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Abstract

Strong early vigour plays a crucial role in wheat yield improvement by enhancing resource

utilization efficiency. Synthetic hexaploid wheat (SHW) combines the elite genes of tetra-

ploid wheat with Aegilops tauschii and has been widely used in wheat genetic improvement

for its abundant genetic variation. The two SHWs Syn79 and Syn80 were derived from the

crossing of the same tetraploid wheat DOY1 with two different Ae. tauschii accessions,

AT333 and AT428, respectively. The Syn80 possessed better early vigour traits than

Syn79, theretically caused by their D genome from Ae. tauschii. To dissect their genetic

basis in a hexaploid background, 203 recombinant inbred lines (RILs) derived from the

cross of Syn79 x Syn80 were developed to detect quantitative trait loci (QTL) for four early

biomass related traits: plant height (PH), tiller number (TN), shoot fresh weight (SFW) and

shoot dry weight (SDW) per plant, under five different environmental conditions. Determined

from the data of SNP markers, two genome regions on 1DS and 7D were stably associated

with the four early biomass related traits showing pleiotropic effects. Four stable QTLs QPh.

saas-1DS, QTn.saas-1DS, QSfw.saas-1DS and QSdw.saas-1DS explaining 7.92, 15.34,

9.64 and 10.15% of the phenotypic variation, respectively, were clustered in the region of

1DS from AX-94812958 to AX-110910133. Meanwhile, QPh.saas-7D, QTn.saas-7D, QSfw.

saas-7D and QSdw.saas-7D were flanked by AX-109917900 and AX-110605376 on 7D,

explaining 16.12, 24.35, 15.25 and 13.37% of the phenotypic variation on average, respec-

tively. Moreover, these genomic QTLs on 1DS and 7D enhancing biomass in the parent

Syn80 were from Ae. tauschii AT428. These findings suggest that these two QTLs from Ae.

tauschii can be expressed stably in a hexaploid background at the jointing stage and be

used for wheat improvement.
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Introduction

Common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD), which is an important food

crop throughout the world, originated from the spontaneous hybridization of tetraploid Triti-
cum turgidum wheat (2n = 4x = 28, AABB) with diploid Aegilops tauschii Coss (2n = 2x = 14,

DD) [1,2]. It is believed that only a few accessions of the donor species were involved in the

evolution of common wheat, especially for the D genome donor. Consequently, the genetic

diversity of common wheat decreased significantly compared to its donor species. Due to this

evolutionary bottleneck, most of the genetic variation in Ae. tauschii did not exist in the com-

monly available hexaploid germplasm [3], and only 7% of the variants observed in Ae. tauschii
were reserved in common wheat [4,5]. To enhance the transferal efficiency of elite genes from

Ae. tauschii species to common wheat, scientists created synthetic hexaploid wheat (SHW)

from crosses between T. turgidum and Ae. tauschii to broaden the genetic variation of hexa-

ploid wheat [6]. Over 1000 SHW lines were produced by using more than 600 Ae. tauschii
accessions stored at the International Maize and Wheat Improvement Center (CIMMYT;

Mexico City, Mexico) [7]. SHWs with their vast genetic diversity have shown outstanding

superiority in resistance to diseases and pests, tolerance to environmental stresses, and desir-

able quantitative traits, so these have been used widely in common wheat breeding [8–14].

Chinese scientists have shown a high interest in CIMMYT SHW lines since the early 1990s

[15–18]. More than 200 CIMMYT SHW accessions were introduced into China in 1995 [14].

In recent years, several commercial wheat varieties have also been created and released in

China [9,14,19]. In addition, several favourable introgressions from Ae. tauschii have been

identified in synthetic derivatives [19]. A major QTL on 4DL associated with leaf sheath hairi-

ness in a synthetic derivative of the wheat variety Chuanmai42 was identified, and its wild

allele was found to have originated from Ae. tauschii, which has significantly increased grain

weight, grain yield, and yield-related characters [20].

Vigorous cultivars have advantages for enhancing the population’s water-use efficiency by

providing shade to the soil surface faster and thereby reducing evaporative losses from the soil

[21–23]. Rapid early development of leaf area and the root system are associated with increased

water and nutrient use efficiency, high rates of light interception and biomass production

resulting in drought tolerance and high yield potential [22,23]. In recent years, we have

screened CIMMYT SHWs for high biomass and found two SHWs (Syn79 and Syn80) derived

from the same tetraploid wheat (durum wheat DOY1), with two different Ae. tauschii acces-

sions, which have significantly different biomass during the entirety of the development stage.

