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A B S T R A C T

Different types of computational models have been developed for predicting the biokinetics, environmental fate,
exposure levels and toxicological effects of chemicals and manufactured nanomaterials (MNs). However, these
models are not described in a consistent manner in the scientific literature, which is one of the barriers to their
broader use and acceptance, especially for regulatory purposes. Quantitative structure-activity relationships
(QSARs) are in silico models based on the assumption that the activity of a substance is related to its chemical
structure. These models can be used to provide information on (eco)toxicological effects in hazard assessment. In
an environmental risk assessment, environmental exposure models can be used to estimate the predicted en-
vironmental concentration (PEC). In addition, physiologically based kinetic (PBK) models can be used in various
ways to support a human health risk assessment. In this paper, we first propose model reporting templates for
systematically and transparently describing models that could potentially be used to support regulatory risk
assessments of MNs, for example under the REACH regulation. The model reporting templates include (a) the
adaptation of the QSAR Model Reporting Format (QMRF) to report models for MNs, and (b) the development of a
model reporting template for PBK and environmental exposure models applicable to MNs. Second, we show the
usefulness of these templates to report different models, resulting in an overview of the landscape of available
computational models for MNs.

1. Introduction

Different types of mathematical models have been developed for
quantification of exposure values or effect concentrations in the process
of chemical risk assessment,1 and are potentially useful to support
legislation, such as the EU regulation on the Registration, Evaluation,
Authorisation and Restriction of Chemicals (REACH) [1].

REACH addresses chemical substances and manufactured nanoma-
terials (MNs). MNs are defined by the European Commission (EC)
Recommendation on the Definition of a nanomaterial as materials con-
taining particles, in an unbound state or as an aggregate or as an ag-
glomerate and where, for 50% or more of the particles in the number
size distribution, one or more external dimensions is in the size range
1–100 nm [2].

Quantitative structure-activity relationships (QSARs) are predictive
models based on the assumption that the activity of a substance is

related to its structure. The concept is well established and in the past
decade it has been applied more efficiently and extensively due to the
availability of chemicals databases and to the encouragement to use
computational methods for providing required information for REACH.
Quantitative structure-property relationships (QSPRs) are conceptually
the same as QSARs but they relate structure to physicochemical prop-
erties of chemicals.

According to REACH Annex XI, QSARs may be applied as alternative
methods to animal testing in filling data gaps. The condition to be met
for accepting QSARs in regulatory decision making are, among others,
that the scientific validity of the model(s) has been established and an
adequate documentation of the method used is provided. According to
the OECD Guidance Document on the Validation of (Quantitative)
Structure-Activity Relationship (QSAR) models [3], a QSAR is con-
sidered reliable and applicable if it fulfils the five principles for the
validation of QSARs: 1) addresses a defined endpoint, 2) consist of an
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unambiguous algorithm, 3) has a defined domain of applicability, 4)
appropriate measures of goodness-of-fit, robustness and predictivity,
and 5) a mechanistic interpretation [4]. For regulatory applications,
QSARs should be documented following the QSAR Model Reporting
Format (QMRF), an internationally harmonised template for summar-
ising and reporting key information on QSAR models, including the
results of any validation studies [5]. The QMRF is used to submit QSAR
models to the QSAR Model Database, which is a publicly accessible
database maintained by the Joint Research Centre intended to help
identify valid QSARs that can be used to support the regulatory as-
sessment of chemicals (https://qsardb.jrc.ec.europa.eu/qmrf/). A first
step to adapt the QMRF to report QSARs developed for MNs was pro-
posed in eNanoMapper [6,7].

Physiologically based toxicokinetic models (PBK) are numerical
models commonly derived from physiologically relevant compartments
and processes and constructed from mass-balance equations (i.e. ac-
counting for material entering and leaving a system). In the context of
REACH, they are considered relevant in human health risk assessment
according to the Chapter R8 of the Guidance on information requirements
and chemical safety assessment on the characterisation of dose[concentra-
tion]-response for human health [8], where it is recognised that PBK
models can support the derivation of derived non-effect level (DNEL)
from animal data to account for human health risk. PBK models can be
used to determine or adjust specific assessment factors (AFs): 1) route-
to-route, 2) interspecies and 3) high-dose-low-dose extrapolation. In
addition, PBK modelling data can aid in the quantification of in-
traspecies variability, denoted by variation in anatomical, physiological
and biochemical parameters with age, gender, genetic predisposition
and health status. With a view to replacing animal testing, PBK models
can be used to extrapolate from effect levels observed in in vitro systems
to the in vivo situation, often referred to as (quantitative) in vitro to in
vivo extrapolation.

Environmental exposure modelling is an important aspect in risk
assessment and it includes material flow and environmental fate
models, which are used for the calculation of a predicted environmental
concentration (PEC) [9]. This definition of environmental exposure
modelling will be used throughout the manuscript. These models treat
the environment as a complex system composed of different compart-
ments (i.e. air, water, soil, etc.), and compute the mass flows between
the different compartments and between regions, taking into con-
sideration the emissions of chemicals.

Although environmental exposure and PBK models are considered
in the ECHA guidance as supporting information requirements in che-
mical safety regulation [8], they are less consistently reported in the
literature compared to QSARs and QSPRs. In fact, there is no official
template or set of rules to consider the validity of an environmental
exposure model. For reporting PBK more consistently, the European
Committee for Standardisation (CEN) published a CEN Workshop
Agreement on Standard documentation of chemical exposure models to
provide a framework for model description which would facilitate the
use and comparability of models, addressing the minimum information
to be provided for documenting PBK models [10,11]. The proposed
standard aims at promoting appropriate model application, thus sup-
porting informed decision making. In addition, work is ongoing within
the OECD to develop guidance for the characterisation and reporting of
PBK models.

Within the drug development regulatory field, US Food and Drug
Administration (FDA) and European Medicines Agency (EMA) have
published draft guidelines on how to report PBK models and their si-
mulations [12,13]. These templates are specific to drug design, and
aimed at supporting the pharmaceutical industry in complying with
regulatory requirements. Accordingly, these guidelines depend on the
regulatory requirements in force, and are highly focused on processes
related to traditional chemicals (such as metabolism) and therefore are
not fully applicable to the MNs and regulatory applications such as
supporting hazard or risk assessment of MNs.

Furthermore, specific to environmental exposure models, Buser
et al. [14] reported a wide variability on the application of the same
model (EUSES, the recommended model for drafting the chemical
safety report in REACH [15]) in regulatory submissions, and suggested
six principles for good modelling practice that would allow a more
consistent use of multimedia fate models and communication of the
results.

The objective of this manuscript is twofold. First, we propose model
reporting templates for systematically and transparently reporting MN
models that are suitable to support regulatory assessments. The model
reporting templates include (a) the adaptation of the QMRF to report
models applicable to MNs, and (b) the development of a novel model
reporting template for PBK and environmental exposure models ap-
plicable to MNs. Second, we report the models available in the litera-
ture with the model reporting templates and use them to describe the
current landscape of computational models for MNs.

2. Methods

2.1. Development of the model templates

We have defined two different model reporting templates for our
scope. One is defined for QSARs/QSPRs, and consists in the adaptation
of the QMRF (https://qsardb.jrc.ec.europa.eu/qmrf/) to report models
applied to MNs. The second template, defined for PBK and environ-
mental exposure models, takes inspiration from experience with the
QMRF, from lessons learned from the CEN workshop agreement [10,11]
and from good modelling practices identified by Buser et al. [14]. We
reported PBK-type and environmental exposure models in the same
template because they are both multicompartment models and focus on
predicting the fate and transport of a MN in the body or in the external
environment. A review on the PBK models populating the inventory is
presented in Lamon et al. [16].

