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SUMMARY
Parkinson’s disease (PD) is a growing burden worldwide, and there is no reliable biomarker used in clinical
routines to date. Cerebrospinal fluid (CSF) is routinely collected in patients with neurological symptoms
and should closely reflect alterations in PD patients’ brains. Here, we describe a scalable and sensitive
mass spectrometry (MS)-based proteomics workflow for CSF proteome profiling. From two independent co-
horts with over 200 individuals, our workflow reproducibly quantifies over 1,700 proteins from minimal CSF
amounts.Machine learning determinesOMD, CD44, VGF, PRL, andMAN2B1 to be altered in PD patients or to
significantly correlate with clinical scores. We also uncover signatures of enhanced neuroinflammation in
LRRK2 G2019S carriers, as indicated by increased levels of CTSS, PLD4, and HLA proteins. A comparison
with our previously acquired urinary proteomes reveals a large overlap in PD-associated changes, including
lysosomal proteins, opening up new avenues to improve our understanding of PD pathogenesis.
INTRODUCTION

Parkinson’s disease (PD) is the second most common neurode-

generative disease, affecting millions of people worldwide and

having a strikingly increased incidence with age.1,2 The hallmark

pathology of PD is well characterized as a-synuclein aggregates

and dopamine neuronal loss;2 however, molecular events that

trigger PD are not fully understood. As a result, all current treat-

ments only target symptoms, without slowing or reversing dis-

ease progression.3 Thus, detecting protein level alterations in

PD could provide insight into the underlying mechanism of dis-

ease and aid in the development of novel therapeutics.

The majority of PD cases are idiopathic, while for some a ge-

netic linkage is apparent.3–5 Mutations in the LRRK2 gene,

most commonly G2019S, are the most frequent genetic cause

of autosomal dominant PD.6,7 Importantly, all PD-associated

mutations activate leucine-rich repeat kinase 2 (LRRK2) kinase

activity, offering a promising therapeutic target for PD by inhibit-

ing this function.7–9 Better understanding of LRRK2-PD patho-

physiology and discovery of related biomarkers would facilitate

LRRK2-targeted therapies. It is also essential to determine

whether pathogenic mechanisms associated with LRRK2-PD
Cell R
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may be present at the prodromal stage in non-manifesting

LRRK2 mutation carriers and in a subset of idiopathic PD.

Cellular and animal model studies indicate that LRRK2 is

involved in the regulation of several pathophysiologic processes,

including autophagy, endolysosomal membrane/vesicular traf-

ficking, and immune responses, with at least some of the effects

mediated through phosphorylation of a subgroup of Rab

GTPase.10–13 Whereas cell biology research on molecular path-

ways affected by LRRK2 is critical for insights into disease

mechanisms, a complementary approach would be to examine

molecular changes in biospecimens from deeply phenotyped

LRRK2 and idiopathic PD cohorts compared with controls. We

thus reasoned that an unbiased, mass spectrometry (MS)-based

proteomics analysis of cerebrospinal fluid (CSF) from heathy

controls, PD individuals with and without LRRK2 G2019S muta-

tion and non-manifesting LRRK2 G2019S carriers could uncover

much-needed biomarkers. Compared with other biofluids, CSF

should reflect the disease-related pathology of the brain and spi-

nal cord more accurately.14,15

MS-based proteomics is a very powerful technology for de-

tecting differences in protein abundance levels in healthy individ-

uals and patients, and thus, in principle, an ideal tool for
eports Medicine 3, 100661, June 21, 2022 ª 2022 The Author(s). 1
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Table 1. Demographics of all participants

LCC cohort LRRK2–/PD– (n = 31) LRRK2+/PD– (n = 35) LRRK2–/PD+ (n = 34) LRRK2+/PD+ (n = 21)

Sex (male/female) 13/18 19/16 23/11 10/11

Age at collection, mean (SD) 54.2 (13.9) 52.1 (15.2) 57.2 (11.2) 62.2 (10.8)

Age at onset, mean (SD) n/a n/a 51.1 (11.4) 53.9 (11.4)

UPDRS III, mean (SD) n/a n/a 25.9 (9.4) 23.1 (15.6)

MOCA score, mean (SD) 27.3 (2) 26.2 (2.5) 26.5 (3) 24.7 (3.9)

HBS cohort PD- (n=47) PD+ (n=47)

Sex (male/female) 29/18 34/13

Age at collection, mean (SD) 56.4 (11.3) 62.8 (8.9)

Age at onset, mean (SD) n/a 58.4 (8.4)

GBA (mut/WT), mean (SD) 0/47 6/41

LRRK2 (mut/WT), mean (SD) 0/47 1/46

UPDRS total, mean (SD) n/a 37.5 (14.3)

UPDRS III, mean (SD) n/a 22.1 (14.1)

MMSE score, mean (SD) 28.4 (1.8) 28.3 (1.6)
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biomarker discovery. However, proteomic analysis of CSF has

been challenging due to low protein concentration combined

with the high dynamic range of protein abundances, resulting

in low quantification precision, throughput, and limited proteome

depth.16–18 Recent advances in the proteomics field, from auto-

mated sample preparation to more sensitive MS instrumenta-

tion, data acquisition methods such as data-independent acqui-

sition (DIA) and processing software, have enabled substantial

proteome coverage and precise quantitation in single LC-MS

runs.19–23 Our group has combined these advances into a

streamlined and highly reproducible workflow resulting in a large

number of consistently measured and biologically meaningful

proteome changes in various biofluid/tissue specimens in a vari-

ety of clinical cohorts.16,17,24–27

In this study, we extended our pipeline of biomarker discovery

to analyze more than 200 CSF samples from two independent

cohorts in which we detected over 1,700 proteins from minimal

CSF sample amounts. By employing co-variate (ANCOVA) anal-

ysis and machine learning, we identified unique protein signa-

tures whose abundance was specifically changed in PD patients

versus healthy controls and LRRK2 G2019S carriers versus non-

carriers. Our study demonstrates that modern MS-based prote-

omics is a powerful technology for biomarker discovery in

biofluids. It also provides potential biomarkers of PD as well as

insights into biological pathways associated with PD and/or

LRRK2 mutations.

RESULTS

Overview of PD cohorts for CSF proteome profiling
To investigate how PD affects the CSF of patients and to identify

potential biomarkers, we employed the ‘‘rectangular’’ biomarker

discovery strategy, which aims to discover discriminating prote-

ome signatures using rather large sample sizes in both discovery

and validation cohorts.16,17,24,28,29 Applying this approach, we

analyzed CSF samples from 215 individuals from two indepen-

dent cohorts including 113 healthy controls (HC) and 102 PD pa-
2 Cell Reports Medicine 3, 100661, June 21, 2022
tients. The first cohort consisted of 94 CSF samples from the

Harvard Biomarkers Study (hereinafter referred to as the HBS

cohort).30–33 The second cohort was a subset of biobanked

CSF samples from theMichael J. Fox Foundation for Parkinson’s

Research (MJFF)-funded LRRK2Cohort Consortium (hereinafter

referred to as the LCC cohort). More information about the co-

horts is summarized in Table 1, Table S1 and Figure S1.

