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Many of the viral pathogens that cause infectious diseases in

humans have a highly restricted species tropism, making the

study of their pathogenesis and the development of clinical

therapies difficult. The improvement of humanized mouse

models over the past 30 years has greatly facilitated

researchers’ abilities to study host responses to viral infections

in a cost effective and ethical manner. From HIV to hepatotropic

viruses to Middle East Respiratory Syndrome coronavirus,

humanized mice have led to the identification of factors crucial

to the viral life cycle, served as an outlet for testing candidate

therapies, and improved our abilities to analyze human immune

responses to infection. In tackling both new and old viruses as

they emerge, humanized mice will continue to be an

indispensable tool.
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Introduction
Viruses make a staggering contribution to morbidity and

mortality in the human populations of both industrial and

developing countries. At least 500 million people are

chronically infected with hepatitis B (HBV) or C viruses

(HCV), placing them at risk for developing severe liver

disease. 33 million individuals are infected with HIV,

leading to 1.7 million AIDS-related deaths every year. Of

the approximately 400 million people who contract den-

gue virus (DENV) annually, almost 100 million present

with clinical symptoms. 60–90% of the global population

is infected with herpes simplex viruses (HSV), resulting

in orolabial and genital lesions. Human cytomegalovirus

(HCMV), which persistently infects 40% of the world, can

be life-threatening for newborns and immunocompro-

mised individuals.

Many of the viruses causing disease in humans have a

narrow host range, often limited to humans and closely
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related non-human primates (NHPs). This has created

challenges in studying the pathogenesis of human-tropic

viruses as experiments in NHPs are hampered by logisti-

cal, financial, and ethical concerns. This creates a pressing

need for more tractable small animal models to study

existing and emerging viral diseases. In the last few

decades, humanized mice have emerged as a solution

to this problem. Humanized mice can be generated by

expressing human genes whose products are needed for

viral infection (Table 1), such as entry factors, or through

xenotransplantation of hematopoietic stem cells (creating

human immune system mice, known as HIS) and/or other

human tissues (Figure 1).

This paper highlights the recent progress and challenges

in studying viral pathogenesis in humanized mice. We

will discuss four groups of human-tropic viruses — HIV,

DENV, herpesviruses, and hepatitis viruses — as exam-

ples of diseases for which specific types of humanized

mice were and still are enabling experimental platforms.

Using these examples, we will provide a general outlook

on how humanized mice can be adapted and refined

through genetic host adaptations and/or co-engraftment

of multiple tissues to facilitate analysis of other viral

infections.

Human immunodeficiency virus (HIV)
In 2013 alone, 1.5 million people worldwide died from

AIDS, and 33 million were cited as living with HIV.

Besides humans, only chimpanzees are readily suscepti-

ble to HIV, but since they usually do not progress to

AIDS, they have not gained traction as HIV animal

models. In searching for alternatives, it was shown that

smaller NHPs, specifically rhesus macaques, were sus-

ceptible to simian immunodeficiency virus (SIV), leading

to AIDS-like symptoms. To improve the utility of this

model, chimeric viruses closely resembling HIV-1, name-

ly simian-human immunodeficiency virus (SHIV) and

simian-tropic HIV (stHIV), were generated [1].

Despite intense efforts, it has not yet become possible to

genetically overcome species barriers and recapitulate the

HIV life-cycle in small animal models. Advances have

been made, but they are primarily focused on establishing

HIV uptake in mice [2]. Since HIV is a lymphotropic virus

primarily infecting CD4 T cells, engraftment of human

immune system components proved a viable approach to

establish HIV infections in a small animal model. Early

models pioneered by McCune and colleagues, based on

engrafting xenorecipients with human fetal thymic or

lymph node implants, demonstrated that an acute infec-

tion of human lymphoid organs with HIV-1 can be
www.sciencedirect.com

http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2015.01.002&domain=pdf
mailto:aploss@princeton.edu
http://www.sciencedirect.com/science/journal/18796257/11
http://dx.doi.org/10.1016/j.coviro.2015.03.003
http://dx.doi.org/10.1016/j.coviro.2015.01.002
http://www.sciencedirect.com/science/journal/18796257


Viral pathogenesis in humanized mice Gaska and Ploss 15

Table 1

Prominent examples of factors allowing or restricting aspects of different viral life cycles

Pathogen Disease/symptoms Host factors needed at different

steps of the viral life cycle in humans

Factors restricting infection in mice

HIV (as reviewed

in [59])

Leads to decreased levels of CD4+

T cells, ultimately resulting in AIDS

Entry: CD4, CCR5, CXCR4 (some T-

tropic HIV-1 viruses can use the

murine ortholog of CXCR4)