2.2. Bibliographic searches

We first conducted a bibliographic search on available QSPRs and
QSARs applied to MNs. We then documented models in a searchable
Excel file (i.e. the reporting model template, hereafter inventory).
Finally, we described the “landscape” of available QSPR/QSARs, PBK
and environmental exposure models, including the endpoints and MNs,
the descriptors that are mostly considered in the models as well as the
data sources used, the processes taken into consideration, and model
limitations and assumptions.

More details on the bibliographic searches are available in Worth
et al. [17].

3. Results

3.1. Templates for reporting computational models

3.1.1. Modification of the QMRF to report MN models
The QMRF is inspired to the OECD principles on QSAR model va-

lidation [3] and was proposed to give visibility to QSARs for regulatory
applications. We updated the existing QMRF by adding fields relevant
to report MNs (e.g. shape, size, surface coating).

Fig. 1 shows the structure of the inventory, covering all different
sections and corresponding parameters used to categorise the available
models. The content of each section is summarised below.

1. Source Information: reference details of the publication, contact
author and model name. When no model name was available, the
predicted endpoint and the method used to generate it were used
instead.

2. Predicted Endpoint: information about the type of cells or organ-
isms used in the study, the toxicity endpoint, and whether it is
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predicting an in vitro or in vivo activity (QSAR), or information about
the physicochemical properties (QSPR).

3. MNs: in this section, first a more generic description of the type of
MNs considered in the model is provided (e.g. metals, metal oxides,
carbon-based or polymeric nanomaterials); and second, a more
specific definition of the MNs is defined (e.g. material composition,
Ag), including physicochemical properties such as size, shape or
surface functionalisation.

4. Descriptors: this section specifies the number and type of de-
scriptors used in the model (e.g. fingerprints, topological, geometric,
physicochemical). It also includes the ratio MNs/descriptors, which
is a value used to assess the complexity of the model and possible
overfitting [18].

5. Data sets: size of the training, test and external validation data sets
are given. Details of data splitting used in the model building phase
are also specified when applicable.

6. Statistical methods: an explanation of the descriptor selection
process (screening from an initial set to obtain a reduced final set of
descriptors) as well as the details of the statistical method applied to
generate the model are provided. The software tools are also spe-
cified if they were provided in the publication.

7. Model performance: this section contains four inputs corre-
sponding to the principles 3 and 4 of the OECD guideline, i.e. ap-
plicability domain, goodness-of-fit, robustness and predictivity.

8. Miscellaneous: it includes the definition of abbreviations, refer-
ences to the datasets used for modelling and relevant remarks, e.g.
mechanistic interpretation (principle 5 of the OECD guideline).

3.1.2. Definition of a template for reporting PBK-type models and
environmental exposure models

In this paper, we aim at developing a template that is generic en-
ough to include not only descriptions of PBK models but also environ-
mental exposure models that can be applied in chemical risk assess-
ment.

The model reporting template presented by Chiffroy et al. [11],
based on the standard reporting protocol for exposure models devel-
oped in CEN [10] is more suitable for our purpose. In fact, the model
template developed in this manuscript reflects the CEN levels 1 to 5 of
knowledge to describe the PBK model, but requires less detail compared
to the model reporting template proposed by CEN. One of the intended
uses of the model reporting format and the inventory proposed in this

manuscript is to use it as a screening tool for model selection or model
judgement according to the list of MNs covered by a certain model, the
parameters involved, the model type (e.g. steady state, dynamic), the
level of validation (based on experimental studies or not) and the re-
ported uncertainties and assumptions.

To account for environmental exposure models, the template was
double-checked against the six principles of good modelling practice
identified by Buser et al. [14]. The resulting model reporting template is
summarised in Fig. 2. The content of each section is summarised below.

1. Model metadata: gives information on the model version, software
version and contact information.

2. Model description: gives information on the type of model, a
generic description of the outputs, the level of organisation (cellular
level, organ level, organism, or environment), the model type and
the temporal resolution of the model; processes included in the
model are listed as well as assumptions and approximations made. If
available, the parameters used to describe the processes are also
listed.

3. Input/output parameters: input parameters are listed as NM-de-
pendent or independent. Output parameters are also specified.

4. MN description: when a model is applied to MNs, these are de-
scribed following the list of nanospecific parameters considered in
the QSAR model reporting template (e.g. type of MN, size, shape,
coating); information on measured properties is flagged when such
information was used.

5. Model domain: this label contains information on the applicability
domain, general model assumptions, whether the model includes
nanospecific input parameters as model inputs, and identifies
sources of uncertainty.

3.2. Model inventories

After a careful review of the search results, a total of 59 publications
for QSAR models (out of around 800 found in the initial search) and 29
publications for QSPR models (out of around 350 found in the initial
search) were included in the final inventory.

Our search on PBK and environmental exposure models applied to
MNs led to the compilation of 474 papers. 48 publications on PBK
models were selected for the inventory, as were 81 publications on
environmental exposure models. The number of entries in the inventory

Fig. 1. Map of the information provided in the QSAR/QSPR model template.
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is larger than the number of publications because sometimes one paper
reports more than one model or application.

The resulting inventories of QSAR/QSPR and PBK/environmental
exposure models are freely available as .xls files through the JRC
Science Hub (https://ec.europa.eu/jrc/en/science-update/review-
computational-models-safety-assessment-nanomaterials) and as part of
the ECVAM collection in the JRC Data Catalogue (http://data.jrc.ec.
europa.eu/dataset/jrc-eurl-ecvam-nanocomput).2

3.3. Landscape of computational models applied to MNs

The compiled inventories were analysed to draw conclusions on the
availability of computational models on QSARs/QSPRs and environ-
mental exposure models applied to MNs. The content of the inventory
on PBK models is reported in the review by Lamon et al. [16].

3.3.1. Availability of QSAR and QSPR models applied to MNs
Models found in the literature search cover a total of 44 different

MNs, including metals, metal oxides and carbon, polymeric and lipid-
based particles. As shown in Fig. 3 QSAR models for metal oxides (in
particular, ZnO, Fe2O3 and TiO2) account for 72 out of 152 models, and
32 models included both metals and metal oxides MNs. Carbon-based
and polymeric MNs are applied in only 14 QSAR models. Silica-based
MNs were not identified, but two QSAR-like models that are applicable
to silica are referred to in the Discussion.

Regarding the descriptors used in QSAR models, MN size, either
determined from electron microscopy images or determined in different
relevant liquid exposure media as water, PBS or Dulbecco modified
eagle medium (i.e. hydrodynamic diameter typically obtained by light
diffraction scattering) appears as the most common geometric de-
scriptor (90 out of 204) used in the reviewed models [19,20], including
primary or aggregated size (e.g. [21]) or volume (e.g. [22]).

Most QSAR models populating the inventory predict effects of MNs
by means of in vitro cytotoxicity studies in different cell types, ac-
counting for 152 out of 204 models, in agreement with the vast body of

literature that exists examining the potential effect of MNs in in vitro
experiments. Cytotoxicity (calculated as LC50, EC50, which are the ef-
fective concentrations that kill or inhibit 50% of the living systems,
respectively) [23] and membrane damage [24] are common predicted
endpoints. Due to the large variety of in vitro studies, some authors (6
out of 152) have defined a composite endpoint such as “biological ac-
tivity” [25,26], or “toxic effect”, as endpoints determined by ag-
gregating different related response measures [27].

In addition, an “ecotoxicological endpoint” is defined as an ag-
gregation of different ecotoxicity-related endpoints such as LC50 [19],
or percentage of mortality [28] and is found in 11 models (Fig. 3). In
ecotoxicology, more in vitro tests are available supporting model de-
velopment than in vivo tests (35 versus 24).

Regarding QSPR models, 43 out of 52 are built on carbon-based
MNs (i.e. fullerenes and carbon nanotubes). Thirty manuscripts focus
on solubility of C60 in different organic solvents [29–32]. In addition,
CNTs are considered in 12 manuscripts.