Proteomic characterization of CSF samples
We have developed a robust, automated, and high-throughput

MS-based proteomicsworkflow using a data-independent acqui-

sition (DIA) strategy to perform proteome profiling of minimal

amountsofCSF21,24,34 (Figure1A). This strategyhaspreviously re-

sulted in an unprecedented depth at high data completeness in

CSF and revealed biologically meaningful proteome changes

across multiple independent Alzheimer’s disease cohorts.24

Here, we applied our workflow to discover proteome changes in

the CSF of PD patients with or without the disease-associated

G2019S mutation in LRRK2. To maximize proteome depth and

coverage, we generated cohort-specific hybrid spectral libraries

by merging three sub-libraries: (1) a library constructed by data-

dependent acquisition (DDA) consisting of 24 fractions of pooled

CSF samples; (2) another DDA library consisting of eight fractions

of extracellular vesicles enriched from pooled CSF samples; and

(3) a direct-DIA library generated from the DIA analysis of all sam-

ples (see STAR Methods). Matching to cohort-specific hybrid li-

braries of 5,418 and 3,167 proteins yielded 1,493 and 1,626 pro-

teins in total for the HBS and LCC cohorts, respectively, with

more than 1,300 in common (Figure 1B). On average, we quanti-

fied 1,357 (HBS) and 1,481 (LCC) protein groups per neat CSF

sample in single runs with 1,290 (HBS) and 1,440 (LCC) protein

groups quantified in more than 70% of the samples (Figures 1C,

1D, S1J, S1K, and Table S2). Our DIA workflow resulted in a

muchdeeperproteomecoveragecomparedwithpreviousstudies

applying a similar single-run DIA strategy without compromising

throughput.28,29,35 The quantified protein intensities spanned

over four orders of magnitude (Figures 1E and 1F). The top 10



Figure 1. MS-based proteomic analysis of two independent CSF PD cohorts

(A) Overview of the CSF proteomic workflow. CSF samples were prepared in 96-well plates using an automated liquid-handling system and analyzed by LC-MS/

MS using data-independent acquisition (DIA). The total number of subjects per cohort group is shown.

(B) A total of 1,345 proteins were consistently quantified in both cohorts.

(C and D) Number of proteins identified and quantified with a 1% false discovery rate (FDR) in each sample in the HBS (C) and LCC (D) cohorts. Numbers indicate

mean and standard deviation (SD).

(E and F) Proteins identified in the HBS (E) and LCC (F) cohorts were ranked according to their MS signals. The top 10 most abundant proteins are labeled, and

their relative contribution to the total protein intensity is indicated.

(G) Quantification precision assessed by calculating the intra- and inter-plate (between repeated measurements of the same sample) and inter-individual co-

efficients of variation (CVs) of all proteins. Number of proteins with a CV below and above 20% and mean CV values are shown.
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most abundantproteins alone contributedaround38%to the total

CSF proteome signals, illustrating the analytic challenges

(Figures 1E and 1F).

We further classified the identified proteins based on their hu-

man protein atlas (HPA) annotation36 as secreted from the cell,

intra-cellular or in the cellular membranes (note that many pro-

teins are assigned to several compartments). In total, 94% of

identified proteins carried at least one annotation, of which

36% were secreted proteins, while 70% were intra-cellular

and 36% membrane-spanning proteins (Figure S2A). Further-

more, the majority of quantified proteins were annotated to be

enriched in brain and liver, in line with the fact that CSF is the

extracellular fluid of the CNS and derived from blood plasma,
which contains many proteins synthesized in the liver (Fig-

ure S2B). In summary, using small CSF volumes, we obtained

a very high CSF proteome coverage for single-run analysis,

thus providing a promising basis for the discovery of bio-

markers in PD.

Assessment of quantification precision and sample
quality
To assess quantification precision in our study, we investi-

gated intra- and inter-assay variabilities of our automated

workflow by repeated measurements of a pooled CSF sample

(Figure S2C). This analysis revealed high technical reproduc-

ibility with 13% intra-plate and 19% inter-plate coefficients
Cell Reports Medicine 3, 100661, June 21, 2022 3



Figure 2. Quality assessment of two inde-

pendent CSF PD cohorts

(A and B) Assessment of study quality by deter-

mining the percentage of the summed intensity of

the proteins in the respective quality marker panel

and the summed intensity of all proteins in the HBS

(A) and LCC (B) cohorts. Erythrocyte-specific

protein panel (red), platelet marker panel (tur-

quois), coagulation marker panel (orange), and the

top 10 most abundant protein panel (dark gray) are

included in these analyses. The proteins in each

quality marker panel are listed in Table S3.

(C and D) Histograms of log2 ratios of the summed

intensity of the erythrocyte-specific proteins and

the summed intensity of all proteins in the HBS

(C) and LCC (D) cohorts. A sample was flagged for

potential contamination and removed from further

analysis if the ratio differed more than one SD from

the mean of all samples within the cohort.

(E) Comparison of erythrocyte counts in CSF

following sample collection and degree of eryth-

rocyte contamination as determined by MS-based

proteomics of all LCC cohort samples. Samples

colored in red were excluded from further analysis

based on the distribution shown in (D).

(F) Grouping samples in the LCC cohort for four

sample collection centers demonstrated a high

degree of contamination with erythroid-specific

proteins for study centers 2 and 4, whereas there

was no indication of this in study centers 1 and 3.
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of variation (CVs). Around 1,100 had inter- and intra-assay

CVs below 20% and 1,500 below 50% (Figures 1G, S2C

and S2D). The inter-individual biological variability between

subjects is much larger, with only 10% of all proteins having

a CV below 20% (Figure 1G). This demonstrates that the tech-

nical variability of our assay is much smaller than the biolog-

ical variability—an important pre-condition for the successful

discovery of PD-specific proteome signatures and potential

biomarkers in CSF.

Inconsistent sample collection and handling may result in

systematic bias and hamper the discovery of true biomarkers.

To ensure that the quantified changes in CSF proteins are due

to disease-related pathological alterations, we assessed the

quality of all samples according to previously established

quality marker panels for coagulation-related proteins, plate-

lets, and erythrocytes to identify samples with potential issues

in pre-analytical processing16,17,37 (Figures 2A and 2B). This

revealed high sample-to-sample variability for the degree of

contamination with our erythroid-specific marker panel, pre-

sumably due to puncture-related contamination with blood

(Figures 2A and 2B). We flagged 14 samples (8 PD, 6 HC)

from the HBS cohort and 17 samples (4 PD, 13 HC) from

the LCC cohort for erythrocyte contamination and removed

them from further analysis (Figures 2C and 2D). In total, pro-
4 Cell Reports Medicine 3, 100661, June 21, 2022
teomes of 182 subjects fulfilled the

quality criteria and were used for statis-

tical analysis.

