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ABSTRACT
Background: The risk of short-term death for treatment naive patients dually infected with Myco-
bacterium tuberculosis and HIV may be reduced by early anti-retroviral therapy. Of those dying, 
mechanisms responsible for fatal outcomes are unclear. We hypothesized that greater malnu-
trition and/or inflammation when initiating treatment are associated with an increased risk for 
death.

Methods: We utilized a retrospective case-cohort design among participants of the ACTG A5221 
study who had baseline CD4 < 50 cells/mm3. The case-cohort sample consisted of 51 randomly se-
lected participants, whose stored plasma was tested for C-reactive protein, cytokines, chemokines, 
and nutritional markers. Cox proportional hazards models were used to assess the association of 
nutritional, inflammatory, and immunomodulatory markers for survival.

Results: The case-cohort sample was similar to the 282 participants within the parent cohort with 
CD4 <50 cells/mm3. In the case cohort, 7 (14%) had BMI < 16.5 (kg/m2) and 17 (33%) had BMI 
16.5-18.5(kg/m2). Risk of death was increased per 1 IQR width higher of log10 transformed level 
of C-reactive protein (adjusted hazard ratio (aHR) = 3.42 [95% CI = 1.33-8.80], P = 0.011), inter-
feron gamma (aHR = 2.46 [CI = 1.02-5.90], P = 0.044), MCP-3 (3.67 [CI = 1.08-12.42], P = 0.037), 
and with IL-15 (aHR = 2.75 [CI = 1.08-6.98], P = 0.033) and IL-17 (aHR = 3.99 [CI = -1.06-15.07], 
P = 0.041). BMI, albumin, hemoglobin, and leptin levels were not associated with risk of death.  

Conclusions: Unlike patients only infected with M. tuberculosis for whom malnutrition and low 
BMI increase the risk of death, this relationship was not evident in our dually infected patients. 
Risk of death was associated with significant increases in markers of global inflammation along 
with soluble biomarkers of innate and adaptive immunity. 

KEYWORDS 
Mycobacterium tuberculosis; Human Immunodeficiency Virus; Timing of antiretroviral therapy; 
Predictors of mortality; Nutrition biomarkers; Innate immunity; Adaptive immunity

BACKGROUND
World-wide, tuberculosis remains the most common cause for hospitalization of HIV-infected 
patients with death occurring in 10%-30% of these patients [1, 2]. Recent studies indicate that 
death from tuberculosis can be reduced in HIV-infected treatment-naive patients by initiating 
anti-retroviral therapy (ART) earlier rather than later [3-5]. However, predictors of death in the 
ensuing months after ART is initiated have not been investigated in this co-infected population. 
In patients without HIV, malnutrition contributes to the incidence and severity of pulmonary 
tuberculosis [6-8]. Furthermore, wasting with very low BMI, malnutrition, and advancing age 
have been associated with a greater risk of death than for patients with better nutritional status, 
especially in developing countries [9-11].

Patients co-infected with tuberculosis and HIV often have worse nutritional status (inadequate 
intake of nutritional energy) with wasting (low BMI) and more cachexia (greater loss of lean tis-
sue due to inflammation caused by HIV infection) than HIV-negative persons with tuberculosis 
[12-14]. Low CD4 cell counts are also associated with greater wasting and early mortality in per-
sons co-infected with M. tuberculosis and HIV [15-17]. Wasting (low BMI) due to malnutrition 
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and cachexia caused by inflammation in persons with HIV (without tuberculosis), which is often 
due to uncontrolled viral replication, are risk factors per se for death [6, 17-23]. Furthermore, poor 
nutritional status and low leptin (decreased energy intake) may suppress cellular immunity thereby 
increasing the risk for adverse outcomes. Regardless of the cause of wasting and cachexia, death has 
been extrapolated to body weight of 66% or body cell mass of 54% of pre-morbid levels in persons 
with HIV [24]. However, the exact mechanisms contributing to death in persons co-infected with 
M. tuberculosis and HIV have not been determined. 