In contrast to carbon-based MNs, metal and metal oxide MNs only
account for 5 out of 52 QSPR models. Only one study applied to in-
organic MNs is available in the inventory, predicting Zeta potential
from a set of 18 metal oxides MNs. This is one of the few attempts to
predict a nanospecific property by the weighted energy of the highest
occupied molecular orbital (quantum mechanical theoretical de-
scriptor) and the spherical size of the MNs, which is a descriptor gen-
erated from TEM images [33]. It is also worth recalling that zeta po-
tential has been frequently used as a descriptor in different QSAR
studies (Fig. 3) [34–36]. Other endpoints predicted by QSPRs are ad-
sorption and binding interactions [37] and the octanol-water partition
coefficient [38].

3.3.2. Availability of environmental exposure models for MNs
In this section, we report the mathematical models applied to cal-

culate PECs, which can be used in chemical risk assessments. Two main
different types of models are available in the literature to this aim: (1)
mass flow models that typically track the materials from production
and manufacturing to use and end-of-life stages, identifying at each
stage how much material is released into which technical or environ-
mental compartment, and (2) environmental multimedia fate models3.

Fig. 2. Inventory labels included in the inventory for characterising PBK and environmental exposure models.

2 Files are downloadable as S1: Inventory of Quantitative Structure-Property
Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR)
models (Excel workbook), S2: Model inventories for physiologically based kinetic
(PBK) models, dosimetry models and environmental fate models (Excel workbooks).
QSAR/QSPR model inventory is also available as a document format in .pdf as
S3: Individual QSPR/QSAR model descriptions in document format (pdf file).

3 In the inventory, process-based environmental fate models were evaluated
in detail, including models assessing all compartments as well as models spe-
cific for fate in the aquatic and soil compartment. Models developed specifically

L. Lamon et al. Computational Toxicology 9 (2019) 143–151

146

https://ec.europa.eu/jrc/en/science-update/review-computational-models-safety-assessment-nanomaterials
https://ec.europa.eu/jrc/en/science-update/review-computational-models-safety-assessment-nanomaterials
http://data.jrc.ec.europa.eu/dataset/jrc-eurl-ecvam-nanocomput
http://data.jrc.ec.europa.eu/dataset/jrc-eurl-ecvam-nanocomput


These study the fate and transport of MNs (transfer between compart-
ments, advection and deposition fluxes) in a system by modelling
physicochemical processes, such as agglomeration and sedimentation.

As shown in Fig. 4, Ag was included in 32 out of the 52 publications
reported. TiO2 (24), CeO2 (10) were the most frequently evaluated
metal oxides and the most studied carbon-based MN was MWCNT,
which was represented in 10 studies. The total number of MNs covered
in the inventory is 21.

Mass flow models reported in the inventory consider the mass of
MNs, and do not consider physicochemical properties as inputs.
Arvidsson et al. [39] reported a simple particle flow analysis approach
using three different case studies: TiO2 in sunscreen and Ag in textiles
and circuit electronics. To determine particle number, representative
sizes obtained from literature and company websites were assigned to
both MNs, and release to the environment (compartments were not
specified) was estimated qualitatively based on different factors such as
technology diffusion, consumption per capita of nano-products or
product lifetime. The study concluded that most nano-TiO2 was re-
leased from sunscreen use.

Although mass flow models attempt to estimate MN concentrations
in environmental compartments, such estimates are in general not
based on fundamental fate and transport analysis. Because data is
lacking on MN transfers to and from the compartments considered in
mass flow models [40], the environmental parameters are usually de-
fined following worst case scenarios, e.g. no sedimentation [39], or no
transformation or deposition in rivers [41]. These different scenarios
try to address the uncertainties associated with the behaviour of MNs in
the aquatic environment. Dimensionless transfer coefficients are ap-
plied to determine MN transfer from one compartment to another. As
for release factors, such coefficients are commonly obtained from lit-
erature sources when available or by expert judgment.

Environmental fate multimedia models describe the behaviour of
MNs considering transformation and degradation processes (e.g. dis-
solution), interaction with suspended particulate matter (i.e. hetero-
aggregation) and transport processess (e.g. sedimentation). In this
manuscript we consider multimedia model types, or models developed
for the aquatic compartment, because these are more relevant for
REACH applications, but the inventory is also populated with models
specifically developed for the soil compartment.

MNs covered by environmental fate process-based models are lim-
ited to a restricted number of metal oxides (12, 9 and 5 out of 24 studies
for CeO2, TiO2, and ZnO, respectively) and Ag, which was included in
11 out of the 24 publications included in the inventory. The PEC of

Fig. 3. Summary of the landscape of QSAR and QSPR models. Numbers assigned to QSAR/QSPR models quantify the specific weight of each element within the same
type of model. For example, the number of models applicable to carbon-based MNs corresponds to 14 and 43 for QSAR and QSPR models, respectively. The total
numbers of QSAR and QSPR models in the inventory are 152 and 52, respectively). 1Most representative descriptors were included. 2Size descriptor includes size,
radius, diameter, length, volume and aggregation/agglomeration. 3Endpoint defined by the author. 4Endpoint defined to group highly associated endpoints.

(footnote continued)
for the soil compartment are not analysed in this manuscript. More information
is available in Worth et al. [17].
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other MNs (CNT, Cu, Cu oxides, Fe, Al2O3, nanoclays and SiO2) in
different environmental compartments was evaluated in only one study
[42].

Two large environmental fate models have been reported: i)
SimpleBoxNano (SB4N) [43,44] and ii) MendNano [42,45]. Both
models consider the environment as a collection of well-mixed com-
partments, each representing a specific medium or biological entity,
with intermediate mass transport between compartments. They include
aggregation/agglomeration4, hetero-aggregation, sedimentation, dis-
solution and transformation reactions in addition to transport affecting
MNs bound to particulate matter. One of the main differences is that
SB4N considers first order rate constants to estimate transport and
transformation processes, while MendNano assumes time-independent
partitioning ratios for processes of aggregation, to account for colloidal
behaviour.

Thermodynamic equilibrium does not apply to MNs [46], thus SB4N
proposes different forms (species) for MNs in the different compart-
ments: i) freely dispersed, ii) hetero-agglomerated with natural col-
loidal particles (< 450 nm), or (3) attached to larger natural particles
(> 450 nm), which are subjected to gravitational forces (sedimenta-
tion). Apart from this concept, other two elements are actually included
in SB4N compared to the model addressing conventional chemicals: i)
transformation processes are considered as altered species of the same
MNs (i.e. not considered a removal process) and ii) dissolution (release

of ions from the NM surface) is applied as a removal process. In air,
behaviour of MNs is interpreted via the aerosol coagulation, where first-
order rate constants for “aggregation” and “attachment” are applied.

Differences in the PEC estimated by mass flow models and multi-
media environmental fate models depend on the environmental com-
partments considered. For instance, SB4N [43,44] shows that atmo-
spheric deposition is a relatively effective removal process, since PEC
for TiO2 in air was 170 times smaller than PEC calculated in [47], and
that steady-state is reached within one year of study. On other hand,
PECs estimated in the water compartment were of the same order of
magnitude, revealing that removal by sedimentation of MNs did not
lead to significant differences between both models.

Other fate models in aquatic media with different degrees of com-
plexity have been developed, as extensively reviewed by Nowack [48].

4. Discussion

In this manuscript we have developed model templates to system-
atically and consistently report different types of computational models
relevant in the risk assessment of MNs. In particular, we have updated
the QMRF to report QSARs and QSPRs applicable to MNs, and we have
developed a reporting standard for PBK and environmental exposure
models. In addition, we have populated these model templates with 152
QSARs, 52 QSPRs, and 52 environmental fate models, creating MN-
specific model inventories.