We found no correlation between

erythrocyte counts and the number of
erythrocyte-specific proteins in the CSF (Figure 2E). Our

samples were centrifuged following collection to remove

cells and debris, explaining why initially high erythrocyte

counts did not affect the proteome measurements. Hemolysis

occurring during collection, however, would be visible only in

the proteome and not in erythrocyte counts. Sorting the

samples by study center revealed a systematic bias in the

sample taking and processing procedure and identified

two centers with high pre-analytical variation and a corre-

sponding high degree of proteome contamination with

erythroid-specific proteins. This further emphasizes the

importance of standardized sample collection and processing

procedures to minimize or avoid such biases and the advan-

tage of unbiased proteomics to flag and remove such prob-

lematic cases.

We additionally further excluded a single sample from the

HBS cohort that clustered far away from all other samples in

a principal-component analysis (PCA) and a single sample

from the LCC cohort that was an outlier in proteome depth.

Our subsequent bioinformatics analysis was based on 79 sam-

ples from the HBS cohort and 103 subjects from the LCC

cohort to determine the impact of disease manifestation and

LRRK2 mutation status on the CSF proteome (Figures S2E

and S2F).
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PD-related proteome alterations in CSF and machine-
learning-based classification of PD patients and
controls
To investigate alterations in the CSF proteome of PD patients

comparedwith controls, we performed an ANCOVA, considering

age, sex, and LRRK2 mutation status as confounding factors.

We also included the different study centers as a confounding

factor for the LCC cohort. For the HBS cohort, we further

included the GBA mutation status. At 5% false discovery rate

(FDR), we identified three significantly regulated proteins

(CPM, OMD, and RFNG) in the CSF of PD patients compared

with controls in the HBS and one (PRCP) in the LCC cohort (Fig-

ure 3A and Table S4). Osteomodulin (gene name: OMD) and the

cell surface marker CD44 almost reached statistical significance

in both cohorts (OMD: q values of 0.063 in LCC and 0.039 in

HBS; CD44: q values of 0.08 in LCC and 0.12 in HBS; Figure 3A).

One reason for the small overlap between the cohorts could be a

less stringent and inconsistent sample collection protocol in the

multi-center LCC study. Yet, the osteomodulin and CD44 pro-

teins were robustly quantified in both cohorts and detected

with three (CD44) and seven (OMD) peptides in all samples

(Table S4). The levels of both proteins were significantly elevated

in PD patients with mean fold changes of 1.22 (OMD) and 1.12

(CD44) in the HBS and 1.17 (OMD) and 1.07 (CD44) in the LCC

cohort (Figures 3B–3E). These results demonstrate that the rect-

angular strategy was able to distinguish PD-related alterations

comprising a few proteins differentially present in PD patients

compared with controls from cohort-specific effects in the quan-

tified CSF proteome, even in cohorts constrained by biases such

as less stringent and inconsistent sample collection.

To examine whether PD affects particular cellular compart-

ments and biological networks in CSF, we performed a gene

ontology (GO) annotation enrichment analysis using the mean

fold changes of PD versus HC.38 The proteins elevated in the

PD samples compared with the controls were enriched for lyso-

somal-related terms, further supporting the emerging role of ly-

sosomes and mounting evidence for lysosomal dysregulation

and associated a-synuclein aggregation in PD13,39,40 (Figure 3F).

Motivated by the presence—but small number—of commonly

altered proteins in both cohorts, we tested how well machine

learning (ML) could discriminate PD patients from controls by us-

ing the recently introduced open-source tool OmicLearn.41 ML

approaches strongly benefit from a large number of samples,

which prompted us to combine the HBS and LCC cohorts to

identify reliable signatures. Using the Extra-Trees package, the

35 most discriminating proteins for training the model were

selected in each training iteration, and they were ranked by the

classifier according to their feature importance (Figure 3G). Inter-

estingly, among them, prolactin (gene name: PRL), was the most

important feature based on 50 training iterations (5 splits, 10 re-

peats). Although prolactin was not significantly regulated in

either cohort, its release is known to be suppressed in PD pa-

tients taking dopaminergic medications.42 PRL did not correlate

with levodopa equivalent daily doses (LEDD) provided to all PD

subjects in the HBS cohorts (Figure S3E). Further promising can-

didates to classify PD versus controls were CD44, VGF, and—in

agreement with the lysosomal pathway enrichment—lysosomal

proteins cathepsin K (CTSK) and MAN2B1. When these features
to train XGBoost were used, an ensemble-tree-based model,

with our cross-validation scheme, themean area under the curve

(AUC) of the receiver operating characteristic (ROC) curve was

0.72 ± 0.08. The AUC is a frequently used measure of perfor-

mance of the classification model and ranges from 0 (all predic-

tions are wrong) to 1 (all predictions are correct). The sensitivity,

which is the rate of correctly classified PD patients, and speci-

ficity, which is the rate of correctly classified PD-negative individ-

uals, were 67% and 66%, respectively (Figure 3H). Taken

together, our CSF proteome data, when combined withML algo-

rithms, classified disease status and, more importantly, identi-

fied several promising PD-associated proteins, opening up inter-

esting leads for future studies.

Impact of the pathogenic LRRK2 G2019S mutation on
the CSF proteome
Given the substantial number of subjects carrying the LRRK2

G2019S mutation in the LCC cohort, we explored whether the

CSF proteome is altered by LRRK2 mutation status. We again

applied anANCOVAwith sex, age at samplecollection, studycen-

ter, andPDstatusasconfounding factors.At aFDRof5%, themu-

tation significantly altered the abundance of the proteins HLA-

DRA, HLA-DRB1, HLA-DPA1, CTSS, PLD4, TKT, ITGB2,

PRDX3, ITIH5, CNDP1, and FAH (Figure 4A). On the basis of the

peptides identified in the samples, we could distinguish two forms

of the protein HLA-DRB1, which were both significantly enriched

in LRRK2 G0219S carriers. Furthermore, Student’s t test with a

FDR of 5% visually confirmed the upregulation of HLA-DRA,

HLA-DRB1, and HLA-DPA1 in the mutation carriers (Figures 4A

and 4B). These HLA proteins as well as PLD4 and CTSS were

robustly quantified with at least four peptides in the LCC cohort,

and their levels were significantly elevated in PD patients (>1.7-

fold; Figures 4B–4D and Table S4). Using this approach globally,

we observed that proteins elevated in the CSF proteomes of

LRRK2 G2019S carriers compared with wild-type (WT) allele car-

riers were enriched for categories related to immune and inflam-

matory responses, further supporting the substantial evidence of

a close association between enhanced inflammatory response

and PD43,44 (Figure 4E).