The conceptual underpinning for this investigation is that death in HIV-positive individuals acutely 
infected with M. tuberculosis and who are initiating treatment for the first time with combination 
ART is due in part to malnutrition from impaired energy intake. We also postulate that this co-in-
fection induces an intense, self-perpetuating cytokine cascade beginning with the local production 
of TNFα and interferon gamma (IFNγ) in response to M. tuberculosis in the lung. These cytokines 
induce cellular signal transduction that promotes NFκβ nuclear translocation and transcription of 
gene products [25], ultimately resulting in the production and release of a broad array of pro-in-
flammatory cytokines into the systemic circulation, that also enhance HIV viral replication system-
ically and locally in the lung [26, 27]. 

HIV infection independently stimulates nuclear transcription through NFκβ, which upregulates 
both viral replication and translation of gene products to increase production and release pro-in-
flammatory mediators [18, 28]. In addition, high levels of viral replication are associated with 
greater wasting [19, 29] and are expected to impair immune recovery including pathogen specific 
immunity for M. tuberculosis. These 2 infections together are thus expected to cause auto-ampli-
fication of pro-inflammatory cytokine pathways, thereby resulting in more severe cachexia with 
loss of lean tissue mass and thus enhanced risk of death [20, 21], especially in the early period of 
treatment for tuberculosis [15]. 

In the AIDS Clinical Trials Group Study A5221 in which ART was begun early or deferred by 
approximately 1 month, there was an increased incidence of death plus new opportunistic infection 
in the ensuing year in participants with baseline CD4 counts < 50 cells/mm3 who delayed ART by 
1 month. The a priori goal of this secondary objective of A5221 was to determine if baseline mea-
sures of 1) nutrition or 2) inflammation and immune activation could be related to death in the 
participants initiating therapy for HIV and tuberculosis who had low CD4 counts (< 50 cells/mm3) 
[3]. 

METHODS
To address our first hypothesis that poor nutritional status contributed to death in the study cohort, 
BMI, albumin, hemoglobin, and leptin levels were compared in participants who died versus those 
who survived. For the second postulate that inflammation and/or immune activation contributed 
to death, levels of C-reactive protein (CRP), a number of pro-inflammatory cytokines, anti-inflam-
matory cytokines/ligands, chemokines, and measures of the innate and/or adaptive immune re-
sponses were compared in participants who died versus those who survived within the case-cohort 
sample.  All participants provided informed consent prior to enrollment in the ACTG A5221 study.

Study design
Our investigation used a retrospective case-cohort design: a random sample was drawn from the 
parent study and then all cases that were not selected in the random sample were added to make 
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the full case-cohort sample. The case-cohort design combines the advantages of a prospective 
cohort study and the efficiency of a case-control design. It is most useful in analyzing time to fail-
ure in a cohort in which failure is rare. For the purposes of this investigation, a case (failure) was 
defined as death occurring in the 48 weeks after study enrollment. 

Study population
The parent cohort is based on the ACTG A5221 study, which was a randomized, open-label 48-
week investigation comparing earlier versus later ART in persons with HIV-1 infection and sus-
pected or documented pulmonary tuberculosis and with CD4 counts of < 250 cells/mm3. A total 
of 806 participants were eligible and enrolled in A5221. Of these, 282 participants had baseline 
CD4 (average CD4 count over screening and study entry visits) < 50 cells/mm3 [3].

For this investigation, a random cohort of 100 participants with baseline CD4 <50 cells/mm3 was 
drawn from the 282 parent-study cohort. Of these, 44 participants had sufficient baseline plasma 
samples stored for biomarker evaluation; 11 of the 44 died during the study. An additional 21 
cases of death from the parent cohort with CD4 < 50 cells/mm3 were also included, but only 7 had 
sufficient baseline plasma samples available for testing. Thus, a total of 51 participants made up 
the case-cohort sample for this investigation (see Figure 1). 

