�H ×  108

(J  m-3) �T (K)

In 4292 23624 24824 70202 73102 843.15 506.15 2.8332 1.6

Al 93322 9922 23622 238522 270022 89722 108022 10.6722 3.6

http://www.matweb.com/#opennewwindow
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solution (17), the curve of the asymptotic solution corresponds to more experimental data for Al nanoparticle 
along the <010> crystal orientations.

From Figs. 2 and 3, it can be seen that the size dependence of the melting temperature reduction of the micro/
nanoparticles depends not only on the isotropic surface energy, but also on the anisotropy of surface energy.

When the anisotropy of surface energy is considered, it is seen in Figs. 2 and 3 that the anisotropy of sur-
face energy enhances the melting temperature of the micro/nanoparticles along the <010> crystal orientations, 
whereas depresses the melting temperature of the micro/nanoparticles along the <111> crystal orientations. The 
experimental results of Zhang and  Cantor6 confirmed that the melting temperature varies with the anisotropy 
of surface energy and exhibits a dependence relationship with the crystal orientations.

Figure 4 shows the temperature distributions in the solid and liquid phases near the interface for indium 
nanoparticles, which are affected by the anisotropy of surface energy corresponding to Fig. 2. It is seen that 
the temperature gradients for the liquid and solid phases near the interface (vertical dashed line in Fig. 4) are 
different along the <111> (green lines in Fig. 4) and <010> (red lines in Fig. 4) crystal orientations. Along the 
<111> crystal orientations, there feature the temperature gradients ∂TL

/

∂r(R, t) > 0 and ∂TS

/

∂r(R, t) < 0 near 
the interface, signifying that the heat flux flows from both the solid and liquid phases into the interface (arrows 
on green lines in Fig. 4). The temperature in the solid phase is always higher than at the interface, and the heat 
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Figure 1.  Size dependence of the melting temperature profile for indium nanoparticles. The black circles and 
black dotted line are the experimental data of a ball-milled sample and simulation data made by Lu and  Jin7, 
respectively. The black solid line and red solid line denote respectively the melting temperatures with surface 
energy and without surface energy, plotted with the asymptotic solution (17). By contrast, the black dashed line 
denotes the bulk melting point.
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Figure 2.  Size dependence of the melting temperature profile for indium nanoparticles. The black circles and 
black dotted line are the experimental data of a ball-milled sample and simulation data made by Lu and  Jin7, 
respectively. The green and red lines denote the melting temperatures, plotted with the asymptotic solution (17) 
when the anisotropy of surface energy is considered. By contrast, the black solid line denotes the size dependent 
melting temperature reduction when disregarding the anisotropy of surface energy.
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flux flows out from the solid phase into the interface. This behavior reduces the equilibrium temperature at the 
interface and then reduces the melting temperature. Along the <010> crystal orientations, there exist the tem-
perature gradients ∂TL

/

∂r(R, t) > 0 and ∂TS

/

∂r(R, t) > 0 near the interface, signifying that the heat flux flows 
into the interface from the liquid phase and then flows into the solid phase from the interface (arrows on red lines 
in Fig. 4). Along the <010> crystal orientations, in addition to the heat flux required for melting, the surplus of 
heat flux then flows from the interface into the solid phase. While heat flux is flowing into the solid phase from 
the interface, the melting temperature increases with the increasing equilibrium temperature at the interface. 
When the anisotropy of surface energy is neglected (black line in Fig. 4), there feature the temperature gradients 
∂TL

/

∂r(R, t) > 0 and ∂TS

/

∂r(R, t) = 0 near the interface, signifying that there is no heat flux from the interface 
into the solid phase. This explains that compared with the isotropic surface energy, the anisotropy of surface 
energy enhances the melting temperature of micro/nanoparticles along the <010> crystal orientations, whereas 
depresses the melting temperature of micro/nanoparticles along the <111> crystal orientations. The differences 
in the temperature gradients of two phases near the interface affected by the anisotropy of surface energy results 
in the differences in the heat flux direction during the melting process, which explains the dependence of melting 
temperature on crystal orientations observed in the experiment of Zhang and  Cantor6.