Moreover, the analysis of non-manifesting LRRK2 carriers

(NMCs) to healthy individuals also revealed several HLA mole-

cules, CTSS as well as ADAM10 and FAM234A (ITFG3) to be up-

regulated in pathogenic LRRK2 carriers, with HLA-DRB1 being

the only protein reaching the significance level at a FDR of 5%

(Figure S2G). Pathogenic LRRK2 carriers have a higher likelihood

of developing PD compared with healthy individuals; thus, pro-

teins identified in this analysis may include prognostic factors.

Cathepsins are proteases mediating protein degradation and

turnover in endolysosomal compartments, and several of them

have been implicated in inflammatory diseases, lysosomal stor-

age, and neurodegenerative disorders such as PD.45,46 We have

recently shown that the levels of multiple members of the

cathepsin family, including cathepsins A, B, C, D, H, L, O, S,

and Z, significantly increased in the urine of LRRK2 G2019S car-

riers in two independent cohorts.25 We also detected these ca-

thepsins in CSF but—in contrast to urine—only cathepsin S

(CTSS) was significantly affected by the mutation status

(Figure 4F).
Cell Reports Medicine 3, 100661, June 21, 2022 5



Figure 3. PD-related alterations in CSF proteome and ML-based classification of PD status

(A) Correlation of ANCOVA q values of all proteins quantified in the CSF of PD patients compared with controls in the HBS and LCC cohorts. Color gradient is

based on the mean of ANCOVA q values (PD versus HC) obtained in the LCC and HBS cohorts.

(B and C) Osteomodulin (OMD) protein intensity (log2) distribution in controls and PD patients of the HBS (B) and LCC (C) cohorts. We applied an unpaired t test

and the resulting p value is shown.

(D and E) CD44 protein intensity (log2) distribution in controls and PD patients of the HBS (D) and LCC (E) cohorts; the corresponding p values from unpaired t test

are shown. In panels B-E, lines indicate mean and SD.

(F) Annotation enrichment of GO terms using the PD versus HC fold changes (5% FDR). All significantly enriched GO terms that were common in both cohorts are

displayed. Terms with positive enrichment scores are enriched in PD over HC and vice versa.

(G) Feature importance of the top 20 most important features used to distinguish PD+ versus PD–individuals.

(H) ROC curve and corresponding AUC statistics in 5-fold cross-validation repeated 10 times using the XGBoost-basedmodel to classify PD versus HC based on

protein panel in (G). Random performance is indicated by the dotted diagonal red line for comparison. Gray area represents the SD from the mean ROC curve.

Blue lines show the values for a total of repeats with five stratified train-test splits.
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Figure 4. Effect of the pathogenic LRRK2 G2019S mutation on the CSF proteome

(A) Volcano plot comparing the CSF proteomes of LRRK2 G2019S versus WT carriers. The fold change in protein levels is depicted on the x axis and the

–log10 t test p value on the y axis. Color scale is based on ANCOVA q values of the proteins differentially present in the CSF of LRRK2 G2019S carriers compared

with the WT controls in the LCC cohort. Proteins with ANCOVA q values <5% are labeled.

(B–D) HLA-DRA (B), PLD4 (C), and CTSS (D) protein intensity (log2) distributions in LRRK2 G2019S and WT carriers of the LCC cohort; p values of an unpaired

t test are shown. Lines indicate mean and SD.

(E) Annotation enrichment of GO terms using the LRRK2 G2019S versus WT fold changes (5% FDR). Terms with positive enrichment scores are enriched in the

G2019S mutation over the WT and vice versa.

(F) Heatmap of ANCOVA q values of all cathepsin proteins, which were quantified in both CSF and urine of LRRK2 G2019S carriers compared with the WT controls.
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Integration of CSF and urinary proteome profiles
We previously analyzed 235 urine samples from two indepen-

dent cross-sectional cohorts (Columbia and LCC), including

two types of controls, healthy individuals, and LRRK2 G2019S

carriers not manifesting the disease, and PD patients with and

without the LRRK2 G2019S mutation, quantifying 2,365 urinary

proteins in total.25 Encouraged by the great depth of the ac-

quired urine and CSF proteomes in our previous and the present

study, we decided to integrate both proteomes to determine co-

regulated proteins. Although we analyzed both urine and CSF

from subsets of the LCC cohort, there were no matching urine

and CSF samples from the same individuals. More than 1,000

proteins overlapped, corresponding to 36% of all identified pro-

teins in both biofluids (Figure 5A). Matching the common protein

abundances revealed a clear correlation between the two bio-

fluids (Pearson r = 0.49; Figure 5B). The most abundant proteins
present in both included ALB, PTGDS, ORM1, SERPINA1, B2M,

and several apolipoproteins and immunoglobulins (Figure 5B,

labeled proteins at the top right). Moreover, Fischer’s exact

test on the GO terms associated with the proteins specifically

found in either urine or CSF or their common overlap revealed

terms significantly enriched compared with all proteins identified

in the two body fluids (Figure 5C). As expected, the terms related

to nervous system including ‘‘postsynaptic membrane,’’ ‘‘mem-

ory,’’ ‘‘neuropeptide signaling pathway,’’ and ‘‘nervous system

development’’ were enriched among proteins present exclu-

sively in CSF. In contrast, terms related to the endosome-lyso-

some pathway as well as Rab protein signal transduction were

enriched among urine-specific proteins, indicating that proteins

of the Rab-LRRK2-pathway are highly abundant in urine, in line

with our previous finding that the LRRK2 G2019S mutation

strongly affects the urinary proteome.25
Cell Reports Medicine 3, 100661, June 21, 2022 7



Figure 5. Integration of CSF and urine proteome profiles
(A) Overlapping proteins between the CSF and urinary proteomes.

(B) CSF-urine proteome abundance map based on median MS intensities of common proteins. Highly abundant proteins in both datasets are labeled as ex-

amples.

(C) Fisher exact test to identify significantly enriched GO terms among the common and urine- and CSF-specific protein groups. Significant and non-redundant

GO terms are displayed (FDR <5%).

(D) Correlation of ANCOVA q values of the proteins differentially present in the CSF (HBS) and urine (Columbia) of PD patients compared with controls.

(legend continued on next page)
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Correlating the ANCOVA q values of all common proteins

quantified in CSF (HBS and LCC) and urine (Columbia cohort)

of PD patients compared with the controls revealed several pro-

teins regulated in both fluids (Figures 5D and 5E). Among those

was osteomodulin (OMD), the level of which was also signifi-

cantly elevated in the urine of PD patients, with a mean fold

change of 1.47 (Figure 5F). Next, we integrated ANCOVA

q values of LRRK2 G2019S versus LRRK2 WT of all common

proteins quantified in the CSF samples of the LCC cohort and

the urine samples of either the Columbia or the LCC cohorts

(Figures 5G and 5H). This identified cathepsin S to be regulated

in a LRRK2 status-dependent manner in both matrices

(Figures 5G and 5H). The levels of cathepsin S were higher

in the CSF of LRRK2 G2019S carriers compared with the

LRRK2 WT carriers, with mean fold changes of 1.31 (p value of

0.0619) and 1.65 (p value of 0.0001574) in the Columbia and

LCC cohorts, respectively (Figures 5I and S2H).