The discussion on refining the QMRF to apply to MNs is ongoing,
and it is reflected by the availability of QSARs and QSPRs [7]. In our
reporting template, the sections specific to MNs include information on
their physicochemical properties (e.g. shape, coating, size). In devel-
oping the PBK/environmental exposure model template, a challenge
was to report kinetic models of different types, while also keeping the

Fig. 4. Summary of the landscape of environmental exposure models. The total number of models corresponds to the total number of entries in the inventory (52).
1MNs include organo-silica, hydroxyapatite, latex, CuCO3, quantum dots, carbon black, Ca peroxide, keratin fibers and Al. These MNs only appear once in the
inventory. 2Includes surface water, rivers, natural freshwater and drinking water. 3Also including agricultural soil. 4Include incinerated ash landfill, groundwater,
drinking water plant, human body, lungs, swimming pools and bioactive landfill, marine biota, vegetation and agricultural soil. 5The dynamic modelling of release
describes the evolution over time of the amounts of MNs released to the environment, including also dynamic model outputs.

4 Agglomeration is defined as collection of weakly or medium strongly bound
particles whereas aggregation refers to a particle comprising strongly bonded or
fused particles held together by strong forces such as covalent bonds. In fact,
modelling language does not distinguish between the two because often it is
assumed that once an agglomerate is formed, it does not de-agglomerate [76].
As a result, the two terms are used interchangeably.
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reporting template as a simple format, by selecting the most relevant
information for regulatory application.

The application of the reporting standards to existing models gen-
erated a model inventory that reflects the current landscape for dif-
ferent MN modelling fields related to risk assessment.

In the following paragraphs, we summarise the relevance of the
reported models to support different aspects of MN risk assessment,
with particular reference to REACH requirements. We focus on the
applicability domain of the models, on how the outcomes of the models
match parameters of regulatory relevance, on the type of datasets used
in model development and validation, and on the main assumptions
and uncertainties.

4.1. Model applicability domain

The OECD adopted the concept of applicability domain for defining
the limits of validity of a QSAR (e.g. types of chemical structures,
physicochemical properties and mechanisms of action) [3]. Predictions
for substances falling in the applicability domain are expected to be
more reliable. There are several ways to determine the applicability
domain of QSARs [49], each of them having advantages and dis-
advantages [50,51]. Buser et al. [14] highlighted the need to report the
applicability domain for exposure models. This information is included
in the model reporting template.

The applicability domain for the QSAR/QSPR models reported in
the inventory is not always explicitly defined in their respective pub-
lications. In the case of some models, the applicability domain is de-
fined quite narrowly in terms of the NM type. Other models are more
generally applicable to different types of NM. For example, a generic
approach referred to as “perturbation modelling” has been used to
predict the cytotoxicity of silica, nickel, and nickel(II) oxide nano-
particles [52,53] on the basis of physicochemical descriptors and the
experimental conditions of the study. These “QSAR-like” models were
not identified in the literature review and were therefore not included
in the Nanocomput QSPR/QSAR inventory.

Only a few of the environmental exposure models in the inventory
reported their applicability domain. For instance, Bachler et al. [54]
defined the applicability domain as “ionic silver and 15–150 nm silver
nanoparticles, which were not coated with substances designed to
prolong the circulatory time (e.g., polyethylene glycol)”. Li et al. [55]
stated that the model can be applied to “non-degradable/non-metabo-
lisable nanoparticles”. In most cases, however, the applicability domain
was not reported.

4.2. Use of datasets and descriptors in the development of QSAR/QSPR
models

Regarding the datasets available for model building, as few as 47
out of 204 models in the inventory used their own generated experi-
mental data for model development [56–58]. Thus most studies in the
inventory are limited to small datasets, obtained by the same research
group under matching conditions. It also appears that a limited number
datasets have been used extensively in a large number of publications
[26,58–61].

From the descriptors selected for model building, 137, 72 and 77
out of 204 models reported particle size, coating/functionalization and
shape, respectively. This revealed that physicochemical characterisa-
tion of MNs is not routinely available in (eco)toxicological studies. In
other cases, descriptors were generated computationally by Molecular
Dynamics simulations [62] or with software tools such as DRAGON
[63].

Access to open and curated databases would support model devel-
opment. This is the objective of the ongoing H2020 projects GRACIOUS
(https://www.h2020gracious.eu/), NanoCommons (https://www.
nanocommons.eu/) and NanoReg2 (http://www.nanoreg2.eu/about).

4.3. Assumptions and uncertainties

One of the most critical points in the environmental exposure
models is the approach used to determine how MNs reach the different
environmental compartments. The first difficulty relies on the very little
information available from the manufacturer regarding the incorpora-
tion of MNs in commercial products, making it very difficult to de-
termine the degree of market penetration. [47,64]. One of the ap-
proaches, first proposed by Nowack and co-workers, has been widely
used by different authors with slightly different methodologies: i) first,
worldwide (an at a country level when available) production volume is
allocated to different countries/regions by means of the population of
the industrialised world [47], in proportion to Gross Domestic Product
[65] or by the Inequality-adjusted Human Development Index (IHDI,
which gives an idea of human development achievement) [66]; ii)
second, production volume is allocated to different product categories
(e.g. paints, coatings, electronics, textile) based on internet sources and
also from knowledge about NM concentrations in the different nano-
enabled products. It is commonly assumed that the allocation of dif-
ferent MNs to different products follows the same pattern for several
MNs and that available models are mostly applied to MNs that are
considered spherical and uncoated. It is important to take into account
that all these assumptions bring uncertainty to the final assessment.

Environmental exposure model simulations reported in the in-
ventory are not generally based on measurements available to compute
or validate model outputs, e.g. the agglomeration/deposition of MNs or
monitored environmental concentrations. To compensate for the lack of
data on real MN concentration in the environment, research on detec-
tion of MNs from background material is ongoing [67]. In general, it is
observed that environmental exposure models consider that all com-
partments are well mixed (homogeneous) and that the rates of me-
chanical transport are independent of chemical composition and crystal
form [68].

4.4. Relevance for REACH

Only 6 QSPRs predict MN properties that are required for REACH,
i.e. 1 for water solubility [38], 1 for octanol-water partition coefficient
[38], 4 dispersion in organic solvents [69–71], and 1 adsorption/
sorption [37].

The inventory reports 5 models for ecotoxicological endpoints. Of
these, only 1 model reports algorithms predicting REACH-relevant
endpoints, as the others suggest new biological metrics that integrate
multiple toxicological endpoints [27,28,72–74]. Chen et al. [19] re-
ported a series of global and species-specific models that could be ap-
plied to predict REACH endpoints. QSAR models build on EC50 and
LC50 values for Danio rerio, Pseudokirchneriella subcapitata, Daphnia
magna and Staphylococcus aureus.

There are no models covering the REACH toxicological endpoints on
acute toxicity, repeated dose toxicity, (skin and respiratory) sensitisa-
tion, carcinogenicity, and reproductive toxicity. Most of the QSARs
predicting human hazard were actually developed for cytotoxicity
endpoints, which are not of direct relevance. In the inventory, a QSAR
predicting mutagenicity of carbon-based MNs is reported, but it is based
on the Ames test, which is not considered applicable to MNs [75].

SB4N [43] is an adaptation of the SimpleBox model, and provides as
an output PECs at the steady state. SimpleBox has been used as a re-
gional distribution module in the EU system for Evaluation of Sub-
stances (EUSES) model, which is applied in environmental exposure
assessment in REACH [9]. However, the lack of analytical techniques
able to measure trace concentration of MNs and differentiate between
background and MNs, hinders the validation of such models. The SB4N
model consists of around 70 inputs and some of them are nanospecific,
such as size, density, attachment efficiency or dissolution rate. It is
recognised that more experimental data are needed for some of the
parameters that are not fully covered by existing colloidal theory (e.g.
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hetero-attachment efficiency) [76]. Furthermore, for a better descrip-
tion of aggregation phenomena, fractal modelling can complement
existing kinetic fate models by providing more accurate integration of
shape, structure, density and collision efficiency [77].