Post-entry: Cyclin T1

Transcription: low Tat activity (needs

human cyclinT1 as cofactor for

successful binding to trans-

activation response element)

Post-translation: excessive splicing

of HIV-1 RNA

Poor particle assembly

Polio virus [60] Poliomyelitis, with paralysis in some

individuals due to nerve cell damage

Entry: poliovirus receptor

Measles virus

[61]

Measles (also known as rubeola),

which leads to respiratory infection

Entry: CD46

HCV (as

reviewed in [42])

Hepatitis C, which can lead to liver

cirrhosis, fibrosis, and

hepatocellular carcinoma

Entry: OCLN and CD81 (minimal

necessary entry factors)

Replication: Innate immune

responses

HBV [56��] Hepatitis B, which has similar effects

on liver health as hepatitis C

Entry: NTCP Post-entry: no cccDNA formation;

other post-entry restrictions

unknown

Ebola virus [62] Fever, diarrhea, and disrupted liver

and kidney function; can lead to

internal and external bleeding

Entry: Niemann-Pick C1 Unknown
followed in humanized mice [3]. With the improvement

of xenorecipient strains and humanization protocols (ex-

tensively reviewed in [4]), HIS mice have deepened our

knowledge about HIV viral transmission, immune

responses to HIV and the efficacy of novel therapeutic

interventions. The ability of HIV-1-infected cells to form

latent reservoirs has been especially challenging in

completely curing individuals of the virus [5]. Recently,

several groups have shown that HIV-1 latency can be

observed in humanized mouse models [6–8]. These mice

have made it possible to model in vivo, for example, how

treatment using broadly neutralizing antibodies in com-

bination with inducers can prevent viral rebound follow-

ing removal from antiretrovirals [9]. In hindering

transmission, vectored immunoprophylaxis has shown

promise as a way to obstruct intravenous [10] and mucosal

transmission of HIV in humanized mice [11]. As the latter

is the primary route by which individuals become

infected, the in vivo model for mucosal HIV transmission

is physiologically relevant and provides a venue for test-

ing anti-viral therapies. Immune responses in HIS mice

are suboptimal because of a variety of incompatibilities

between the mouse and human immune system. None-

theless, it was shown that in a particular version of HIS

mice, so-called bone-marrow liver thymus (BLT) mice,

the dynamic interplay of HIV-specific cellular immunity

and viral escape from immune pressure can be accurately

modeled [12��].

Dengue virus (DENV)
Dengue is a mosquito-borne disease, caused by DENV, a

positive-sense, single-stranded RNA virus belonging to

the family Flaviviridae. Four genetically and antigenically
www.sciencedirect.com 
distinct serotypes, DENV-1 to DENV-4, have been de-

scribed, annually causing �390 million infections which

range in severity from completely asymptomatic to lethal

hemorrhagic fever or shock syndrome (DHF and DSS,

respectively) [13]. Since a vaccine still does not exist,

studying the immune response to DENV is of especial

importance, as individuals with previous immunity are

more susceptible to developing DHF and DSS [14,15].

Murine xenorecipient strains expressing HLA-A2 were

injected with human blood-forming stem cells and dem-

onstrated improved immune responses to tissue-culture

derived DENV, especially in assessing human T-cell

response to DENV during and after acute infection

[16]. Additionally, it was shown that viremia can be

suppressed by administration of direct-acting antivirals

(DAAs) to humanized mice that displayed symptoms

similar to those in humans following infection with a

clinical DENV isolate [17], paving the way for creating

and testing DAAs that could be utilized in treating

DENV. However, while priming of DENV-specific B

and T cell responses occurs at some level, it is not

sufficiently robust in existing models. This poses chal-

lenges for untangling the mechanisms of why DHF/DSS

is so much higher in individuals with secondary heterolo-

gous DENV infections. Further light has also been shed

on identifying the cells targeted by DENV. Past research

in humanized mice concluded that T cells were not

infected by DENV [18,19], but two groups have recently

observed evidence to the contrary [17,20]. Finally, since

DENV is mosquito-borne, understanding transmission

from host to vector and vice versa is important for exam-

ining viral spread in populations and preventing large-

scale outbreaks. Thus, the examination for the first time
Current Opinion in Virology 2015, 11:14–20
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Figure 1
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Humanized mice for study of viral pathogenesis. The direct cytopathic effects of a virus on a particular tissue can be studied in mice engrafted

with a single human tissue. Skin engraftments have been utilized to study KSHV, where mice exhibit the development of skin lesions and latent

infection in cells with altered morphology [43]. Similarly, VZV-infected humanized mice form lesions and have necrosis of multiple skin layers [44].