Correlation of CSF proteome profiles with clinical
scores indicating disease severity
We next investigated whether any protein level changes in the

HBS cohort correlated with the severity of PD pathology as as-

sessed by the Unified Parkinson’s Disease Rating Scale

(UPDRS) (Figures 6, S3, S4, and S5). The UPDRS scores and

protein intensities are listed in Tables S1 and S2. We found 27

proteins to be significantly correlated with the UPDRS scores

in idiopathic PD patients (p < 0.001; Figure 6A). Proteins showing

the highest positive correlation in PD patients included CHST6

(p = 1.6E-5 and Pearson correlation r = 0.72), MIF (p = 1.8E-5

and r = 0.67), LYVE1 (p = 4.8E-5 and r = 0.64), EFNA1 (p = 5E-

5 and r = 0.64), and ADM (p = 1.3E-4 and r = 0.61; Figure 6A). Pro-

teins showing the highest negative correlation in PD patients

included POMGNT1 (p = 4.6E-5 and r= �0.64), TMEM132A

(p = 5.7E-5 and r = �0.63), ADAM22 (p = 8.8E-5 and r =

�0.62), PAM (p = 1.9E-4 and r = �0.6), and ST6GAL2 (p =

2.7E-5 and r =�0.59; Figure 6A). Interestingly, none of these pro-

teins was significantly altered in PD cases compared with con-

trols. However, ADM was the strongest negatively correlated

protein with the Mini-Mental State Examination (MMSE) scores

(p = 9.3E-5 and r = �0.43; Figure S3D, a quantitative measure

of cognitive impairment. Of note, no individual suffered from sig-

nificant dementia or cognitive impairment at the time of sample

collection (Figure S1D: average scores 28.3 in PD versus 28.4

in controls).

Furthermore, we compared the correlation scores of CSF pro-

teins with those obtained in our previous study in urine. The com-

parison of Pearson coefficients for the UPDRS III scores (the only

score available for urine) revealed 10 proteins (APOF, MAN2B2,
(E) Correlation of ANCOVA q values of the proteins differentially present in the C

(F) OMD protein intensity distribution in the urine of controls and PD patients of the

and SD.

(G) Correlation of ANCOVA q values of the proteins differentially present in the C

LRRK2 WT controls.

(H) Correlation of ANCOVA q values of the proteins differentially present in the CS

WT controls.

(I) CTSS protein intensity (log2) distribution in the urine of LRRK2 G2019S and W

indicate mean and SD.
LYVE1, APLP1, ALDOA, IGF2, SUSD5, CD99, S100A7, and VGF)

to have coefficients either higher than 0.4 or lower than �0.4 in

both matrices (Figure 6B). Among these, VGF exhibited a signif-

icantly negative correlation with the UPDRS III scores in both

datasets (p = 2.8E-3 and 7.6E-3 in urine and CSF, respectively;

Figure 6C). Overall, this analysis suggests that disease progres-

sion in PD patients, assessed by motor function, affects a similar

set of proteins in CSF and urine.

Within the LCC cohort, Montreal Cognitive Assessment

(MoCA) scores for all subjects were available (Figure S1I). Inter-

estingly, we found CHIT1 to significantly negatively correlate

with MoCA scores in all patients (p = 1.6E-5 and r = �0.48 in

all subjects; Figure S5D), and this correlation was even stronger

in PD patients (p = 1.9E-9 and r = �0.81 in PD patients; Fig-

ure S5E). Two proteins strongly positively correlated with

MoCA scores, RELN and PENK, were negatively correlated

with age in CSF (Figures S5D and S5E). Thus, multiple proteins

in the CSF proteome correlate well with disease severity and

different clinically important aspects of the disease.

DISCUSSION

Here, we applied a scalable and highly reproducible MS-based

proteomics workflow to CSF samples from two independent

PD cohorts. To the best of our knowledge, our approach resulted

in the deepest single-run CSF proteome acquired byMS to date,

with about 1,400 proteins quantified per sample. In addition, our

workflow is sensitive, using only 40 mL of CSF for sample prepa-

ration. It does not require depletion of highly abundant proteins

such as albumin or any biochemical enrichment, and the amount

of purified peptides is sufficient for several MS runs, thus allow-

ing the re-measurement of individual samples if required.

Despite the unmatched depth of our dataset, we have not yet

identified some of the known and well-studied PD-relevant pro-

teins such as a-synuclein and neurofilament light chain, although

both proteins were present in the LCC cohort library, and neuro-

filament light chain was also present in the HBS cohort library.

The high dynamic range of protein abundances in CSF limits

the sensitivity of MS-based proteomics compared with anti-

body-based assays that are frequently used to study these low

abundant PD markers. However, the analytical variation of our

assay, with a median CV of 19%, was much better than the bio-

logical variation, with a CV of median 46%. Although single-

analyte antibody-based assays like ELISAs often have even

lower technical CVs, we found our workflow well suited to study

disease-related biological differences on a proteome-scale.

To reduce systemic biases in the analyzed samples and

minimize the effect of pre-analytical variation, we performed a
SF (LCC) and urine (Columbia) of PD patients compared with controls.

Columbia cohort. Results of unpaired t test are shown. The lines indicate mean

SF (LCC) and urine (Columbia) of LRRK2 G2019S carriers compared with the

F (LCC) and urine (LCC) of LRRK2 G2019S carriers compared with the LRRK2

T carriers of the LCC cohort. Results of an unpaired t test are shown. The lines
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Figure 6. Correlation of CSF and urinary proteomes with UPDRS scores in idiopathic PD (iPD) patients

(A) Correlation analysis of protein intensities in CSF with the UPDRS total scores in iPD patients. Pearson correlation coefficients and –log10 p values are dis-

played on the x and y axes, respectively. Proteins significantly correlating with UPDRS score (positively or negatively with a p value < 0.001) are labeled.

(B) Correlation between Pearson correlation coefficients for correlation of urinary and CSF proteomes with UDPRS III scores.

(C) Correlation between –log10 p values for correlation of urinary and CSF proteomes with UDPRS III scores. The proteins with Pearson correlation coefficients

>0.4 and < �0.4 in both datasets are labeled in (B) and (C).
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thorough quality assessment of every sample using our previ-

ously reported quality marker panels.37 This analysis flagged

several samples of both cohorts as contaminated with erythro-

cyte-specific proteins, and these were excluded from further

analysis. Samples with a high degree of contamination were

restricted to two of the four study centers, and erythrocyte

counts, which are often determined following CSF sample

collection, did not correlate with the degree of proteome

contamination by erythrocyte-specific proteins. This is presum-

ably because intact erythrocytes, which are typically determined

in clinical laboratories, are frequently removed by centrifugation

before samples are stored. Contaminations in the proteome are,

however, not caused by intact erythrocytes but by hemolysis.