5. Conclusions

Taking into account international discussions on the need for
transparent and systematic model reporting, we have presented two
different templates that allow the reporting of QSARs and QSPRs, as
well as PBK and environmental exposure models, which are relevant in
different phases of risk assessment. The templates are tailored to the
reporting of MNs, but can also be applied to all types of chemicals.
Whereas the QSAR/QSPR reporting template is based on the QMRF
previously developed for chemicals, the PBK/environmental exposure
reporting template was developed from scratch.

We have complied and described model inventories derived from a
comprehensive literature search of MN-relevant predictive models and
by using the templates to capture key model characteristics. Analysis of
these inventories reveals how the models may prove useful in reg-
ulatory risk assessments, by classifying the models in terms of their
outputs and by declared uncertainties and assumptions. Using key de-
scriptors from the reporting templates, we have also shown how these
inventories can give an overview of the landscape of available models
for MNs. We found that only one QSAR is predicting REACH-relevant
ecotoxicity endpoint [25], whereas toxicological endpoints on acute
toxicity, repeated dose toxicity, (skin and respiratory) sensitisation,
carcinogenicity, and reproductive toxicity are not covered in the QSAR
inventory.

The environmental exposure models landscape identified tools that
can support risk assessment [41–44]. However, the lack of analytical
techniques supporting the validation of these models hinders their va-
lidation, application and acceptance in risk assessment.

Acknowledgements

This work was part of the Nanocomput project, carried out by the
European Commission's Joint Research Centre (JRC) for the
Directorate-General (DG) for Internal Market, Industry,
Entrepreneurship and SMEs (DG GROW) under the terms of an
Administrative Arrangement between the JRC and DG GROW. The
project was supported by a steering group with representatives from DG
GROW, DG Environment and the European Chemicals Agency (ECHA).
We thank Dr Alicia Paini (JRC) for input on PBK model reporting
templates.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.comtox.2018.12.002.

References

[1] European Parliament and Council, Regulation (EC) No 1907/2006 of the European
Parliament and of the Council of 18 December 2006 concerning the Registration,
Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a
European Chemicals Agency, amending Directive 1999/4, Official Journal of the
European Union, EC, EC, 2006. doi:http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=OJ:L:2006:396:0001:0849:EN:PDF.

[2] EC, Commission Recommendation of 18 October 2011 on the definition of nano-
material, 2011.

[3] OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity
Relationship [(Q)Sar] Models, 2007. doi: 10.1787/9789264085442-en.

[4] OECD, The report from the expert group on (Quantitative) Structure-Activity
Relationships [(Q)SARs] on the principles for the validation of (Q)SARs. OECD
Series on testing and assessment No. 49, Paris, 2004.

[5] I.V. Tetko, U. Maran, A. Tropsha, Public (Q)SAR services, integrated modeling
environments, and model repositories on the web: state of the art and perspectives
for future development, Mol. Inform. 36 (2017) 1600082, https://doi.org/10.1002/
minf.201600082.

[6] G. Drakakis, C. Chomenidis, G. Tsiliki, P. Doganis, E. Anagnostopoulou, H.
Sarimveis, M. Rautenberg, D. Gebele, C. Helma, N. Jeliazkova, V. Jeliazkov, B.
Hardy, Deliverable Raport D4.6 Tools for generating QMRF and QPRF reports
(2016). doi: 10.5281/ZENODO.375619.

[7] T. Puzyn, N. Jeliazkova, H. Sarimveis, R.L. Marchese Robinson, V. Lobaskin,
R. Rallo, A.-N. Richarz, A. Gajewicz, M.G. Papadopulos, J. Hastings, M.T.D. Cronin,
E. Benfenati, A. Fernández, Perspectives from the NanoSafety Modelling Cluster on
the validation criteria for (Q)SAR models used in nanotechnology, Food Chem.
Toxicol. 112 (2018) 478–494, https://doi.org/10.1016/J.FCT.2017.09.037.

[8] ECHA, Guidance on information requirements and chemical safety assessment
Chapter R.8: Characterisation of dose[concentration]-response for human health,
Helsinki, 2012.

[9] ECHA, Guidance on information requirements and chemical safety assessment
Chapter R.16 : Environmental exposure assessment, Helsinki, 2016.

[10] CEN, Standard documentation of chemical exposure models, 2015.
[11] P. Ciffroy, A. Altenpohl, G. Fait, W. Fransman, A. Paini, A. Radovnikovic, M. Simon-

Cornu, N. Suciu, F. Verdonck, Development of a standard documentation protocol
for communicating exposure models, Sci. Total Environ. 568 (2016) 557–565,
https://doi.org/10.1016/J.SCITOTENV.2016.01.134.

[12] EMA, Guideline on the qualification and reporting of physiologically based phar-
macokinetic (PBPK) modelling and simulation, 2016.

[13] US-FDA, Physiologically Based Pharmacokinetic Analyses - Format and Content,
2016.

[14] A.M. Buser, M. MacLeod, M. Scheringer, D. Mackay, M. Bonnell, M.H. Russell,
J.V. DePinto, K. Hungerbühler, Good modeling practice guidelines for applying
multimedia models in chemical assessments, Integr. Environ. Assess. Manage. 8
(2012) 703–708, https://doi.org/10.1002/ieam.1299.

[15] H.A. Den Hollander, J.C.H. van Eijkeren, D. van de Meent, SimpleBox 3.0: multi-
media mass balance model for evaluating the fate of chemical in the environment,
(2004).

[16] L. Lamon, D. Asturiol, A. Vilchez, J. Cabellos, J. Damàsio, G. Janer, A. Richarz, A.
Worth, Physiologically based mathematical models of nanomaterials for regulatory
toxicology: a review, Comput. Toxicol., in press. doi: 10.1016/j.comtox.2018.10.
002.

[17] A. Worth, K. Aschberger, D. Asturiol, J. Bessems, K. Gerloff, R. Graepel, E. Joossens,
L. Lamon, T. Palosaari, A.-N. Richarz, Evaluation of the availability and applic-
ability of computational approaches in the safety assessment of nanomaterials,
Publications Office of the European Union, Luxembourg, 2017. doi: 10.2760/
248139.

[18] J.G. Topliss, R.P. Edwards, Chance factors in studies of quantitative structure-ac-
tivity relationships, J. Med. Chem. 22 (1979) 1238–1244, https://doi.org/10.1021/
jm00196a017.

[19] G. Chen, W.J.G.M. Peijnenburg, V. Kovalishyn, M.G. Vijver, Development of na-
nostructure-activity relationships assisting the nanomaterial hazard categorization
for risk assessment and regulatory decision-making, RSC Adv. 6 (2016)
52227–52235, https://doi.org/10.1039/c6ra06159a.

[20] E. Papa, J.P. Doucet, A. Sangion, A. Doucet-Panaye, Investigation of the influence of
protein corona composition on gold nanoparticle bioactivity using machine
learning approaches, SAR QSAR Environ. Res. (2016) 1–18, https://doi.org/10.
1080/1062936X.2016.1197310.

[21] Y. Pan, T. Li, J. Cheng, D. Telesca, J.I. Zink, J. Jiang, Nano-QSAR modeling for
predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors,
RSC Adv. 6 (2016) 25766–25775, https://doi.org/10.1039/c6ra01298a.