Figure 5a illustrates the dimensionless dependence of the interface speed ∂R
/

∂t on the particle radius R under 
various surface energy values using the asymptotic solution (18). The negative interface speed indicates the direc-
tion of the particle radius moving towards the particle center. When the isotropic surface energy is considered, 
the interface speed monotonically increases with decreasing particle radius. When the isotropic surface energy 
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Figure 3.  Size dependence of the melting temperature profile for Al nanoparticles. The black circles are the 
experimental data of a self-assembled Al nanoparticles made by Lai et al.8. The red and green lines represent the 
melting temperatures along the <010> and <111> crystal orientations, plotted with the asymptotic solution (17) 
considering the anisotropy of surface energy.

80 85 90 95 100 105 110
157.76

157.765

157.77

157.775

157.78

157.785

157.79

157.795

157.8

157.805

Particle radius ( nm )

T
em

pe
ra

tu
re

 d
is

tr
ib

ut
io

n 
( °

C
 )

Interface

Solid phase
Liquid phase
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phase (solid lines) near the interface (vertical dashed line) along the < 010> (red lines) and <111> (green lines) 
crystal orientations. By contrast, the black solid and dashed lines denote the temperature distribution without 
the anisotropy of surface energy in the asymptotic solution (17). The arrows represent the heat flux directions.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19297  | https://doi.org/10.1038/s41598-021-98704-3

www.nature.com/scientificreports/

increases from 0.21 to 0.24 J  m−2, the interface speed increases further, with a more notable increase for smaller 
values of R . When the anisotropy of surface energy is considered, compared with considering the isotropic surface 
energy (black line in Fig. 5a), along the <111> (green lines in Fig. 5a) crystal orientations the interface speed is 
greater, while the interface speed along the <010> (red lines in Fig. 5a) crystal orientations is lower. The interface 
speed along the <111> crystal orientations is faster than that along the <010> crystal orientations. According to 
the heat flux directions along the <111> and <010> crystal orientations plotted in Fig. 4, it is the difference of 
the heat flux direction that induces the different trend of the interface speed along two crystal orientations. An 
increase of the anisotropy of surface energy (from α4 = 0.1 to α4 = 0.15 ) increases the interface speed along the 
<111> crystal orientations, while decreases the interface speed along the <010> crystal orientations.

In Fig. 5b, we show the dimensionless temperature distributions of the two phases corresponding to the 
surface energy in Fig. 5a. The negative dimensionless temperature indicates that the temperature affected by the 
surface energy shown in Fig. 5a is lower than the bulk melting point. Figure 5b shows that an increase of the 
surface energy results in a large change in the temperature gradients of the two phases near the interface. The 
surface energy increases from 0.21 J  m−2 (black dashed line in Fig. 5b) to 0.24 J  m−2 (black solid line in Fig. 5b) 
in the asymptotic solution (17), which enhances the temperature gradient of the liquid phase near the inter-
face, causing more heat flux from the liquid phase into the interface. Along the <010> crystal orientations, the 
increased anisotropy of surface energy reduces the temperature gradient of the liquid phase near the interface, 
whereas the temperature gradient of the solid phase near the interface is enhanced. Therefore, the increased 
anisotropy of surface energy causes more surplus heat flux from the interface into the solid phase along those 
crystal orientations. Along the <111> crystal orientations, the increased anisotropy of surface energy enhances 
the temperature gradient of the liquid phase near the interface, whereas the temperature gradient of the solid 
phase near the interface is reduced. This means that the increased anisotropy of surface energy causes more heat 
flux into the interface from the liquid and solid phases along those orientations. Consequently, along certain 
crystal orientations, the increased anisotropy of surface energy enhances the interface speed and thus speeds up 
the melting process, whereas reduces the interface speed and thus slows down the melting process along other 
crystal orientations.