We attributed the significant difference in biomass between the two SHWs to the different

genotypes in the two D genome donors. The vegetative growth, nutrient accumulation, nutri-

ent distribution and utilization of Syn79 and Syn80 were significantly different under different

environmental conditions [24]. To evaluate the genetic impact of the different D genomes on

early vigour in hexaploid wheat, a population of recombinant inbred lines (RILs) derived from

a cross between Syn79 and Syn80 was developed. The goal of this study was to map the major

QTLs associated with early biomass accumulation contributed from Ae. tauschii in a hexaploid

wheat background at jointing stage for the molecular breeding of wheat yield using SHWs.

Materials and methods https://dx.doi.org/10.17504/protocols.io.

bgrnjv5e

Plant materials

Two hundred and three F9 recombinant inbred lines (RILs) derived from a Syn79 x Syn80

cross and their parents were used for QTL mapping in this study. Syn79 and Syn80 were
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generated from durum wheat DOY1 (2n = 28, AABB) crossed with Ae. tauschii (2n = 14, DD)

by CIMMYT [6]. A and B genomes of Syn79 and Syn80 were from the same durum donor

DOY1, while their D genomes were from two different Ae. tauschii accessions (AT333 and

AT428). Syn80 had stronger early vigour than Syn79 (Fig 1), due to their different D genomes,

and AT428 possessed better early vigour traits than AT333.

Field trials

A total of five trials for Syn79, Syn80 and 203 RILs were conducted at Guang-Han Station

(GHS) in 2017–2019 (2017GHS, 2018GHS, 2019GHS) and Cang-Shan Station (CSS) in 2017

and 2018 (2017CSS, 2018CSS). Both stations are members of the Sichuan Academy of Agricul-

tural Sciences (SAAS). GHS and CSS are representative of the plains and hilly regions in Sich-

uan province, respectively. The chemical properties of the soil at these sites from five trials are

shown in Table 1. The organic matter, total nitrogen and available nitrogen of the soil in GHS

were all significantly higher than that in CCS, and the total potassium of the soil in CSS was

more than that in GHS (Table 1).

Trait evaluation

Four early biomass related traits, plant height (PH), tiller number (TN), shoot fresh weight

(SFW) and shoot dry weight (SDW) per plant were investigated in the RILs and their parents

at the jointing stage. The phenology and growing periods of the two parents and the RILs were

only slight different, their phenotypic data were collected at one time when the first internode

Fig 1. Early growth of the two parents and their RILs in the jointing stage.

https://doi.org/10.1371/journal.pone.0234882.g001
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came out about 110 days after sowing. In each plot, 10 plants were randomly selected to evalu-

ate traits associated with early biomass, dislodging plants at the ends of each row avoiding

within-row edge effects. PH and TN were investigated in the field, which was finished within

1–2 days under the same trial environment. Then the shoots of these 10 sampled plants were

cut for measuring SFW and SDW. SFW was accomplished within 12 hours after sampling.

When measuring SDW, the separated shoot was dried to a constant weight at 65 ˚C after

10-minute exposure to 120 ˚C. All traits were described based on the mean values of 10 plants

in each corresponding row.

SNP genotyping

A total of 50 mg of fresh plant leaves was collected from 2-week-old seedlings and DNA was

extracted using the NuClean Plant Genomic DNA Kit (CWBio, Beijing, China). Eluted DNA

was quantified using a Qubit 4 Fluorometer (Life Technologies Holdings Pte Ltd, Singapore)

and then normalized using a 12-channel electronic pipette with a volume ranging from 10 to

100μL (Eppendorf, Hamburg, Germany) to obtain the concentration required for genotyping.

The RILs and their parents, Syn79 and Syn80, were genotyped on the Affymetrix platform

of the Axiom Wheat Breeder’s Genotyping Array with 13947 SNP markers including 1272

functional markers by China Golden Marker Biotech Co Ltd (Beijing, China). The collected

fluorescence signal from the SNP array processed and analyzed using functions in the apt-

genotype-axiom for genotype calling, ps-metrics for generating various QC metrics and ps-

classification for classifying SNPs in the software of Affymetrix Axiom Analysis Suite version

4.0.1. Among 13947 SNP markers, a total of 3480 SNPs were distributed on the D genome and

were used for parental polymorphism analysis.

Statistical and QTL analysis

Descriptive analyses, analysis of variance (ANOVA) and correlation analyses for the pheno-

typic data were calculated using the SPSS statistical package (SPSS Inc., Chicago, IL). Variation

of genotypes for phenotypic traits was evaluated using mean, standard deviation (SD), the

coefficient of variation (CV), maximum (Max) and minimum (Min). An ANOVA was calcu-

lated for all traits based on a general linear model (GLM) to detect the effect of genotypes, envi-

ronments and genotype × environment interactions. Broad sense heritability (H2) was

estimated with the formula: H2 = σ2g/ (σ2g + σ2ge/n + σ2e/nr), where σ2g is the genetic vari-

ance, σ2ge is the variance of the genotype-environment interaction, σ2e is the experimental

error variance, n is the number of trials and r is the number of replications.