[22] T.C. Le, H. Yin, R. Chen, Y. Chen, L. Zhao, P.S. Casey, C. Chen, D.A. Winkler, An
experimental and computational approach to the development of ZnO nanoparticles
that are safe by design, Small (2016), https://doi.org/10.1002/smll.201600597.

[23] N. Sizochenko, B. Rasulev, A. Gajewicz, V. Kuz’Min, T. Puzyn, J. Leszczynski, From
basic physics to mechanisms of toxicity: the “liquid drop” approach applied to
develop predictive classification models for toxicity of metal oxide nanoparticles,
Nanoscale 6 (2014) 13986–13993, https://doi.org/10.1039/c4nr03487b.

[24] R. Liu, R. Rallo, S. George, Z. Ji, S. Nair, A.E. Nel, Y. Cohen, Classification NanoSAR
development for cytotoxicity of metal oxide nanoparticles, Small 7 (2011)
1118–1126, https://doi.org/10.1002/smll.201002366.

[25] D.A. Winkler, F.R. Burden, B. Yan, R. Weissleder, C. Tassa, S. Shaw, V.C. Epa,
Modelling and predicting the biological effects of nanomaterials, SAR QSAR
Environ. Res. 25 (2014) 161–172, https://doi.org/10.1080/1062936X.2013.
874367.

[26] D. Fourches, D. Pu, C. Tassa, R. Weissleder, S.Y. Shaw, R.J. Mumper, A. Tropsha,
Quantitative nanostructure – activity relationship modeling, ACS Nano 4 (2010)
5703–5712, https://doi.org/10.1021/nn1013484.

[27] V.V. Kleandrova, F. Luan, H. González-Díaz, J.M. Ruso, A. Speck-Planche,
M.N.D.S. Cordeiro, Computational tool for risk assessment of nanomaterials: novel
QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxi-
city of uncoated and coated nanoparticles under multiple experimental conditions,
Environ. Sci. Technol. 48 (2014) 14686–14694, https://doi.org/10.1021/
es503861x.

[28] Z. Zhou, J. Son, B. Harper, Z. Zhou, S. Harper, Influence of surface chemical
properties on the toxicity of engineered zinc oxide nanoparticles to embryonic
zebrafish, Beilstein J. Nanotechnol. 6 (2015) 1568–1579, https://doi.org/10.3762/
bjnano.6.160.

[29] S. Yousefinejad, F. Honarasa, F. Abbasitabar, Z. Arianezhad, New LSER model based
on solvent empirical parameters for the prediction and description of the solubility
of buckminsterfullerene in various solvents, J. Solution Chem. 42 (2013)
1620–1632, https://doi.org/10.1007/s10953-013-0062-2.

[30] T. Petrova, B.F. Rasulev, A.A. Toropov, D. Leszczynska, J. Leszczynski, Improved
model for fullerene C60 solubility in organic solvents based on quantum-chemical
and topological descriptors, J. Nanoparticle Res. 13 (2011) 3235–3247, https://doi.
org/10.1007/s11051-011-0238-x.

[31] H. Liu, X. Yao, R. Zhang, M. Liu, Z. Hu, B. Fan, Accurate quantitative structure–-
property relationship model to predict the solubility of C60 in various solvents

L. Lamon et al. Computational Toxicology 9 (2019) 143–151

150

https://doi.org/10.1016/j.comtox.2018.12.002
https://doi.org/10.1016/j.comtox.2018.12.002
https://doi.org/10.1002/minf.201600082
https://doi.org/10.1002/minf.201600082
https://doi.org/10.1016/J.FCT.2017.09.037
https://doi.org/10.1016/J.SCITOTENV.2016.01.134
https://doi.org/10.1002/ieam.1299
https://doi.org/10.1021/jm00196a017
https://doi.org/10.1021/jm00196a017
https://doi.org/10.1039/c6ra06159a
https://doi.org/10.1080/1062936X.2016.1197310
https://doi.org/10.1080/1062936X.2016.1197310
https://doi.org/10.1039/c6ra01298a
https://doi.org/10.1002/smll.201600597
https://doi.org/10.1039/c4nr03487b
https://doi.org/10.1002/smll.201002366
https://doi.org/10.1080/1062936X.2013.874367
https://doi.org/10.1080/1062936X.2013.874367
https://doi.org/10.1021/nn1013484
https://doi.org/10.1021/es503861x
https://doi.org/10.1021/es503861x
https://doi.org/10.3762/bjnano.6.160
https://doi.org/10.3762/bjnano.6.160
https://doi.org/10.1007/s10953-013-0062-2
https://doi.org/10.1007/s11051-011-0238-x
https://doi.org/10.1007/s11051-011-0238-x


based on a novel approach using a least-squares support vector machine, J. Phys.
Chem. B 109 (2005) 20565–20571, https://doi.org/10.1021/jp052223n.

[32] A.G. Saliner, E. Burello, A. Worth, Review of computational approaches for pre-
dicting the physicochemical and biological properties of nanoparticles BT – JRC Sci
Tech Reports EUR, (2008).

[33] A. Mikolajczyk, A. Gajewicz, B. Rasulev, N. Schaeublin, E. Maurer-Gardner,
S. Hussain, J. Leszczynski, T. Puzyn, Zeta potential for metal oxide nanoparticles: a
predictive model developed by a nano-quantitative structure-property relationship
approach, Chem. Mater. 27 (2015) 2400–2407, https://doi.org/10.1021/
cm504406a.

[34] V.C. Epa, F.R. Burden, C. Tassa, R. Weissleder, S. Shaw, D.A. Winkler, Modeling
biological activities of nanoparticles, Nano Lett. 12 (2012) 5808–5812, https://doi.
org/10.1021/nl303144k.

[35] T. Silva, L.R. Pokhrel, B. Dubey, T.M. Tolaymat, K.J. Maier, X. Liu, Particle size,
surface charge and concentration dependent ecotoxicity of three organo-coated
silver nanoparticles: comparison between general linear model-predicted and ob-
served toxicity, Sci. Total Environ. 468–469 (2014) 968–976, https://doi.org/10.
1016/j.scitotenv.2013.09.006.

[36] C. Oksel, D.A. Winkler, C.Y. Ma, T. Wilkins, X.Z. Wang, Accurate and interpretable
nanoSAR models from genetic programming-based decision tree construction ap-
proaches, Nanotoxicology 10 (2016) 1001–1012, https://doi.org/10.3109/
17435390.2016.1161857.

[37] M. Ghaedi, A.M. Ghaedi, M. Hossainpour, A. Ansari, M.H. Habibi, A.R. Asghari,
Least square-support vector (LS-SVM) method for modeling of methylene blue dye
adsorption using copper oxide loaded on activated carbon: kinetic and isotherm
study, J. Ind. Eng. Chem. 20 (2014) 1641–1649, https://doi.org/10.1016/j.jiec.
2013.08.011.

[38] A.A. Toropov, D. Leszczynska, J. Leszczynski, Predicting water solubility and oc-
tanol water partition coefficient for carbon nanotubes based on the chiral vector,
Comput. Biol. Chem. 31 (2007) 127–128, https://doi.org/10.1016/j.
compbiolchem.2007.02.002.

[39] R. Arvidsson, S. Molander, B.A. Sandén, Impacts of a silver-coated future: particle
flow analysis of silver nanoparticles, J. Ind. Ecol. 15 (2011) 844–854, https://doi.
org/10.1111/j.1530-9290.2011.00400.x.

[40] F. Gottschalk, R.W. Scholz, B. Nowack, Probabilistic material flow modeling for
assessing the environmental exposure to compounds: methodology and an appli-
cation to engineered nano-TiO2 particles, Environ. Model. Softw. 25 (2010)
320–332, https://doi.org/10.1016/j.envsoft.2009.08.011.