We also cannot exclude the possibility that different CSF aliquots

were collected from each patient and that standard laboratory

tests like erythrocyte counts were performed on only one of

these aliquots. For the future, we recommend collecting CSF in

bulk first and aliquoting only following thorough mixing. Our find-

ings using untargeted proteomics clearly underline the impor-

tance of stringent quality control and study protocols to avoid

systemic biases, which may result in seemingly significant regu-

lations in some quality markers that would then be reported as

potential biomarker candidates.

ANCOVA analysis considers confounding factors such as age,

sex, or LRRK2 status and thus is well suited to stringently assess

which protein changes are truly associated with PD status. This

is important when analyzing cohorts with slightly imbalanced de-

mographics between the compared groups like increased age of

patients compared with controls, as frequently found in PD co-

horts. When we employed ANCOVA to identify proteins that

were disease-status-dependently regulated in both cohorts,

OMD and CD44 stood out in both cohorts. OMD belongs to

the small leucine-rich proteoglycans (SLRPs) and is involved in

the organization and homeostasis of the extracellular matrix.

CD44 is a cell surface glycoprotein involved in cell-adhesion
10 Cell Reports Medicine 3, 100661, June 21, 2022
and cell-cell interactions.47,48 Our results are in line with previous

studies that identified OMD as a potential blood biomarker for

PD49 and upregulated in a SNCA transgenic mouse model.50 A

recent study has also shown the elevated expression of CD44

in the substantia nigra of human PD brains and CD44-mediated

anti-inflammatory effects in primary mouse astrocytes.51

Induced expression of CD44 by a-synuclein in microglia, likely

affecting PD pathogenesis by recruiting reactive microglia into

the pathological region of the PD brain, was also reported.52

The low number of significantly regulated proteins in our study

may be explained by the limited number of samples per disease

group in each cohort combinedwithmany potential confounders

taken into account. Furthermore, patient heterogeneity due to

inconsistent criteria for PD diagnosis and patient recruitment

likely diminishes the overlap between independent cohorts. A

recent meta-analysis also revealed that the overlap between in-

dependent studies is rather small and that future studies with

larger-sample cohorts are required to identify protein changes

with small effect sizes.53

A GO term enrichment analysis revealed that proteins upregu-

lated inPDpatientswereassociatedwith lysosome-related terms,

which agrees with previous data that lysosomal dysregulation is

evident in PD patients and involved in disease pathogenesis. In

fact, lysosomal enzymes have long been investigated for their po-

tential as biomarkers in the diagnosis of neurodegenerative disor-

ders including PD.14,54–58 Changes in enzyme activities or abun-

dances of lysosomal enzymes in CSF have been suggested to

mirror the neuropathological changes linked to PD, although the

basis of these alterations is not well understood. Levels of several

lysosomal proteases including cathepsin D and cathepsin B are

increased in CSF and post mortem brain tissue of Alzheimer’s

disease patients.59,60 Furthermore, activities of the lysosomal

b-galactosidase and b-hexosaminidase as well as cathepsin L

in CSF or post mortem brain tissue of PD patients are

elevated.55,57,61–63 Recently, we have shown that the pathogenic



Article
ll

OPEN ACCESS
LRRK2-dependent changes of the urinary proteome included

dozens of lysosomal proteins that could serve as biomarkers to

stratify individuals with pathogenic LRRK2. In line with all these

findings, we here identified two lysosomal proteins, cathepsin K

andMAN2B1,among themost important features toclassifyan in-

dividual’s PD status based on their CSFproteome. CTSS, another

cathepsin, was one of the proteinswith the highest upregulation in

CSF of LRRK2 G2019S carriers compared with the LRRK2 WT

controls in the LCC cohort. While cathepsin K has the potential

to ameliorate a-synuclein pathology by degrading a-synuclein

amyloids,64 increased expression of the CTSS gene—together

with other genes involved in the antigen processing and presenta-

tion pathway and related immune pathways such as HLA-DQA1,

HLA-DRA,HLA-DPA1,andHLA-DMB—was reported in idiopathic

PD patients in a study in which brain transcriptomic profiling was

performed in idiopathic and LRRK2-associated PD.65 Moreover,

cathepsin S has been shown to regulate the MHC class II antigen

presentation process.66,67

Strikingly, several HLA proteins (HLA-DRA, HLA-DRB1, and

HLA-DPA) were significantly increased in LRRK2 G2019S car-

riers compared with controls. The HLA locus is one of the key

loci associated with susceptibility for PD.68 HLA-DR and HLA-

DP are commonly expressedMHC-II molecules on antigen-pre-

senting cells, including microglia in the CNS.69 Moreover,

increased expression of HLA-DR is a hallmark of activated

microglia, which are present in multiple neurodegenerative dis-

eases including PD.69–72 In addition, specific HLA-DRB1 vari-

ants can bind a-synuclein with high affinity, and genome-wide

association studies identified HLA-DRB1 and HLA-DRA alleles

to be associated with PD in different populations.73–78 A recent

study has revealed a positive correlation between LRRK2 and

MHC-II levels in PD patients and a negative correlation in

healthy controls.79 Our data support these findings and suggest

a contribution of immunity and MHC-II molecules to the patho-

genesis of familial PD.

Comparing the analyzed CSF proteomes with our urinary

proteome profiles in PD patients revealed 1,080 common pro-

teins. This large overlap and the clear correlation of the corre-

sponding protein intensities (Pearson r 0.49) are remarkable

and presumably due to the shared blood plasma origin of

both CSF and urine. Interestingly, OMD was upregulated in

PD patients in both CSF and urine, suggesting that the patho-

physiology of PD affecting the OMD pathway is not restricted

to the brain. Furthermore, CTSS was upregulated in LRRK2

G2019S carriers in both body fluids. LRRK2 is known to be

ubiquitously expressed in many organs, and the observed dys-

regulation of lysosomal enzymes including CTSS may be due

to the hyperactivity of the mutated kinase. Moreover, we found

VGF to be important in classifying PD patients from healthy

controls by ML. Strikingly, we also reported this in our previous

urinary-proteome-profiling study where VGF was the most

important feature for classifying LRRK2 PD patients from

NMCs, and its levels were strongly decreased in PD patients.25

Consistently, VGF was also one of the handful of proteins

found to be statistically significantly under-expressed in CSF

of two independent PD cohorts.28 Its negative correlation

with the UPDRS-III scores of PD patients in both CSF and

urine could indicate a protective role of this growth factor for
motor function. Despite these interesting observations, the

number of samples analyzed in our cohorts is still low for ML

approaches, and larger cohorts are needed to further improve

the accuracy and generalizability of the extracted models.

Nevertheless, our data show that CSF and urine have large

overlaps in their proteomes and that similar PD- and LRRK2-

associated proteome changes can be identified in both body

fluids. Presumably, processes in both the CNS and distal

organs contribute to the commonly observed regulations in

the biofluid proteomes.