The QTL IciMapping Software version 4.1 [25,26] was used for genetic linkage map con-

struction. The location of the SNP marker was aligned according to the physical map of

Table 1. Chemical properties of soil in different field trials.

Trials pH Organic matter

(g/kg)

Total nitrogen

(g/kg)

Total phosphorus

(g/kg)

Total potassium

(g/kg)

Available nitrogen

(mg/kg)

Available phosphorus

(mg/kg)

Available potassium

(mg/kg)

2017GHS 6.84 31.9 1.99 0.723 16.25 165 6.9 90

2018GHS 6.45 39.7 2.31 0.860 18.77 206 15.8 105

2019GHS 6.71 28.9 2.03 0.674 19.00 183 11.0 96

2017CSS 7.81 9.5 0.77 0.556 23.81 47 3.7 100

2018CSS 8.24 15.7 1.23 0.328 22.90 97 2.9 137

The trials were performed in randomized complete blocks with three replicates. Each plot had five 1.5 m rows spaced 0.5 m apart. At the two-leaf stage, only ten evenly

distributed plants in each row were retained for further growth. Field management consisted of commonly under-taken practices in wheat production.

https://doi.org/10.1371/journal.pone.0234882.t001
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Ae. tauschii AL8/78 for the D genome [27]. The genetic linkage map was constructed accord-

ing to 153 polymorphic markers between Syn79 and Syn80 (the parents), which were screened

from 3480 SNP markers distributed on the D genome. The map covered over 803.84 cM on

the wheat D genome, with an average distance of 5.25 cM between adjacent polymorphic

markers.

QTL analyses for the measured traits under the five different environmental conditions

were performed using the inclusive composite interval mapping (ICIM) option on the QTL

IciMapping Software version 4.1. The significant LOD threshold was determined by 1000 per-

mutations and a significance threshold of P = 0.05. Linked QTLs with genetic distances of less

than 20 cM were considered as one single QTL, which were named according to Ayalew et al.

[28].

Results

Phenotypic analysis

Five different field trials were conducted at two locations over 3 years to evaluate early biomass

related traits of the RIL population as well as their parents Syn79 and Syn80. Syn80 had greater

early biomass than Syn79 (Fig 1). The values of PH, TN, SFW and SDW for Syn80 were signifi-

cantly larger than those of Syn79 under all five environmental conditions (Table 2). Indepen-

dent of the differences between the two parents, in all trials there was significant variation in

the investigated traits of the RIL populations, with values spanning much larger ranges than

Table 2. Parental values, population distribution parameters, and heritability of the investigated traits.

Trait Environment Parents RILs H2 F-values from ANOVA

Syn79 Syn80 Mean±SD CV(%) Min-Max (%) Environment Genotype Environment×genotype

PH 2017GHS 31.87 48.64�� 38.43±5.98 15.56 27.00–59.20 43.27 1368.74�� 14.05�� 2.02��

(cm) 2018GHS 34.48 53.81�� 50.12±8.07 16.10 29.38–65.33

2019GHS 46.11 63.33�� 60.87±8.20 13.47 38.11–81.94

2017CSS 42.00 56.33�� 54.40±8.34 15.33 27.17–69.33

2018CSS 49.67 65.11�� 59.84±9.07 15.16 27.58–76.56

TN 2017GHS 5.60 12.53�� 10.01±2.58 25.77 4.50–17.90 43.11 780.24�� 14.32�� 2.05��

(No./plant) 2018GHS 8.17 16.67�� 15.05±3.92 26.05 6.00–23.00

2019GHS 10.00 15.78�� 14.23±3.73 26.21 5.78–21.67

2017CSS 7.00 12.00�� 9.22±2.58 27.98 2.00–15.00

2018CSS 8.33 13.22�� 11.16±3.31 29.66 2.33–18.33

SFW 2017GHS 17.09 73.72�� 48.25±25.60 53.06 7.02–136.54 40.20 144.40�� 14.05�� 2.16��

(g/plant) 2018GHS 21.79 70.78�� 60.92±29.91 49.10 7.30–156.94

2019GHS 29.40 78.37�� 64.94±29.89 46.03 10.97–169.70

2017CSS 26.58 82.57�� 52.69±25.50 48.40 3.59–132.55

2018CSS 36.89 96.08�� 75.44±39.27 52.05 4.72–158.86

SDW 2017GHS 2.85 10.22�� 6.64±3.34 50.30 1.04–16.19 39.20 161.47�� 84.08�� 6.60��

(g/plant) 2018GHS 3.43 10.24�� 8.35±3.58 42.87 1.04–20.54

2019GHS 4.63 11.87�� 8.96±4.31 48.10 1.43–17.80

2017CSS 4.43 11.45�� 7.25±3.28 45.24 0.46–18.13

2018CSS 5.59 13.98�� 10.18±4.95 48.62 0.69–20.57

� And �� indicate significant differences at P = 0.05 and 0.01, respectively. PH: plant height, TN: tiller number, SFW: shoot fresh weight, SDW: shoot dry weight, SD:

standard deviation, CV: the coefficient of variation, Max: maximum, Min: minimum, RILs: recombinant inbred lines, H2: broad sense heritability, ANOVA: analysis of

variance.