It is noteworthy that, along the <111> crystal orientations, the temperature in the solid phase is always higher 
than the melting temperature near the interface. The solid phase undergoes superheating as local phenomenon, 
which could be referred to as local superheating. Font and  Myers25 pointed out that the superheating is owing to 
the melting temperature at the interface decreasing faster than the heat diffusion in the solid phase. McCue et al.21 
suggested that the solid is locally superheated after a point in time as the melting temperature decreases. We sug-
gest that the micro/nanoparticles along the <111> crystal orientations undergo some form of local superheating 
during the melting process, which is revealed when the anisotropy of surface energy is taken into consideration. 
With the increase of anisotropy of surface energy, more heat flux flows into the interface from the solid phase, 
thus reducing the superheating temperature. In addition, the interface speed along those crystal orientations is 
higher than other crystal orientations.

Discussion
In this paper, we study the melting of micro/nanoparticles possessing the anisotropy of surface energy. The 
anisotropy of surface energy is included in the Gibbs–Thomson condition of the dynamic model for micro/
nanoparticle melting. Using the asymptotic method, we find the asymptotic solution of the temperature and 
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Figure 5.  (a) Dimensionless dependence of the interface speed ∂R/∂t on the particle radius R under various 
surface energy values, plotted by the asymptotic solution (18). (b) Dimensionless temperature distributions in 
the solid and liquid phases near the interface (black dotted lines) corresponding to the value of surface energy 
in (a), plotted by the asymptotic solution (17). The temperatures of the solid and liquid phases are located on 
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interface speed of micro/nanoparticles of varying size, and reveal the dependence of the melting temperature 
on size and interface speed of the micro/nanoparticles.

When the surface energy is considered, the curve of the asymptotic solution has a significant deviation to the 
experimental data for In and Al nanoparticles. When the anisotropy of surface energy is considered, the curve 
of the asymptotic solution corresponds to more experimental data for In and Al nanoparticle along the <010> 
crystal orientations. The size dependence of the melting temperature reduction of nanoparticles depends not 
only on the isotropic surface energy, but also on the anisotropy of surface energy. Also, our asymptotic solution 
shows the size dependence of the melting temperature when the surface energy is not considered.

When the anisotropy of surface energy is taken into consideration, the asymptotic solution reveals the fun-
damental cause underlying Zhang and Cantor’s experimental observations that the melting temperature varies 
with the anisotropy of surface  energy6. The differences in the temperature gradients of the liquid and solid phases 
near the interface affected by the anisotropy of surface energy result in the differences in the heat flux direction 
during the melting process, which is the mechanism behind the variations of melting temperature with different 
crystal orientations.

As the heat flux is flowing into the interface from the liquid phase, the melting process accelerates rapidly, 
leading to a dramatic increase in interface speed. The increase of the surface energy increases the interface speed, 
where the increase is most notable for smaller particles. When the anisotropy of surface energy is considered, 
the crystal orientations wherein the heat flux flows out from the solid phase exhibit a greater interface speed 
than the crystal orientations wherein the heat flux surplus flows into the solid phase. Along certain crystal ori-
entations, the increased anisotropy of surface energy promotes the heat flux flows into interface from the solid 
phase, thus speeds up the melting process, whereas along other crystal orientations, the increased anisotropy 
of surface energy depresses the heat flux surplus flows into the solid phase from interface, thus slows down the 
melting process.

When the anisotropy of surface energy is considered, the temperature in the solid phase is higher than the 
melting temperature near the interface along some crystal orientations. This is referred to as local superheating of 
the solid phase. Previous  reports21,25 explained this phenomenon based on various considerations. Excepting the 
melting process and the melting temperature, little is known about the properties of superheated particles. The 
results presented in this paper suggest that the increased anisotropy of surface energy reduces the superheating 
temperature and increases the melting speed.