We also identified several proteins including CHI3L1,

FCGR3A, NCR3LG1, and ZP2 (p <0.01 in all analyses and

both cohorts) that correlate well with the subjects’ age at sam-

ple collection (Figures S3A–S3C and S5A-B). CHI3L1 is a

secreted glycoprotein that serves as a migration factor for as-

trocytes and a marker of glial inflammation.80,81 Interestingly,

CHI3L was reported to be upregulated in the CSF of

Alzheimer’s disease patients and was therefore suggested

as a biomarker for this disease. Its expression levels in

various regions of the brain were shown to be correlated with

age.24,82–84 Our data demonstrate that age correlates well

with multiple proteins in the CSF and that it is thus important

to consider these confounders in statistical analyses to avoid

a biased interpretation.

In line with our finding of CHIT1 being negatively correlated

with theMoCA scores, chitinases including CHIT1 have emerged

as biomarkers in neurological disorders including amyotrophic

lateral sclerosis (ALS), as their levels correlate with disease

activity and progression, likely reflecting microglia/macrophage

activation.85–87 In addition, levels of proteins such as CHST6

correlate well with disease progression, as measured by the

UPDRS, especially UPDRS III (Figures 6A and S4). The sulfo-

transferase CHST6 plays an important role in keratan sulfona-

tion, and mutations in the corresponding gene cause macular

corneal dystrophy.88 Keratan sulfate, which is a type of sulfated

glycosaminoglycan (GAG), is abundant in the brain, where it ful-

fills a multitude of functions.89 CHST6 expression is increased in

the brains of AD patients, and its deficiency in mouse models

mitigates AD pathology.90 Interestingly, the sulfation state of

GAGs affects a-synuclein aggregation by regulating lysosomal

degradation.91 Together, our data corroborate findings that

sulfated GAGs like keratan sulfate can affect the pathophysi-

ology of neurodegenerative diseases like PD. We also identified

a putative correlation between UPDRS II scores and reduced

LRPPRC expression, whose expression is also reduced in the

blood of PD patients.92 Mutations in LRPPRC cause the early-

onset progressive mitochondrial neurodegenerative disorder

French-Canadian-type Leigh syndrome, characterized by de-

fects in oxidative phosphorylation reminiscent to those found

in prodromal PD.93

In conclusion, we have applied a highly reproducible and scal-

able MS-based proteomics workflow to perform proteome

profiling of CSF in PD patients. We observed interesting prote-

ome changes in PD patients and identified biomarker signatures

that are specific to LRRK2 G2019S carriers. Further studies

analyzing larger cohorts of patients will be required to confirm

our findings and extend the panels of potential biomarkers. In a

next step, clinical and targeted assays need to be developed to
Cell Reports Medicine 3, 100661, June 21, 2022 11
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validate the biomarkers,12 followed by a test that can be used in

clinical routine to enable early disease detection and patient

stratification.
Limitations of the study
The number of samples per disease group in each cohort in com-

bination with patient heterogeneity and biological variation of the

CSF proteome limits the power of the statistical analyses per-

formed. Additional studies are needed to validate the identified

biomarker candidates from this study using an independent

cohort and potentially an orthogonal technology. Furthermore,

clinical assays to measure these markers reliably in a routine

fashion are still to be developed.
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Solid-phase extraction disks for SDB-RPS

StageTips

Empore SDB-RPS Cat. no.66886-U

Critical commercial assays

PreOmics Lysis buffer PreOmics GmbH N/A

Deposited data

Raw mass spectrometry data and Spectronaut

output tables (identifier PXD02649)

This paper https://www.ebi.ac.uk/pride/archive/

Software and algorithms

Spectronaut (version 14.8.201029.47784) Biognosys AG https://biognosys.com/software/

spectronaut/

Perseus (versions 1.6.0.7 and 1.6.1.3) Tyanova et al., 2016
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OmicEra/OmicLearn

https://share.streamlit.io/omicera/

omiclearn/omic_learn.py

Python (version 3.7.6) using the pandas
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and pingouin (version 0.3.4) packages
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Materials availability
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Data and code availability
- The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner re-

pository with the dataset identifier PXD026491.

- This study did not generate custom computer code.

- Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

In this study, CSF samples from two independent cross- sectional cohorts were analyzed. The first cohort consisted of 94 CSF sam-

ples from the Harvard Biomarkers Study (HBS) biobank and the second cohort was a subset of biobanked CSF samples from the

Michael J. Fox Foundation for Parkinson’s Research (MJFF)-funded LRRK2Cohort Consortium (LCC). HBS and the proteomics anal-

ysis of HBS samples conducted in the current study were approved by the Institutional Review Board of Brigham andWomen’s Hos-

pital. The LCC study was established in 2009, when theMJFF LCC brought together investigators fromNorth America, Europe, North

Africa, and Asia to study individuals with mutations in the LRRK2 gene. To be eligible to join the consortium, sites had to agree to

share a core set of clinical data. Case report forms and standard operating procedures can be found at https://www.michaeljfox.

org/news/lrrk2-cohort-consortium. Ethical review and approval was not required for the de-identified sample analysis in accordance

with the local legislation and institutional requirements. The patients/participants provided their written informed consent to partic-

ipate in this study. Disease severity was assessed by the Unified Parkinson’s Disease Rating Scale (UPDRS), which ranges from 0 for

no impairment to a theoretical maximum of 199 for most severely affected individuals. UPDRS scores can be divided into four sub-

scales for evaluating mentation, behavior, and mood (Part I, 0-16), activities of daily living (Part II, 0-52), motor examination (Part III,

0-108) and complications of therapy (Part IV, 0-23). Cognitive functioning was assessed using the Montreal Cognitive Assessment

(MoCA), which ranges from 30 for no impairments to a theoretical minimum of 0 for most severely affected individuals. In addition, for

the HBS cohort, Mini-Mental State Examination (MMSE) scores, which range from 30 to 0 (25-30 for normal cognition, 21-24 for mild

dementia, 10-20 moderate dementia and 9 or lower for severe dementia) were also available.

METHOD DETAILS

Sample preparation
40 mL of CSF samples were aliquoted in 96-well plates and processed with an automated set-up on an Agilent Bravo liquid handling

platform.16,24 CSF samples were mixed with the equal amount of PreOmics lysis buffer (PreOmics GmbH) for reduction of disulfide

bridges, cysteine alkylation, and protein denaturation at 95�C for 10 min. Upon 10 min cooling, 0.2 mg of each protease trypsin

(Sigma-Aldrich) and LysC (Wako) was added to each sample (well) and digestion was performed at 37�C overnight. Peptides were

then purified on two 14-gauge StageTip plugs packed with styrenedivinylbenzene- reverse phase sulfonate (SDB-RPS).94 Samples

were first diluted with 1% trifluoroacetic acid (TFA) in isopropanol and loaded onto StageTips and subsequently washed with 200

mL of 1% TFA in isopropanol twice and 200 mL of 0.2% TFA/2%ACN (Acetonitrile). Peptides were eluted with 80 mL of 1.25%Ammo-

niumhydroxide (NH4OH)/80%ACN,dried using aSpeedVac centrifuge at 45�C (Eppendorf, Concentrator plus), resuspended in 10mL

buffer A* (2%v/v ACN, 0.2%v/v tTFA, and stored at�20�C.Upon thawing beforemass spectrometric analysis, sampleswere shaken

for 5 min at 2,000 rpm (Thermomixer C, Eppendorf). Peptide concentrations were measured optically at 280nm (Nanodrop 2000,

Thermo Scientific) and subsequently equalized using buffer A*. 500 ng peptide was subjected to LC-MS/MS analysis.