https://doi.org/10.1371/journal.pone.0234882.t002
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those defined by the parental values. The phenotypic data were normally distributed in the

RILs (Fig 2). Variation in the phenotypic data was tremendous in the RILs, especially for SFW

and SDW. Variation was determined by genotype, environment and genotype × environment

interactions. Their heritabilities ranged from 39.20 to 43.27% (Table 2). This suggested that

those phenotypic traits were controlled by multiple genes and also significantly affected by the

environment.

Correlations among PH, TN, SFW and SDW in each trial are presented in Table 3. This

shows that significant positive correlations among these traits were detected in the early

Fig 2. Distribution graph of the phenotypic data for plant height (PH), tiller number per plant (TN), shoot fresh weight (SFW) and shoot dry weight

(SDW) under five different environments.

https://doi.org/10.1371/journal.pone.0234882.g002
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growth stage. The average coefficients in the five trials ranged from 0.581 to 0.975. PH was sig-

nificantly positively correlated with TN, and the coefficients ranged from 0.424 to 0.683 across

each trial (Table 3). Both PH and TN showed significant positive correlations with SFW and

SDW, and the coefficients were higher than that between PH and TN. These results suggest

that greater early biomass is related with higher PH, more TN, heavier SFW and SDW.

Genetic map of the D genome

In this study, we used a Wheat Breeder’s Genotyping Array to genotype the A, B and D

genomes. For the A and B genomes, a total of 10467 SNP labels anchored on the genotyping

array were used to check the genotype of the A and B genomes in the RIL population and their

parents, which were generated from the same A and B genomes’donor. The results showed

that almost all SNP markers on the A and B genomes had no polymorphism between the two

parents. For the D genome, 3480 SNP labels were selected to fix on the chip by China Golden

Marker Biotech Co Ltd (Beijing, China). Among these scanned markers, 153 markers on the D

genome had polymorphism between the two parents, which were unequally distributed on the

seven chromosomes of the D genome (Table 4). The number of polymorphic markers on dif-

ferent chromosomes ranged from 8 on 3D to 34 on 7D (Table 4).

For linkage map construction, SNP markers were grouped according to their anchored

chromosomes in the Ae. tauschii AL8/78 D genome, and then aligned by the nnTwoOpt

method [25–27]. The entire genetic map covered over 803.84 cM of the D genome with an

average distance between adjacent markers of 5.25 cM (Table 4). The average distance between

two adjacent markers ranged from 2.67 cM to 6.93 cM. For all of the 7 chromosomes, the

linkage maps ranged from 21.35 cM to 214.50 cM. For the chromosomes 2D and 3D, the total

distances of the constructed linkage maps in this population and the Wheat Breeder’s Geno-

typing Array were 69.22 cM and 21.35 cM, respectively. Out of the genomic regions of the

linkage maps, no polymorphic markers were detected by this SNP array.

Table 3. Correlation coefficients between the four traits in RILs in different trials.

TN SFW SDW

PH 0.673�� 0.724�� 0.733��

0.424�� 0.364�� 0.355��

0.683�� 0.784�� 0.808��

0.606�� 0.821�� 0.835��

0.612�� 0.791�� 0.791��

TN 0.708�� 0.711��

0.142� 0.141�

0.731�� 0.728��

0.668�� 0.678��

0.749�� 0.713��

SFW 0.967��

0.969��

0.978��

0.983��

0.980��

�And�� indicate significance at P = 0.05 and 0.01 level, respectively. PH: plant height, TN: tiller number, SFW: shoot

fresh weight, SDW: shoot dry weight.

https://doi.org/10.1371/journal.pone.0234882.t003
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Genotypic markers were tested for segregation distortion (deviation from the expected 1:1

ratio) by Chi-squared tests. Among the 153 SNP loci, 54 loci showed segregation distortion in

RILs (Table 5). Almost all loci were biased to Syn80, showing larger early biomass, which

means that in those loci most of the progeny RILs preferentially inherited the female parent

Syn80. Only four loci were male-biased (Table 5). Among those female-biased loci, the number

of loci on the different chromosomes were distributed from 1 on 3D to 18 on 7D. Three geno-

mic regions were detected as Syn80-biased on chromosome 1D, 2D and 7D (Table 5), and

these covered about 50, 20 and 40 cM on 1D, 2D and 7D, respectively.