Respiratory viruses, such as Nipah Virus, can be studied in mice following engraftment of human fetal lung tissue, resulting in viral infection at high

titers specifically in the lungs [62]. Following human liver engraftment, mice are susceptible to infection with both HCV [41] and HBV [42].

Lymphotropic viruses, such as HIV-1 and EBV, have been studied in humanized immune system (HIS) mice. However, these HIS mice engrafted

with other human tissues have also proven their utility for studying human immune responses exhibited during viral infection.
of the human immune response in humanized mice

following DENV infection by mosquito bite is an encour-

aging step [21].

Human herpesviruses (HHVs)
The nine HHVs are prevalent and can establish long-

lasting latent infections, leading to skin lesions, epilepsy,

cancer, and autoimmune disease (for review see [22]).

Epstein Barr Virus (EBV) is widespread and linked to

�2% of human tumors originating in lymphocytes and

epithelial cells [23]. Only B cell EBV infection can be
Current Opinion in Virology 2015, 11:14–20 
studied in humanized mice, and different stages of the

latent and lytic viral life cycle have been observed in

these cells [24,25]. EBV-associated malignancies have

also been studied in HIS mice. A viral mutant lacking

EBV latent nuclear antigen 3B (EBNA3B) led to forma-

tion of large B cell lymphomas in HIS mice [26�]. Further

research on this strain has provided evidence that various

EBNA3 antigens regulate expression of the chemokine

CXCL10, leading to reduced T cell action [27]. EBV-

associated hemophagocytic lymphohistiocytosis, with a

pathology highly similar to that seen in humans [28],

and erosive arthritis [29] have both been observed in
www.sciencedirect.com
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humanized mice. Finally, HIS mice have also been a

platform for examining the role of innate immunity in

EBV infection (reviewed in [30]).

Human cytomegalovirus (HCMV) is the most common

causative agent of congenital viral infection, resulting in

children with growth defects or, most detrimental, CNS

injury. Additionally, immune-compromised patients,

such as individuals living with AIDS or recent organ

transplant recipients, are also at risk for HCMV-mediat-

ed disease [31]. CMV is found in numerous species, but

the determinants of species tropism are not yet defined.

While rodents and other animals have been utilized to

study congenital CMV infection via their species-specific

virus [32,33], it is still not possible to specifically model

congenital HCMV infection. However, progress is being

made — immunocompromized mice engrafted with hu-

man CD34+ hematopoietic stem cells were able for the

first time to establish both systemic HCMV infection and

also viral latency and reactivation [34]. Even more re-

cently, HCMV infection was established in the human

hepatocytes of a human liver chimeric mouse, building

toward a resource for in vivo testing of candidate thera-

pies [35].

Human T cell leukemia virus type 1 (HTLV-1) is strong-

ly linked to the development of adult T cell leukemia/

lymphoma (ATL) and the inflammatory disease HTLV-

1-associated myelopathy/tropical spastic paraparesis. HIS

mice are primarily used to study human T cells during

early HTLV-1 infection and initial stages of HTLV-

associated diseases. These mice are able to reproduce

some aspects of infection in humans, such as CD4+ T cell

lymphomas [36] and symptoms associated with changes

in human thymopoiesis [37]. Efforts to improve the

adaptive immune response in CD133+ mice by injecting

human hematopoietic stem cells into the bone marrow of

these mice has led to more consistent B-to-T-cell ratios

over time and is thus a better approach for studying ATL

development [38].
Table 2

Examples of transgenic mice and their associated phenotypes in stud

Pathogen Component of virus expre

HCV (as reviewed in [42]) Core 

NS4B 

E1-E2-NS2 

Core-E2 

HBV (as reviewed in [41]) HBV surface antigen (HBsA

and pre-S and X antigens

X gene 

Hepatitis B core antigen (H

1.3 HBV-DNA 

www.sciencedirect.com 
Finally, immunocompromised mice with human skin

transplants have been utilized for studying the herpes-

viruses most highly associated with skin lesions, such as

Kaposi’s sarcoma-associated herpesviruses [39] and Vari-

cella-zoster virus [40].