Figure 1.  Schema for Selection of the Case-Cohort. A random cohort consisting of 100 participants was 
drawn from a subset of the 806 study participants who had CD4 < 50 cells/mm3 (n = 282). Plasma was 
only available for 44 participants in this subset, 11 of whom died. This cohort was enriched by selecting 21 
additional cases from the 282 participants having CD4 < 50 cells/mm3 (not in the random cohort of 100) 
who also died, but only seven of these had plasma. The total case-cohort for the study therefore included 
51 participants
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Biomarkers 
For the cohort reported herein, plasma stored at -80C was tested for C-reactive protein, cytokines, 
chemokines, and nutritional markers. These included the pro-inflammatory cytokines (TNFα, 
IL-6, INFγ, MIP-1α), anti-inflammatory cytokines (IL-10, IL-1ra), cytokines involved in innate 
and adaptive immunity (IL-15, IL-17, respectively), chemokines (MCP-1, MCP-3, IP-10), and 
nutritional markers (adiponectin, leptin). Levels were quantified using a Milliplex multi-analyte 
profiling assay (Millipore) in the University of Southern California Cancer Center Immunology 
Core Laboratory. 

Statistical analysis
Testing and estimation of the effect of each baseline biomarker on time to death were performed 
using Cox proportional hazards regression models adjusted for baseline CD4 cell count and HIV 
viral load. The biomarkers were log10 transformed and then modeled per 1 IQR increment in the 
Cox models. The Barlow weighting scheme was used to account for the case-cohort sampling. The 
Efron method was used to handle ties in failure times. Event times were calculated as the exact 
days from randomization date to the date of death. 

Adjustments were not made for multiple comparisons. All analyses used SAS 9.4 with results con-
sidered significant when P < 0.05. 

RESULTS 
At baseline, the case-cohort of 51 participants was comparable to the larger population of 282 
participants in the parent cohort with CD4 cell count < 50 cells/mm3, with respect to age, sex, 
race, CD4 counts, and HIV viral load (P > 0.05 for all comparisons; data not shown). Of further 
importance, there was no difference in the proportion of participants randomized to earlier ver-
sus later ART. 

For the cohort of 51 participants, the 33 who survived were not different from the 18 who died, 
in baseline characteristics that included age, sex, CD4 cell counts, HIV viral load, BMI, hemo-
globin, albumin, adiponectin, leptin, or treatment assignment, except that the median age of the 
patients who died was 9 years older (P = 0.033; Table 1). Of note, 7 (14%) participants had BMI 
< 16.5 kg/m2 and 17 (33%) had BMI 16.5-18.5 kg/m2. The causes of death and week of death (in 
parentheses) in the ensuing year after randomization were disseminated tuberculosis (2, 4), gas-
troenteritis (3, 5, 11), pulmonary tuberculosis (4, 10), acute renal failure (5), bacterial pneumonia 
(8, 34), cryptococcal meningitis (9), bacterial meningitis (13), bacterial sepsis (14), peritonitis 
(11), intra-cranial hypertension (16), gunshot wounds (24), tuberculous meningitis (40), and no 
information (23). Death could not be related to treatment assignment (early versus deferred ART) 
in this small cohort.
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Table 1: Baseline Clinical Characteristics and Markers of Nutrition

Median (Q1, Q3) or N (%) Total 
(N = 51)

Deaths 
(N = 18)

Non-deaths  
(N = 33) P-Value a

Age (years) 35 (30, 42) 42 (34, 45) 33 (30, 41) 0.033

Sex (male) 39 (76%) 13 (72%) 26 (79%) 0.732

CD4 count (cells/mm³) 25 (13, 36) 25 (8, 34) 25 (15, 38) 0.340

HIV RNA (log10copies/ml) 5.37 (5.00, 5.77) 5.40 (5.01, 5.78) 5.35 (5.00, 5.74) 0.771

Body Mass Index (BMI, kg/m2) 18.6 (17.3, 20.6) 18.3 (17.1, 20.3) 19.2 (17.6, 21.1) 0.955

  < 16.5 7 (14%) 2 (11%) 5 (15%) 0.559

  16.5 - 18.5 17 (33%) 8 (44%) 9 (27%)

  > 18.5 27 (53%) 8 (44%) 19 (58%)