[41] F. Gottschalk, C. Ort, R.W. Scholz, B. Nowack, Engineered nanomaterials in rivers –
exposure scenarios for Switzerland at high spatial and temporal resolution, Environ.
Pollut. 159 (2011) 3439–3445, https://doi.org/10.1016/j.envpol.2011.08.023.

[42] H.H. Liu, Y. Cohen, Multimedia environmental distribution of engineered nano-
materials, Environ. Sci. Technol. 48 (2014) 3281–3292, https://doi.org/10.1021/
es405132z.

[43] J. Meesters, A. Koelmans, J. Quik, J. Hendriks, D. van de Meent, Multimedia
modeling of engineered nanoparticles with SimpleBox4nano: model definition and
evaluation, Environ. Sci. Technol. 48 (2014) 5726–5736, https://doi.org/10.1021/
es500548h.

[44] J.A.J. Meesters, J.T.K. Quik, A.A. Koelmans, A.J. Hendriks, D. van de Meent,
Multimedia environmental fate and speciation of engineered nanoparticles: a
probabilistic modeling approach, Environ. Sci. 3 (2016) 715–727, https://doi.org/
10.1039/c6en00081a.

[45] H.H. Liu, M. Bilal, A. Lazareva, A. Keller, Y. Cohen, Simulation tool for assessing the
release and environmental distribution of nanomaterials, Beilstein J. Nanotechnol.
6 (2015) 938–951, https://doi.org/10.3762/bjnano.6.97.

[46] A.A. Markus, J.R. Parsons, E.W.M. Roex, P. de Voogt, R.W.P.M. Laane, Modeling
aggregation and sedimentation of nanoparticles in the aquatic environment, Sci.
Total Environ. 506–507 (2015) 323–329, https://doi.org/10.1016/j.scitotenv.
2014.11.056.

[47] N.C. Mueller, B. Nowack, Exposure modeling of engineered nanoparticles in the
environment, Environ. Sci. Technol. 42 (2008) 4447–4453.

[48] B. Nowack, Evaluation of environmental exposure models for engineered nano-
materials in a regulatory context, NanoImpact 8 (2017) 38–47, https://doi.org/10.
1016/j.impact.2017.06.005.

[49] T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.
S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-
Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.
J.M. van de Sandt, W.D. Tong, G. Veith, C.H. Yang, Current status of methods for
defining the applicability domain of (quantitative) structure-activity relationships –
The report and recommendations of ECVAM Workshop 52, Atla-Alternatives to Lab.
Anim. 33 (2005) 155–173.

[50] F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni, R. Todeschini,
Comparison of different approaches to define the applicability domain of QSAR
models, Molecules 17 (2012) 4791–4810, https://doi.org/10.3390/
molecules17054791.

[51] J.G. Cumming, A.M. Davis, S. Muresan, M. Haeberlein, H. Chen, Chemical pre-
dictive modelling to improve compound quality, Nat. Rev. Drug Discov. 12 (2013)
948–962, https://doi.org/10.1038/nrd4128.

[52] F. Luan, V.V. Kleandrova, H. Gonzalez-Diaz, J.M. Ruso, A. Melo, A. Speck-Planche,
M.N.D.S. Cordeiro, Computer-aided nanotoxicology: assessing cytotoxicity of na-
noparticles under diverse experimental conditions by using a novel QSTR-pertur-
bation approach, Nanoscale (6) (2014) 10623–10630, https://doi.org/10.1039/
c4nr01285b.

[53] R. Concu, V.V. Kleandrova, A. Speck-Planche, M.N.D.S. Cordeiro, Probing the
toxicity of nanoparticles: a unified in silico machine learning model based on per-
turbation theory, Nanotoxicology 11 (2017) 891–906, https://doi.org/10.1080/

17435390.2017.1379567.
[54] G. Bachler, N. von Goetz, K. Hungerbühler, A physiologically based pharmacoki-

netic model for ionic silver and silver nanoparticles, Int. J. Nanomed. 8 (2013)
3365–3382, https://doi.org/10.2147/IJN.S46624.

[55] M. Li, J. Reineke, Mathematical modelling of nanoparticle biodistribution: extra-
polation among intravenous, oral and pulmonary administration routes, Int. J.
Nano Biomater. 3 (2011) 222–238, https://doi.org/10.1504/IJNBM.2011.042131.

[56] C. Sayes, I. Ivanov, Comparative study of predictive computational models for na-
noparticle-induced cytotoxicity, Risk Anal. 30 (2010) 1723–1734, https://doi.org/
10.1111/j.1539-6924.2010.01438.x.

[57] A. Gajewicz, N. Schaeublin, B. Rasulev, S. Hussain, D. Leszczynska, T. Puzyn,
Towards Understanding Mechanisms Governing Cytotoxicity of Metal Oxides
Nanoparticles: Hints from Nano-QSAR Studies Supplementary material, (n.d.).

[58] T. Puzyn, B. Rasulev, A. Gajewicz, X. Hu, T.P. Dasari, A. Michalkova, H.-M. Hwang,
A. Toropov, D. Leszczynska, J. Leszczynski, Using nano-QSAR to predict the cyto-
toxicity of metal oxide nanoparticles, Nat. Nanotechnol. 6 (2011) 175–178, https://
doi.org/10.1038/nnano.2011.10.

[59] C.M. Sayes, K.L. Reed, K.P. Glover, K.A. Swain, M.L. Ostraat, E.M. Donner,
D.B. Warheit, Changing the dose metric for inhalation toxicity studies: short-term
study in rats with engineered aerosolized amorphous silica nanoparticles, Inhal.
Toxicol. 22 (2010) 348–354, https://doi.org/10.3109/08958370903359992.

[60] R. Weissleder, K. Kelly, E.Y. Sun, T. Shtatland, L. Josephson, Cell-specific targeting
of nanoparticles by multivalent attachment of small molecules, Nat. Biotechnol. 23
(2005) 1418–1423, https://doi.org/10.1038/nbt1159.

[61] S.Y. Shaw, E.C. Westly, M.J. Pittet, A. Subramanian, S.L. Schreiber, R. Weissleder,
Perturbational profiling of nanomaterial biologic activity, Appl. Biol. Sci. 105
(2008) 7387–7392, https://doi.org/10.1073/pnas.0802878105.

[62] T.L. Borders, A.F. Fonseca, H. Zhang, K. Cho, A. Rusinko, Developing descriptors to
predict mechanical properties of nanotubes, J. Chem. Inf. Model. 53 (2013)
773–782, https://doi.org/10.1021/ci300482n.

[63] F. Gharagheizi, R.F. Alamdari, A molecular-based model for prediction of solubility
of C60 fullerene in various solvents, Fullerenes Nanotub. Carbon Nanostruct. 16
(2008) 40–57, https://doi.org/10.1080/15363830701779315.

[64] A.A. Keller, S. Mcferran, A. Lazareva, S. Suh, Global life cycle releases of engineered
nanomaterials, J. Nanoparticle Res. 15 (2013) 1692–1703, https://doi.org/10.
1007/s11051-013-1692-4.

[65] T.Y. Sun, F. Gottschalk, K. Hungerbühler, B. Nowack, Comprehensive probabilistic
modelling of environmental emissions of engineered nanomaterials, Environ.
Pollut. 185 (2014) 69–76, https://doi.org/10.1016/j.envpol.2013.10.004.

[66] A.A. Keller, A. Lazareva, Predicted releases of engineered nanomaterials: from
global to regional to local, Environ. Sci. Technol. Lett. 1 (2014) 65–70, https://doi.
org/10.1021/ez400106t.

[67] A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova,
A. Gondikas, R. Kaegi, D. Günther, T. Hofmann, F. von der Kammer, Single-particle
multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-
flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against
the elevated natural background in soils, Environ. Sci. Nano 4 (2017) 307–314,
https://doi.org/10.1039/C6EN00455E.