Cohort-specific libraries were generated by pooling of 24 randomly selected samples of each cohort and separating the peptides

of this pooled sample into 24 fractions each by high pH (pH 10) reversed-phase chromatography on the ‘‘spider fractionator’’.95 Frac-

tions were concatenated automatically by shifting the collection tube every 120 seconds. Upon collection, fractions were dried and

resuspended in buffer A* for LC-MS/MS analysis. To increase the depth of each library, we isolated extracellular vesicles (EV) from

pooled CSF samples of each cohort by ultra-centrifugation.96 Isolated EVs were resuspended in 100 mL of a sodium deoxycholate-

based lysis buffer containing chloroacetamide (PreOmics GmbH), heated to 95�C for 10 min for reduction and alkylation and then

digestion using trypsin and LysC enzymes at 37�C overnight. Peptides were desalted with SDB-RPS StageTips as described above.

Peptides were eluted 80% ACN/5%NH4OH and the eluate was completely dried and resuspended in 0.1% formic acid (FA) for sep-

aration into eight fractions by high pH reversed-phase chromatography.95

To determine coefficients of variation, five aliquots of a pooled CSF sample on one plate were subjected to sample preparation

(intra-plate) and three aliquots of the same pool were subjected to sample preparation on two different plates (inter-plate).

LC-MS/MS analysis
LC-MS/MS analysis was performed on a Q Exactive HF-X Orbitrap mass spectrometer with a nano-electrospray ion source coupled

to an EASY-nLC 1200 HPLC (all Thermo Fisher Scientific). Peptides were separated at 60�C on 50 cm columns with an inner diameter

of 75 mmpacked in-house with ReproSil-Pur C18-AQ 1.9 mm resin (Dr.Maisch GmbH). Mobile phases A and B were 99.9/0.1%water/

FA (v/v) and 80/20/0.1% ACN/water/FA (v/v/v). MS data for single-shot CSF samples were acquired using the MaxQuant Live soft-

ware and a data-independent acquisition (DIA) mode with phase-constrained spectrum deconvolution.97,98 Full MS scans were ac-

quired in the range of m/z 300–1,650 at a resolution of 60,000 at m/z 200 and the automatic gain control (AGC) set to 3e6, followed by

two BoxCar scans with 12 isolation windows each and a resolution of 60,000 at m/z 200 were acquired.99 Full MS events were fol-

lowed by 58MS/MSwindows per cycle in the range of m/z 300–1,650 at a resolution of 15,000 atm/z 200 and ions were accumulated

to reach an AGC target value of 3e6 or for a maximum of 22 ms.

All fractionated samples including EV fractions were acquired using a top 12 data-dependent acquisition (DDA) mode. Full MS

scans were acquired in the range of m/z 300–1,650 at a resolution of 60,000 at m/z 200. The automatic gain control (AGC) target

was set to 3e6. MS/MS scans were acquired at a resolution of 15,000 at m/z 200.
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Mass spectrometry data processing
TheMS data of the fractionated pools and the single-shot CSF samples were combined into two cohort-specific hybrid libraries using

Spectronaut version 14.8.201029.47784 (Biognosys AG). For all experiments except the machine learning with OmicLearn, the two

cohorts were quantified separately. All searches were performed against the human SwissProt reference proteome of canonical and

isoform sequences with 42,431 entries downloaded in July 2019. Searches used carbamidomethylation as fixed modification and

acetylation of the protein N-terminus and oxidation of methionines as variable modifications. The Trypsin/P proteolytic cleavage

rule was used, permitting a maximum of 2missed cleavages and aminimum peptide length of 7 amino acids. The Q-value thresholds

for library generation and DIA analyses were both set to 0.01. For individual protein correlations with clinical parameters and the ma-

chine learning, the Q-value data filtering setting in Spectronaut was set to ‘‘Qvalue’’. For all other analyses, the setting was set to

‘‘Qvalue percentile’’ with a cutoff of 25%, to use only those peptides for the protein quantification that passed the Q-value threshold

in at least 25% of all analyzed samples. The various runs were normalized to each other by using median intensities of common

peptides.

QUANTIFICATION AND STATISTICAL ANALYSIS

The Perseus software package versions 1.6.0.7 and 1.6.1.3100 and GraphPad Prism version 7.03 were used for the data analysis.

Protein intensities were log2-transformed for further analysis apart from correlation and coefficient of variation analysis. Coefficients

of variation (CVs) were calculated in Perseus for all inter-plate and intra-plate pairwise combinations of samples, the median values

were reported as overall coefficient of variation. The protein CVs of the main study were calculated likewise within cohorts individ-

ually. For generation of the abundance curves, median protein abundances across all samples within a proteome were used.

ANCOVA analysis was performed in python (version 3.7.6) using the pandas (version 1.0.1), numpy (version 1.18.1) and pingouin

(version 0.3.4) packages. For the ANCOVA analysis, age at sample collection, LRRK2 status (only in PD+ vs. PD-), and PD status

(only LRRK2+ vs. LRRK2-) were set as confounding factors. The FDR (q values) was calculated using Benjamini-Hochberg correc-

tion. GO annotations were matched to the proteome data based on Uniprot identifiers. Annotation term enrichment was performed

with Fisher exact test in Perseus separately for each cohort. Annotation terms were filtered for terms with an FDR of 5% after Ben-

jamini-Hochberg correction in each cohort. Calculation of Pearson correlation scores and associated p values of protein intensities to

UPDRS scores and other clinical parameters was performed in Perseus.

For machine learning, OmicLearn (v1.0.0) was utilized for performing the data analysis, model execution, and generating the plots

and charts.41 Spectronaut output tables from the quantification analysis of both cohorts were used as the input for OmicLearn. No

additional normalization on the data was performed. To impute missing values, a Zero-imputation strategy was used. Features were

selected using ExtraTrees (n_trees = 500) strategy with themaximum number of 35 features. Normalization and feature selection was

individually performed using the training data of each split. For classification, we used XGBoost-Classifier (random_state = 23 lear-

ning_rate = 0.3min_split_loss = 0max_depth = 15min_child_weight = 1).We used (RepeatedStratifiedKFold) a repeated (n_repeats =

10), stratified cross-validation (n_splits = 5) approach to classify PD vs. HC, resulting in total 50 iterations for training the model, each

time with 35 features. The average feature importance scores assigned by the classifier for each of the top20 features are shown in

Figure 3G.
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