Hemoglobin (g/dl) 9.70 (8.40, 10.40) 9.45 (8.40, 10.10) 9.90 (8.40, 10.40) 0.484

Albumin (g/dl) 2.68 (2.38, 3.30) 2.61 (2.43, 3.00) 2.77 (2.30, 3.38) 0.365

Adiponectin (mg/dl) 3.50 (1.86,6.88)    3.48 (1.95, 5.00)  3.50 (1.86, 7.11) 0.400

Leptin (ng/ml) 0.20 (0.02, 0.85)     0.21 (0.02, 0.71)      0.06 (0.02, 1.14) 0.963

CD4/CD8 ratio b 0.07 (0.05, 0.14) 0.05 (0.02, 0.11) 0.07 (0.05, 0.14) 0.517

Treatment arm (immediate) 26 (51%) 9 (50%) 17 (52%) >0.99

a) Fisher’s exact test was used for analysis of sex, BMI group, and treatment arm; T-test with unequal vari-
ance was used for others; b) Due to missing data, sample sizes were N = 32, N = 10, and N = 22, respectively.

For measures of nutrition, hazard ratios for average BMI, low BMI, serum hemoglobin, serum 
albumin, and leptin were not significant risk factors for death, although there was a trend for in-
creased risk of death with advancing age (adjusted hazard ratio (HR) per 5 years increment = 1.32 
[95% CI 0.97-1.79], P = 0.076, Table 2). Global inflammation measured by levels of C-reactive 
protein (CRP), pro-inflammatory cytokines (IL-6, TNFα, INFγ, IL-15, and IL-17) and chemok-
ines MCP-3 and MIP was significantly higher in participants who died (Table 3). Increased risk of 
death was significantly associated with CRP (adjusted HR per 1 IQR width increment = 3.42 [95% 
CI 1.33-8.80], P = 0.011; Table 3), but the only pro-inflammatory cytokine associated with signifi-
cant risk of death was IFNγ (adjusted HR = 2.46 [95% CI 1.02-5.90], P = 0.044). MCP-3 was asso-
ciated with risk of death (adjusted HR = 3.67[95% CI 1.08-12.42], P = 0.037), but MCP-1 was not. 
Global measures of the innate (IL-15) and adaptive (IL-17) immune responses were both strongly 
associated with risk of death (adjusted HRs = 2.75 [95% CI 1.08-6.98], 3.99 [95% CI 1.06-15.07]; 
P = 0.033, 0.041, respectively). 

http://www.PaiJournal.com


Pathogens and Immunity - Vol 3, No 1

www.PaiJournal.com

52

Table 2: Risk of Death Associated with Age, Sex, and Baseline Markers of Nutrition 

Hazard 
Ratio 
(HR) a

95% Lower 
Confidence 

Limit for HR

95% Upper Confi-
dence Limit for HR

P-Value Wald 
Test

Age (per 5 years increment) 1.32 0.97 1.79 0.076

Sex (male) 0.74 0.22 2.51 0.631

BMI (kg/m2) 1.07 0.81 1.42 0.646

BMI (ref: > 18.5) < 16.5 0.58 0.07 4.54 0.604

BMI (ref: > 18.5) 16.5 - 18.5 1.42 0.37 5.41 0.608

Hemoglobin (g/dl) 0.90 0.70 1.15 0.402

Albumin (g/dl) 0.78 0.38 1.60 0.493

Leptin b (ng/dl) 1.29 0.52 3.20 0.582

a)Hazard ratios were adjusted for baseline CD4 cell count and HIV viral load; b) More than 25% of mea-
surements below level quantifiable.

DISCUSSION
Results of our investigation showed that body mass and some markers of nutrition (albumin, 
leptin, and hemoglobin) were not related to an increased risk of death in dually-infected par-
ticipants after initiating anti-tuberculous therapy and ART. Whereas, inflammation as assessed 
by C-reactive proteins (CRP), pro-inflammatory cytokines, chemokines, and biomarkers of the 
innate and adaptive immune response were all significantly higher in participants who died than 
in those who survived for the ensuing year. 