QTLs on the D genome

With the linkage map constructed by 153 SNP markers on the D genome, QTLs for PH, TN,

SFW and SDW were identified under five environmental conditions using the inclusive com-

posite interval mapping program (ICIM).

PH and TN are common agronomic traits in wheat, and the higher PH and TN in the seed-

ling growth stage were positively correlated with the enhanced water-use efficiency of the pop-

ulation due to the soil surface being shading faster, which reduces evaporative losses from the

soil. A total of two QTLs for PH were identified on chromosome 1DS and 7D (Table 6; Fig 3).

The QTL peak of the first one was located in the interval of AX-94812958 and AX-110910133
under multiple environmental conditions, and its physical position was located on the geno-

mic interval of 8.97–21.51 Mb according to the sequence assembly of Ae. tauschii AL8/78 [27].

Under the five environmental conditions, this QTL explained 6.91–9.17% of the phenotypic

variation (PVE). And the QTL allele from Syn80 increased the PH of seedlings, with its addi-

tive effect ranging from 1.93 to 2.92 cm (Table 6). The second QTL was located in the interval

of AX-109917900—AX-110605376 with its physical interval corresponding to 324.36–557.58

Mb in Ae. tauschii AL8/78. QPh.saas-7D explained an average PVE of 16.12% across the

Table 4. SNP markers on the D genome.

Parameter 1D 2D 3D 4D 5D 6D 7D Total

Total Makers 370 634 536 265 550 428 697 3480

Polymorphic markers 30 20 8 21 25 15 34 153

Polymorphism rate (%) 8.11 3.15 1.49 7.92 4.55 3.50 4.88 4.40

Map length (cM) 127.58 69.22 21.35 145.52 135.72 89.95 214.50 803.84

Distance between polymorphic markers (cM) 4.25 3.46 2.67 6.93 5.43 6.00 6.31 5.25

https://doi.org/10.1371/journal.pone.0234882.t004

Table 5. Segregation distortion of SNP loci in RILs.

Chromosome Syn80-biased Locus Unbiased Locus Syn79-biased Locus

Number Rate (%) Number Rate (%) Number Rate (%)

1D 11 36.67 19 63.33 0 0.00

2D 14 70.00 5 25.00 1 5.00

3D 1 12.50 7 87.50 0 0.00

4D 2 9.52 19 90.48 0 0.00

5D 3 12.00 20 80.00 2 8.00

6D 1 6.67 14 93.33 0 0.00

7D 18 52.94 15 44.12 1 2.94

Total 50 32.68 99 64.71 4 2.61

Underline means genetic regions with linked loci; Chi-squared tests were considered at the P = 0.05 level

https://doi.org/10.1371/journal.pone.0234882.t005
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Table 6. QTLs for plant weight (PH), tiller number (TN), shoot fresh weight (SFW) and shoot dry weight (SDW) in the RILs.

Traits QTL Environments Peak position (cM) Marker interval Physical interval (Mb) LOD PVE (%) ADD¶

PH QPh.saas-1DS 2017GHS 1DS:34 AX-94812958 a - AX-109908110 b 8.97–11.57 4.87 9.17 -1.93

2018GHS 1DS:34 AX-94812958 - AX-109908110 8.97–11.57 4.49 8.15 -2.58

2019GHS 1DS:34 AX-94812958 - AX-109908110 8.97–11.57 4.86 6.91 -2.31

2017CSS 1DS:40 AX-94812958 - AX-110910133 c 8.97–21.51 2.90 7.71 -2.92

2018CSS 1DS:39 AX-94812958 - AX-110910133 8.97–21.51 2.90 7.68 -2.60

QPh.saas-7D 2017GHS 7D:90 AX-109917900 d - AX-110605376 e 324.36–557.58 7.81 14.64 -2.51

2018GHS 7D:91 AX-109937582 f - AX-110605376 549.19–557.58 6.87 12.86 -3.33

2019GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 20.16 34.33 -5.35

2017CSS 7D:90 AX-109917900 - AX-110605376 324.36–557.58 4.08 9.00 -2.75

2018CSS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 5.98 9.77 -3.31

TN QTn.saas-1DS 2017GHS 1DS:33 AX-94812958 - AX-109908110 8.97–11.57 3.36 6.32 -0.73

2018GHS 1DS:37 AX-94812958 - AX-110910133 8.97–21.51 8.82 16.34 -1.82

2019GHS 1DS:34 AX-94812958 - AX-109908110 8.97–11.57 12.39 15.54 -1.54

2017CSS 1DS:38 AX-94812958 - AX-110910133 8.97–21.51 10.26 19.55 -1.32

2018CSS 1DS:35 AX-94812958 - AX-110910133 8.97–21.51 12.93 18.93 -1.42

QTn.saas-7D 2017GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 8.38 16.68 -1.24