[68] N.-C. Tien, C.-P. Jen, Analytical model for nanotoxic assessment of a human re-
spiratory system, J. Wuhan Univ. Technol. Mater. Sci. Ed. 25 (2010) 903–908,
https://doi.org/10.1007/s11595-010-0117-9.

[69] M. Salahinejad, E. Zolfonoun, QSAR studies of the dispersion of SWNTs in different
organic solvents, J. Nanoparticle Res. 15 (2013), https://doi.org/10.1007/s11051-
013-2028-0.

[70] M.K. Rofouei, M. Salahinejad, J.B. Ghasemi, An alignment independent 3D-QSAR
modeling of dispersibility of single-walled carbon nanotubes in different organic
solvents, Fullerenes Nanotub. Carbon Nanostruct. 22 (2014) 605–617, https://doi.
org/10.1080/1536383X.2012.702157.

[71] H. Yilmaz, B. Rasulev, J. Leszczynski, Modeling the dispersibility of single walled
carbon nanotubes in organic solvents by quantitative structure-activity relationship
approach, Nanomaterials 5 (2015) 778–791, https://doi.org/10.3390/
nano5020778.

[72] X. Liu, K. Tang, S. Harper, B. Harper, J.A. Steevens, R. Xu, Predictive modeling of
nanomaterial exposure effects in biological systems, Int. J. Nanomed. 8 (Suppl. 1)
(2013) 31–43, https://doi.org/10.2147/IJN.S40742.

[73] V.V. Kleandrova, F. Luan, H. González-Díaz, J.M. Ruso, A. Melo, A. Speck-Planche,
M.N.D.S. Cordeiro, Computational ecotoxicology: simultaneous prediction of eco-
toxic effects of nanoparticles under different experimental conditions, Environ. Int.
73 (2014) 288–294, https://doi.org/10.1016/j.envint.2014.08.009.

[74] B. Harper, D. Thomas, S. Chikkagoudar, N. Baker, K. Tang, A. Heredia-Langner,
R. Lins, S. Harper, Comparative hazard analysis and toxicological modeling of di-
verse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity, J.
Nanoparticle Res. 17 (2015) 1–12, https://doi.org/10.1007/s11051-015-3051-0.

[75] K. Rasmussen, M. González, P. Kearns, J.R. Sintes, F. Rossi, P. Sayre, Review of
achievements of the OECD Working Party on Manufactured Nanomaterials’ Testing
and Assessment Programme. From exploratory testing to test guidelines, Regul.
Toxicol. Pharmacol. 74 (2016) 147–160, https://doi.org/10.1016/j.yrtph.2015.11.
004.

[76] M. Baalousha, G. Cornelis, T.A.J. Kuhlbusch, I. Lynch, C. Nickel, W. Peijnenburg,
N.W. Van Den Brink, Modeling nanomaterial fate and uptake in the environment:
current knowledge and future trends, Environ. Sci. Nano 3 (2016) 323–345,
https://doi.org/10.1039/c5en00207a.

[77] S. Avilov, L. Lamon, D. Hristozov, A. Marcomini, Improving the prediction of en-
vironmental fate of engineered nanomaterials by fractal modelling, Environ. Int. 99
(2017) 78–86, https://doi.org/10.1016/j.envint.2016.11.027.

L. Lamon et al. Computational Toxicology 9 (2019) 143–151

151

https://doi.org/10.1021/jp052223n
https://doi.org/10.1021/cm504406a
https://doi.org/10.1021/cm504406a
https://doi.org/10.1021/nl303144k
https://doi.org/10.1021/nl303144k
https://doi.org/10.1016/j.scitotenv.2013.09.006
https://doi.org/10.1016/j.scitotenv.2013.09.006
https://doi.org/10.3109/17435390.2016.1161857
https://doi.org/10.3109/17435390.2016.1161857
https://doi.org/10.1016/j.jiec.2013.08.011
https://doi.org/10.1016/j.jiec.2013.08.011
https://doi.org/10.1016/j.compbiolchem.2007.02.002
https://doi.org/10.1016/j.compbiolchem.2007.02.002
https://doi.org/10.1111/j.1530-9290.2011.00400.x
https://doi.org/10.1111/j.1530-9290.2011.00400.x
https://doi.org/10.1016/j.envsoft.2009.08.011
https://doi.org/10.1016/j.envpol.2011.08.023
https://doi.org/10.1021/es405132z
https://doi.org/10.1021/es405132z
https://doi.org/10.1021/es500548h
https://doi.org/10.1021/es500548h
https://doi.org/10.1039/c6en00081a
https://doi.org/10.1039/c6en00081a
https://doi.org/10.3762/bjnano.6.97
https://doi.org/10.1016/j.scitotenv.2014.11.056
https://doi.org/10.1016/j.scitotenv.2014.11.056
http://refhub.elsevier.com/S2468-1113(18)30084-7/h0235
http://refhub.elsevier.com/S2468-1113(18)30084-7/h0235
https://doi.org/10.1016/j.impact.2017.06.005
https://doi.org/10.1016/j.impact.2017.06.005
https://doi.org/10.3390/molecules17054791
https://doi.org/10.3390/molecules17054791
https://doi.org/10.1038/nrd4128
https://doi.org/10.1039/c4nr01285b
https://doi.org/10.1039/c4nr01285b
https://doi.org/10.1080/17435390.2017.1379567
https://doi.org/10.1080/17435390.2017.1379567
https://doi.org/10.2147/IJN.S46624
https://doi.org/10.1504/IJNBM.2011.042131
https://doi.org/10.1111/j.1539-6924.2010.01438.x
https://doi.org/10.1111/j.1539-6924.2010.01438.x
https://doi.org/10.1038/nnano.2011.10
https://doi.org/10.1038/nnano.2011.10
https://doi.org/10.3109/08958370903359992
https://doi.org/10.1038/nbt1159
https://doi.org/10.1073/pnas.0802878105
https://doi.org/10.1021/ci300482n
https://doi.org/10.1080/15363830701779315
https://doi.org/10.1007/s11051-013-1692-4
https://doi.org/10.1007/s11051-013-1692-4
https://doi.org/10.1016/j.envpol.2013.10.004
https://doi.org/10.1021/ez400106t
https://doi.org/10.1021/ez400106t
https://doi.org/10.1039/C6EN00455E
https://doi.org/10.1007/s11595-010-0117-9
https://doi.org/10.1007/s11051-013-2028-0
https://doi.org/10.1007/s11051-013-2028-0
https://doi.org/10.1080/1536383X.2012.702157
https://doi.org/10.1080/1536383X.2012.702157
https://doi.org/10.3390/nano5020778
https://doi.org/10.3390/nano5020778
https://doi.org/10.2147/IJN.S40742
https://doi.org/10.1016/j.envint.2014.08.009
https://doi.org/10.1007/s11051-015-3051-0
https://doi.org/10.1016/j.yrtph.2015.11.004
https://doi.org/10.1016/j.yrtph.2015.11.004
https://doi.org/10.1039/c5en00207a
https://doi.org/10.1016/j.envint.2016.11.027

	Computational models for the assessment of manufactured nanomaterials: Development of model reporting standards and mapping of the model landscape
	Introduction
	Methods
	Development of the model templates
	Bibliographic searches

	Results
	Templates for reporting computational models
	Modification of the QMRF to report MN models
	Definition of a template for reporting PBK-type models and environmental exposure models

	Model inventories
	Landscape of computational models applied to MNs
	Availability of QSAR and QSPR models applied to MNs
	Availability of environmental exposure models for MNs


	Discussion
	Model applicability domain
	Use of datasets and descriptors in the development of QSAR/QSPR models
	Assumptions and uncertainties
	Relevance for REACH

	Conclusions
	Acknowledgements
	Supplementary data
	References