The lack of association of nutritional markers in cases of death was somewhat surprising since 
low BMI, presumably related to inadequate energy intake and incident catabolism/cachexia is not 
only a risk factor for tuberculosis but also for death, especially in sub-Saharan Africa. In our co-
hort and the parent study, many of participants were from Sub-Saharan Africa [3]: approximately 
50% had a BMI <18.5kg/m2 and approximately15% had a BMI < 16.5 kg/m2, indicating that they 
were quite malnourished. Although good nutritional support during early treatment has sound 
underpinnings [30, 31], our findings do not support the idea that nutritional supplementation 
during early treatment will favorably affect survival in the following 12 months for treatment-na-
ive participants with HIV and dually-infected with both pathogens.
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Table  3: Markers of Inflammation at Baseline and Association with Risk of Death

Median
(Q1, Q3) 

Total 
(N = 51)

Deaths
(N = 18)

Non-deaths  
(N = 33)

P-value 
T-test a

Hazard Ratiob (95% CI) 
per 1 IQR increment

P-Value 
Wald Test

CRP (mg/dl) 9.88 (3.46, 28.3) 15.4 (8.47, 50.8) 7.19 (2.43, 18.2) 0.004 3.42 (1.33, 8.80) 0.011

IL-1RAc (ng/ml) 22.3 (2.9, 88.4) 41.5 (13.2, 88.4) 2.9 (2.9, 82.2) 0.076 1.96 (0.81, 4.73) 0.135

IL-6 (ng/ml) 6.1 (1.3, 16.5) 9.8 (2.8, 20.1) 3.9 (0.8, 12.2) 0.040 2.58 (0.79, 8.38) 0.115

IL-8 (ng/ml) 11.5 (6.5, 21.8) 17.6 (11.5, 23.9) 9.5 (5.9, 17.6) 0.024 1.94 (0.99, 3.80) 0.054

IL-10 (ng/ml) 16.9 (3.7, 41.5) 37.8 (8.0, 52.5) 11.5 (3.7, 23.6) 0.501 1.15 (0.55, 2.43) 0.705

IL-15d (ng/ml) 0.4 (0.4, 7.5) 7.0 (0.4, 8.6) 0.4 (0.4, 5.7) 0.029 2.75 (1.08, 6.98) 0.033

IL-17 (ng/ml) 3.2 (0.2, 13.1) 9.7 (1.7, 14.9) 1.4 (0.2, 6.6) 0.025 3.99 (1.06, 15.07) 0.041

IP-10 (ng/ml) 2.89 (1.78, 4.72) 3.18 (1.75, 5.02) 2.51 (1.90, 4.46) 0.848 1.23 (0.54, 2.82) 0.625

MCP-1 (ng/ml) 300 (224, 438) 377 (224, 590) 299 (229, 349) 0.256 1.89 (0.78, 4.60) 0.160

MCP-3e (ng/ml) 20.6 (2.0, 36.1) 25.5 (16.1, 52.7) 11.1 (2.0, 33.5) 0.027 3.67 (1.08, 12.42) 0.037

MIP (ng/ml) 34.9 (20.7, 49.1) 41.9 (30.0, 49.2) 28.4 (14.1, 47.8) 0.028 1.76 (0.95, 3.26) 0.073

TNF (ng/ml) 27.5 (17.0, 35.6) 34.0 (27.5, 47.6) 24.0 (16.0, 30.6) 0.022 2.08 (0.91, 4.77) 0.083

IFNγ (ng/ml) 22.5 (9.6, 38.7) 25.2 (15.2, 54.4) 21.5 (8.2, 35.7) 0.038 2.46 (1.02, 5.90) 0.044