2018GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 12.29 18.88 -2.12

2019GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 26.15 38.25 -2.52

2017CSS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 13.51 19.27 -1.46

2018CSS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 19.48 28.66 -1.86

SFW QSfw.saas-1DS 2017GHS 1DS:33 AX-94812958 - AX-109908110 8.97–11.57 3.70 7.51 -8.98

2018GHS 1DS:34 AX-94812958 - AX-109908110 8.97–11.57 6.40 11.31 -11.17

2019GHS 1DS:36 AX-94812958 - AX-110910133 8.97–21.51 7.23 12.63 -10.11

2017CSS 1DS:42 AX-94812958 - AX-110910133 8.97–21.51 2.96 8.03 -8.26

2018CSS 1DS:36 AX-94812958 - AX-110910133 8.97–21.51 4.27 8.71 -10.30

QSfw.saas-7D 2017GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 4.83 9.13 -10.13

2018GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 9.07 16.25 -13.70

2019GHS 7D: 91 AX-109937582 - AX-110605376 549.19–557.58 15.97 26.61 -15.88

2017CSS 7D: 91 AX-109937582 - AX-110605376 549.19–557.58 6.03 10.17 -10.93

2018CSS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 7.66 14.08 -14.22

SDW QSdw.saas-1DS 2017GHS 1DS:40 AX-94812958 - AX-110910133 8.97–21.51 4.35 10.59 -1.39

2018GHS 1DS:34 AX-94812958 - AX-109908110 8.97–11.57 6.93 12.28 -1.53

2019GHS 1DS:36 AX-94812958 - AX-110910133 8.97–21.51 6.98 12.84 -1.40

2017CSS 1DS:40 AX-94812958 - AX-110910133 8.97–21.51 2.73 7.24 -1.02

2018CSS 1DS:35 AX-94812958 - AX-110910133 8.97–21.51 3.93 7.79 -1.28

QSdw.saas-7D 2017GHS 7D:89 AX-109917900 - AX-110605376 324.36–557.58 4.40 6.53 -1.22

2018GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 8.24 14.81 -1.71

2019GHS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 13.10 22.20 -2.00

2017CSS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 5.77 10.09 -1.38

2018CSS 7D:91 AX-109937582 - AX-110605376 549.19–557.58 6.88 13.24 -1.76

a, b, c, d, e, f indicate the Chi-square value = 38.506 (P<0.001), 57.346 (P<0.001), 6.821 (P<0.01), 76.722 (P<0.001), 79.258 (P<0.001) and 82.713 (P<0.001) for

segregation distortion at these markers, respectively.
¶Additive effect. Positive, negative mean Syn79, Syn80 alleles produced larger values, respectively. PH: plant height, TN: tiller number, SFW; shoot fresh weight, SDW:

shoot dry weight

https://doi.org/10.1371/journal.pone.0234882.t006
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different environments. Seedling height on the QTL allele from the parent Syn80 increased

more than 5 cm in the trial of 2019GHS (Table 6). For TN, two QTLs, QTn.saas-1DS and QTn.

saas-7D were detected under all five environmental conditions (Table 6; Fig 3). Their intervals

were in accordance with the PH QTLs on chromosome 1DS and 7D, respectively (Table 6;

Fig 3). The PVE of QTn.saas-1DS ranged from 6.32% to 19.55% with an average of 15.34%,

Fig 3. QTLs for plant height (PH), tiller number (TN), shoot fresh weight (SFW) and shoot dry weight (SDW) detected on 1D and 7D in five

separate trials.

https://doi.org/10.1371/journal.pone.0234882.g003
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and was able to increase the tiller number by about 2 tillers from Syn80 in the trial of

2018GHS (Table 6).

SDW is positively related to SFW at the seedling stage. In this study, we detected two QTLs

for both SFW and SDW on the chromosome 1DS and 7D (Table 6; Fig 3). The QTL intervals

for SFW and SDW were in accordance with the QTL intervals for both PH and TN. Since

higher plant height and a greater tiller number per plant resulted in larger SFW and SDW, this

suggests that these may be the same QTLs. The average PVE for QSfw.saas-1DS and QSdw.

saas-1DS was 9.64% and 10.15%, respectively. The QTL allele from Syn80 increased the SFW

and SDW (Table 6). In the interval of AX-109937582—AX-110605376 on chromosome 7D,

QTLs for both SFW and SDW were identified under all five environmental conditions, and

the average PVE of QSfw.saas-7D and QSdw.saas-7D was 15.25% and 13.37%, respectively

(Table 6). The QTL alleles that increased SFW and SDW were from the parent Syn80

(Table 6).

In this study, two genomic regions were identified to be associated with early biomass.