Methods
The dimensionless problem in Eqs. (9)–(15) are solved by using the asymptotic method. According to the theory 
of solidification, energy transfer occurs mainly near the interface, but far from the interface relatively smooth. 
Mathematically, there are different scales near the interface and far from the interface for the whole melt region. 
With the slow variable r = εr introduced,

the multiple variables r,r,θ,ϕ are viewed as independent variables. The interface function is expressed as

where R = εR , R0 = εR0 , R1 = εR1.
The temperature fields in the liquid and solid phases (9)–(10) are transferred into the governing equations

which are subject to the following boundary conditions. At the interface,

The mean curvature at the interface K  , the stiffness of the interface S and the surface energy γ in surface 
energy parameter Ŵ are expanded as follows,

∂
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(�+ 2)R1 + · · · � =
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
,
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where Pmn (cos θ) cosmϕ is the spherical harmonic of degree n and order m . γ0 is the surface energy. α4 is the 
anisotropic parameter of surface energy.

The far-field temperature condition and the initial condition for the interface remain the same as (14) and (15).
Substituting Eqs. (17)–(18) into the above dimensionless problem (20)–(24), we have the equations for the 

each order term. The leading order terms TL0 , TS0 and R0 in Eqs. (20)–(21) satisfy the equations

which are subject to the boundary conditions: at the interface,

The far-field temperature condition is that

The initial condition for the leading order interface is that

The solution of Eq. (25), which obey the conditions (26)–(30), are expressed as

where R0 is the solution of the ordinary differential equation

which obeys the initial condition (30),

The first order terms TL1 , TS1 and R1 in Eqs. (20)–(21) satisfy the equations

which are subject to the boundary conditions:

where � is defined in α4 = �ε . The anisotropic parameter of surface energy α4 is assumed to be of the same 
order of magnitude as ε , � = O(1).

The far-field temperature condition holds that

The initial condition for the first order interface is that

S = 2+α4

(

6

5
−

36

5
P04(cos θ)−

3

70
P44(cos θ) cos 4ϕ

)

, γ = γ0[1+α4(sin
4 θ(sin4 ϕ+cos4 ϕ)+cos4 θ)],

(25)∇
2TL0 = 0, ∇

2TS0 = 0,

(26)TL0 = TS0,

(27)TL0 = −
2Ŵ

R0
− E−1M

dR0

dt
,

(28)
dR0

dt
= kT

∂TS0

∂r
−

∂TL0

∂r
.

(29)TL0 → 1 as r → ∞, r → ∞,

(30)R0(0) = 1 at t = 0,

(31)TL0 = 1+
R2
0

r

dR0

dt
eR0−r , TS0 = 1+ R0

dR0

dt
,

dR0

dt
= −

R0 + 2Ŵ

R0(R0 + E−1M)
,

(32)t =
1− R2

0

2
+ (E−1M − 2Ŵ)(1− R0)+ 2Ŵ(2Ŵ − E−1M) ln

1+ 2Ŵ

R0 + 2Ŵ
.

(33)∂TL0

∂t
= ∇

2TL1 + 2
∂2TL0

∂r∂r
+

2

r

∂TL0

∂r
,

(34)�T
∂TS0

∂t
= ∇

2TS1 + 2
∂2TS0

∂r∂r
+

2

r

∂TS0

∂r
,

(35)TL1 = TS1 +
dR0

dt
R1 + R0

dR0

dt
R1,

(36)TS1 =
(�+ 2)ŴR1

R2
0

− E−1M
∂R1

∂t
−

�Ŵ

R0

(

6

5
−

36

5
P0
4(cos θ)−

3

70
P44(cos θ) cos 4ϕ

)

,

(37)
∂R1

∂t
= kT

∂TS1

∂r
−

∂TL1

∂r
−

2R1

R0

dR0

dt
−

dR0

dt
R1 +

dR0

dt
R0,

(38)TL1 → 0 as r → ∞, r → ∞.
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The particular solution of the first order terms in Eqs. (33)–(34) are expressed as