Hepatitis B and C Virus (HBV and HCV)
HBV and HCV together infect �490 million individuals

worldwide, causing liver cirrhosis, fibrosis, and hepatocel-

lular carcinoma if left untreated. These two viruses ro-

bustly infect only chimpanzees and humans. In the

absence of a permissive mouse model, numerous trans-

genic strains expressing individual or combinations of

HCV gene products were developed to study HBV and

HCV-induced liver disease (Table 2, see [41] for HBV

and [42] for HCV for in-depth reviews on existing hu-

manized mouse models for these viruses). HBV transgen-

ic mice have contributed substantially to our

understanding of many aspects of HBV biology, immu-

nobiology and pathogenesis (reviewed in [43]). In con-

trast, reports on the histopathology in HCV protein

transgenic mice differ vastly depending on the expressed

HCV gene product, mouse background or differences in

the promoters used for the expression of viral proteins.

Their utility is further lessened as they are not bona fide

infection models as any pathological processes develop in

the absence of the inflammatory milieu established dur-

ing chronic infection.

To study HBV and HCV infection in mice, humanization

of the mouse liver by xenoengraftment of permissive

human primary hepatocytes has been explored. Most of

the commonly used xenorecipients share common fea-

tures: they are immunodeficient to prevent xenograft

rejection and often suffer from an endogenous liver injury

to promote hepatocyte proliferation and provide human

donor cells a competitive growth advantage over mouse

hepatocytes. In 2001, the development of an Alb-uPA/

Rag-2 mouse, which could be engrafted with primary

human hepatocytes, was successfully infected with
ying HBV and HCV

ssed Resultant phenotype in mouse

Apoptosis of hepatocytes, lipogenesis

No liver disease observed

Liver injury

No liver disease observed

g) No viral replication or signs of liver disease

Tumor formation in the liver

BcAg) T cell tolerance in response to HBcAg, but

no liver disease observed

High viral particle production

Current Opinion in Virology 2015, 11:14–20
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HBV [44] and also HCV [45]. To improve robustness and

throughput, several other immunodeficient liver injury

models, including fumaryl acetoacetate hydrolase defi-

cient mice (FAH�/� [46]), MUP-uPA [47] and Alb-

HSV1-tk [48], have been generated. These mice can

be engrafted to very high levels with human hepatocytes

and subsequently become susceptible to HBV and HCV

infection. Human liver chimeric mice have been critical

tools for studying HBV, HCV and HDV infections but

also serve as important tools for preclinically assessing the

efficacy of novel therapeutics. However, HBV and HCV

pathogenesis, human adaptive immune responses and

vaccine development can only be studied in a mouse

model harboring both a human liver graft and a functional

human immune system. Several groups have now

reported that dual engraftment of components of a human

immune system and a (matching) human liver can be

achieved in a single recipient [49,50]. When infected with

HBV [51] or HCV [52], dually engrafted mice indeed

mount virus-specific immune responses and develop his-

topathological features reminiscent of liver disease in

humans. However, the difficulties of donor matching

for the two tissue compartments, variation in the level

of engraftment, the low throughput and the limited

functionality of the engrafted human immune system

lessen the utility of this model.

An inbred mouse model with inheritable susceptibility to

HBV or HCV would overcome the technical difficulties of

the xenotransplantation model. The challenge is to sys-

tematically identify and overcome any restrictions to viral

growth in murine cells. Both the HBV and HCV life-

cycles are blocked at numerous steps. For HCV, the

minimal set of human specific entry factors, that is human

CD81 and occludin (OCLN) have been identified, facili-

tating HCV uptake into mouse cells in vitro [53] and in
vivo [54]. The entire HCV life-cycle can be recapitulated

in mice transgenically expressing human CD81 and

OCLN with severely impaired antiviral innate immunity

[55��]. The recent identification of human taurocholate

co-transporting polypeptide (hNTCP) as an HBV recep-

tor [56��] is a promising first step toward creation of a

mouse model with inheritable susceptibility to HBV

infection. However, it should be noted that there are still

numerous blocks to overcome. While HBV assembly and

release are supported in mouse hepatocytes, expression of

hNTCP does not render mouse cells permissive for HBV

uptake, pointing toward post-attachment and post-entry

blocks. These include, but are not limited to, the inability

of HBV to form covalently closed circular DNA, its main

transcriptional template.

Conclusions
The use of humanized mice in infectious disease research

provides a forum for studying viruses previously less

accessible due to their species tropism. With so many

types of humanized mice now available, researchers will
Current Opinion in Virology 2015, 11:14–20 
continue to improve and expand upon these models. The

research discussed here has provided invaluable lessons

for handling emerging viral threats, as exemplified by the

quick development of a humanized mouse for studying

Middle Eastern Respiratory Syndrome (MERS [57�]) and

a lung xenotransplantation model for the emerging Nipah

Virus [58��]. As viruses continue to evolve and adapt to

new hosts, humanized mice will be an indispensable tool

for studying pathogenesis and will increase the likelihood

of developing more efficacious therapeutics.
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