They were in the interval of AX-94812958—AX-110910133 on chromosome 1DS and the inter-

val of AX-109917900—AX-110605376 on chromosome 7D. The two genomic regions from the

parent Syn80 could significantly enhance the early biomass with pleiotropic effects of increas-

ing PH, TN, SFW and SDW.

Discussion

Greater early biomass is visual and important for breeding new varieties and innovative utili-

zation of crop germplasm, especially under adverse environmental conditions. Therefore, it is

important to select traits under drought stress [29–31], especially in Sichuan, where drought

or seasonal drought occurred frequently in the last 70 years [32]. In this study, the early bio-

mass of the parents and the RIL population showed significant phenotypic differences in PH,

TN, SFW and SDW under the five different environmental conditions from 2016 to 2019. Phe-

notypic and QTL analyses demonstrated that the early biomass related traits, PH, TN, SFW

and SDW, were controlled by polygenes. Wheat growth habit types (spring or winter), the

wheat growth progress and early biomass were affected by the combination of photoperiod

and vernalization genes [33–36]. Photoperiod and vernalization genes on the D genome were

located on 2D and 5D [33,34]. Considering that the phenology and growing periods of the two

parents and the RILs were slight different, it can be inferred that early biomass in these RILs

was controlled by genes, which could not be related to photoperiod or vernalization genes, for

no QTLs were detected on the chromosomes 2D or 5D.

In the present study, two synthetic wheat varieties, Syn79 and Syn80, were generated from

two different Ae. tauschii accessions crossed with the same tetraploid wheat, and the significant

difference in early biomass between them was caused by their different D genome donors. Ae.
tauschii, the D genome donor of common wheat, exhibited genetic diversity for early growth

and might be a valuable species for improvement of early vigour in wheat [37]. The common

wheat D genome progenitor, Ae. tauschii, showed a rapid leaf expansion rate at the seedling

stage [21,37], which is beneficial for reducing evaporative losses from the soil [21]. Genetic dis-

section for early vigour related traits has been reported in several germplasms under different

growing conditions, and QTLs for early vigour related traits were distributed through almost

the whole genome of the wheat [21,37–41]. ter Steege et al identified 87 QTLs for early growth

that were related to 33 traits, 3.1 QTLs per trait, explaining 32% of the PVE by using a popula-

tion of Ae. tauschii RILs at the seedling stage, but there was no significant QTLs for plant and

shoot mass detected in this study, considering that the effects of QTL for the underlying

growth traits counterbalanced each other [37]. However, in our study, two chromosome
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fragments for SFW and SDW were detected, which simultaneously regulated PH and TN. The

favorable alleles detected were from Ae. tauschii and they could express stably in a hexaploid

genetic background. Few QTLs for biomass have been identified in the diploid populations of

Ae. tauschii [37], but in a hexaploidy genetic background. In the present study these expressed

stably in synthetic hexaploid wheat. The AABB genome of tetraploid wheat may play a very

important role in synthetic wheat derived from crosses of tetraploid wheat and Ae. tauschii.
The effects of genome combination between AABB and DD for gene expression need to be

analyzed further. And it substantiates the conclusion that using SHW is a more effective

method to transfer favourable genes from Ae. tauschii to common wheat [6,7,9,42].

In addition, the two chromosome fragments for PH, TN, SFW and SDW were detected sta-

bly on 1DS and 7D, which were located on the genomic intervals of 8.98–21.51 Mb and

324.36–557.58 Mb, respectively. Lr42, Rmg6, Sr33, SrTA1662, LR10, Xa5, Chalk5, MHZ5, B10,

Rc, BC10, EBR1 and EBR1 were located in the interval of AX-94812958 -AX-110910133 on

1DS of Ae. tauschii, and 16 QTL/genes (Pid2, IPA1, Xa13, Hd18, GW8, Xa27-Xa27-IRBB27,

qUVR-10, Yr33, Dn2, Ehd3, Nud, OsABCG15, MOC1, Lks2, TaD27 and QTls for antixenosis)

were in the interval of AX-109917900 -AX-110605376 on 7D [43]. Among these reported

genes, none except for TaD27 on 7D, which was associated with tiller number in hexaploidy,

has been found to be related to early vigour previously.