It is seen that the introduction of multiple scales guarantees that the solutions for the temperature field in 
(40) satisfy the far-field temperature condition (38). The solution of Eqs. (33)–(34), which obey the conditions 
(35)–(39), is expressed as

and the first order term of the interface R1 are expressed as

where Am,n , Bm,n , g0,0 , g4,0 and g4,4 are determined by the interface conditions (35)–(37). For the mode n = 0 , 
m = 0,

for the mode n = 4 , m = 0,

for the mode n = 4 , m = 4,

where g0,0 , g4,0 and g4,4 satisfy the following ordinary differential equations respectively. g0,0 = εg0,0 , g4,0 = εg4,0 
and g4,4 = εg4,4 . For the mode n = 0 , m = 0,

for the mode n = 4 , m = 0,

for the mode n = 4 , m = 4,

where ℜ(R0, n) and D(R0, n) are two abbreviations,

From the initial condition (39), it follows that g0,0(0) = 0 , g4,0(0) = 0 and g4,4(0) = 0 . Then the solutions of 
Eqs. (42)–(44) are solved respectively. For the mode n = 0 , m = 0,

(39)R1(θ ,ϕ, 0) = 0 at t = 0

(40)TL1∗ =
r

2

d

dt

(

R2
0

dR0

dt

)

eR0−r
+

rR2
0

2

dR0

dt

dR0

dt
eR0−r , TS1∗ =

�Tr
2

6

d

dt

(

R0
dR0

dt

)

.

TL1 =
A0,0

r
+

A4,0

r5
P4(cos θ)+

A4,4

r5
P44(cos θ) cos 4ϕ,

TS1 = B0,0 + B4,0r
4P4(cos θ)+ B4,4r

4P44(cos θ) cos 4ϕ,

(41)R1 = g0,0 + g4,0P4(cos θ)+ g4,4P
4
4(cos θ) cos 4ϕ,

A0,0 = R0B0,0 + R0
dR0

dt
g0,0 + R2

0

dR0

dt
g0,0 −

1

2
R2
0

d

dt

(

R2
0

dR0

dt

)

+
�TR

3
0

6

d

dt

(

R0
dR0

dt

)

−
R4
0

2

dR0

dt

dR0

dt
,

B0,0 =
2Ŵg0,0

R2
0

− E−1M
dg0,0

dt
−

�TR
2
0

6

d

dt

(

R0
dR0

dt

)

−
6

5

�Ŵ

R0
;

A4,0 = R9
0B4,0 + R5

0

dR0

dt
g4,0 + R6

0

dR0

dt
g4,0,

B4,0 = −
18Ŵ

R6
0

g4,0 −
E−1M

R4
0

dg4,0

dt
+

36�Ŵ

5R5
0

;

A4,4 = R9
0B4,4 + R5

0

dR0

dt
g4,4 + R6

0

dR0

dt
g4,4,

B4,4 = −
18Ŵ

R6
0

g4,4 −
E−1M

R4
0

dg4,4

dt
+

3�Ŵ

70R5
0

,

(42)

dg0,0

dt
=

1

R2
0

ℜ(R0, 0)g0,0 +
1

D(R0, 0)

(

�TkT

3
R2
0

d

dt

(

R0
dR0

dt

)

−R3
0

dR0

dt

dR0

dt

)

+
1

D(R0, 0)

(

R2
0

dR0

dt
−R0

d

dt

(

R2
0

dR0

dt

)

−
6�Ŵ

5R0

)

;

(43)
dg4,0

dt
= −

3

R2
0

ℜ(R0, 4)g4,0 +
36

5

Ŵ�(4kT + 5)

R0D(R0, 4)
+

4R0

D(R0, 4)

dR0

dt
g4,0;

(44)
dg4,4

dt
= −

3ℜ(R0, 4)

R2
0

g4,4 +
3Ŵ�(4kT + 5)

70R0D(R0, 4)
+

4R0

D(R0, 4)

dR0

dt
g4,4,

ℜ(R0, n) =
1

D(R0, n)

(

(n+ 2)(nkT + n+ 1)Ŵ − R2
0

dR0

dt

)

, D(R0, n) = R0+(nkT+n+1)E−1M.
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for the mode n = 4 , m = 0,

for the mode n = 4 , m = 4,

where

in which a , b and c are defined as:
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