Segregation distortion is a common phenomenon among many plants [44]. In the present

study, 54 of 153 SNP loci showed segregation distortion in the RILs, and 50 makers were

skewed to Syn80, while 4 were biased to Syn79. Segregation distortion loci accounted for

35.29% of the total polymorphic loci, and 92.59% of the loci were preferentially biased to the

female parent Syn80, with only 7.41% coming from male parent Syn79. At the same time, we

found that Syn80 had stronger seedling vigour than that of Syn79. Therefore, the early vigour

which afforded a high survival ratio in the RILs containing the Syn80 loci, was higher than that

of the RILs containing the Syn79 loci. The proportion of segregation distortion was high in the

RILs. Xu et al found a similar phenomenon, finding that the purer the population, the higher

separation ratio [45]. In the present study, three genomic regions were detected to be Syn80--

biased on chromosome 1D, 2D and 7D (Table 5), which were involved with the QTL intervals

for early biomass. The centre of segregation bias on chromosome 1DS was located in the inter-

val of AX-110090502—AX-109911195 with a genetic location from 8.26 cM to 12.44 cM, as

96.4% of the progeny shared the same genotype with the parent Syn80 at the SNP site of AX-
110090502 and 97.9% for AX-109911195. On chromosome 2D, the segregation bias region was

framed from AX-108911375 to AX-110935958 across about 20 cM. On 7D, the centre of segre-

gation bias was located in the interval of AX-110271371 to AX-94807766. The centre of segre-

gation bias on 1DS was about 25 cM away from the detected QTL peaks for early growth-

related traits, and the centre of segregation bias on 7D was located in the interval of the QTL

peaks detected on this chromosome. Many factors may cause segregation distortion, these can

be genetic factors such as reproductive isolation, or incoordination between the cytoplasm and

nucleus, or hybrid necrosis etc. [46], and these can be due to natural or artificial selection [47].

In most cases, segregation is controlled by reproductive isolation factors such as gametophyte

genes on the nucleus or sterility genes [48–51]. Several types of hybrid abnormalities including

hybrid necrosis were reported in the process of synthetic wheat production [52,53]. Usually,

these abnormal growth phenotypes are classified into hybrid necrosis (Types II and III), hybrid

chlorosis and severe growth abortion [54,55]. Two genes derived from Ae.tauschii related to

type II and III necrosis symptoms have been mapped [53,54]. The gene Nec1 of type III necro-

sis was on chromosome 7DS [54], while the gene Nec2 of type II necrosis was on chromosome

2DL [56]. The locations of Nec2 and Nec1 were close to the segregation bias region on chromo-

some 2D and the segregation bias centre on chromosome 7D. One possible reason for the
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segregation bias for Syn80 in these loci was that Syn79 may have carried the Nec2 and Nec1
alleles for hybrid necrosis. Thus, the segregation bias would have spread from the location of

Nec2 or Nec1 across the QTL regions in this population. Segregation distortion regions may be

related to certain genes, the gene location of the target trait can be preliminarily determined

according to the segregation distortion region of the genetic map and the phenotypic data.

However, no strong evidence showed that the early biomass QTL was caused by the segrega-

tion bias to Syn80.

In the present study, 3480 SNP markers were used on the D genome, and only 153 poly-

morphic markers were detected between the parents, a percentage polymorphism of 4.40%.

Comparing to the genetic diversity of Ae. taushcii and the wheat cultivars reported by previous

authors [56–58], Syn79 and Syn80 had low genetic diversity on the D genome. It has been

widely accepted that Ae. tauschii ssp. strangulata is the D genome donor of hexaploid wheat

[56,59–63]. Ae. tauschii was classified into two groups, lineage 1 and lineage 2 [56,64]. Lineage

1 is broadly related to Ae. tauschii ssp. tauschii and lineage 2 is broadly related to Ae. tauschii
ssp. strangulata. The Infinium SNP array for the D genome was developed mainly according

to the SNP polymorphism between Ae. tauschii ssp. tauschii and Ae. tauschii ssp. strangulata.

Therefore, the D genome donors (AT333 and AT428) of synthetic hexaploid wheat Syn79 and

Syn80 may belong to the same group (Lineage 1 or Lineage 2), and their genetic relationship is

very close. Although the number of polymorphic loci in the D genome between Syn79 and

Syn80 was low, two genome regions on 1DS and 7D for four early biomass related traits were

still detected under five different environmental conditions. This provided a basis for further

fine mapping and candidate gene analysis of a few QTLs for early biomass related traits. On

the other hand, each of the synthetic wheat Syn79 and Syn80 combining elite genes from tetra-

ploid wheat and Ae. tauschii is a potential resource to broaden the genetic diversity for wheat

breeding programs.

Conclusion

By using a set of recombinant inbred lines derived from two synthetic hexaploid wheat varie-

ties (Syn79 and Syn80) re-synthesized from the same tetraploid wheat DOY1 and two different

Ae. tauschii accessions (AT333 and AT428), two genomic regions on 1DS and 7D were

detected to be associated with early biomass, with pleiotropic effects on PH, TN, SFW and

SDW. The QTL alleles from Syn80 enhanced the early biomass by increasing PH, TN, SFW

and SDW, and these originated from the Ae. tauschii AT428, which expresses stably in a hexa-

ploid background. The framed SNP markers could be used for wheat improvement.
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