Adiponectin (mg/dl) 3.50 (1.86, 6.88) 3.48 (1.95, 5.00) 3.50 (1.86, 7.11) 0.400 0.83 (0.46, 1.49) 0.528

a) Log10 transformed data were used for statistical analysis; b) Hazard Ratios were adjusted for baseline CD4 cell count and HIV viral load; c, d, e) 
More than 25% of measurements below level quantifiable.
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The hazard ratio for CRP, a global measure of inflammation, was more than 3-fold higher in par-
ticipants dying than those surviving. Although understanding the specific immune response to 
clinical tuberculosis is complex, it appears to begin with an innate immune response to tubercu-
lous antigens [32]. This immediate response is mediated by natural killer (NK) lymphocytes that 
are cytotoxic and lyse autologous infected cells [33-35]. A small fraction of NK cells also secrete 
IFNγ to activate monocytes and macrophages [33, 34, 36, 37] to kill intracellular cellular organ-
isms [38-41], both necessary to control bacillary replication. The NK cells upregulate CD8+IF-
Nγ+ lymphocytes to stimulate infected monocytes (presumably macrophages as well) to secrete 
the pro-inflammatory cytokine, IL-15 [42], which is a cardinal marker of the innate immune 
response, and IL-15 is also upregulated by TLR1/2 signaling during mycobacterial infection to 
trigger macrophage differentiation [43]. Levels of both IL-15 and INFγ were significantly elevated 
in our study participants who died compared to those who survived. 

The adaptive immune response is orchestrated largely by T lymphocytes in response to M. tuber-
culosis [44], which generate cytotoxicity by activated CD8 cells and cytokine secretion [40, 41]; 
the 2 primary pro-inflammatory cytokines released are INFγ and IL-17 [45, 46]. Indeed, most of 
the IFNγ generated during tuberculosis infection is secreted by T cells and is necessary for the 
microbicidal function of macrophages to eradicate M. tuberculosis [40, 41, 47]. IFNγ upregulates 
IL-17, which is generated by Th-17 cells [48] and among other actions recruits neutrophils to the 
site of infection [49], mediates macrophage accumulation [50], and feeds back to induce Th-1 
cells to secrete more IFNγ [51]. In our cohort, levels of IL-17, a biomarker of the adaptive im-
mune response, were also increased to a greater degree in participants dying in our study. 

The timing and interactions of the innate and adaptive immune systems are complex. Data sug-
gest that NK cells (innate immune response) link these 2 systems by optimizing CD8 lympho-
cytes (adaptive immune response) to secrete IFNγ needed to lyse M. tuberculosis-infected cells 
[32]. Other data suggest the γδ T cells (adaptive response), which are preferentially expanded in 
HIV-infected patients and which secrete pro-inflammatory cytokines including IFNγ and IL-17 
[51, 52], coordinate and bridge the innate and adaptive immune response [53-57]. Furthermore, 
IL-15 secreted by phagocytic monocytes during the innate response is a growth factor for γδ T 
cells, promotes cytotoxicity by NK cells, and stimulates their secretion of INFγ and TNFα [58], 
thereby linking innate and adaptive immunity during infection with M. tuberculosis [59]. 

Co-infection with HIV contributes to the complexity of the clinical outcomes and immune re-
sponse in dual infection with HIV and M. tuberculosis [60, 61]. Patients infected with HIV have a 
greater risk of developing active tuberculosis after exposure to M. tuberculosis and extra-pulmo-
nary disease is associated with more severe HIV immunodeficiency [13]. Conversely, tuberculosis 
can accelerate HIV infection [62, 63], and HIV-infected patients co-infected with tuberculosis 
have shorter survival compared to age- and CD4-matched patients who are HIV-positive but not 
infected with M. tuberculosis [62, 64]. In particular, tuberculosis increases HIV viral replication 
5-160 fold, primarily in activated T cells [65]. Furthermore, HIV and tuberculous co-infection is 
associated with higher mortality in the setting of low CD4 cell counts [15-17]. Although all par-
ticipants selected for our case-cohort had low CD4 counts, we still adjusted our baseline measures 
for CD4 cell counts and HIV viral load. 
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In addition, it has recently been demonstrated that mortality in HIV and M. tuberculosis co-in-
fected patients is linked to immune dysfunction of monocytes, especially related to inflammatory 
mediator production of IL-6 ,TNFα, and CSF3 and expansion of CD16+CD14+ monocytes [66]. 
The mechanism that drives this inflammatory response may be through INFγ stimulated indol-
amine 2, 3 dioxygenase (IDO) production by monocytes [67]. In fact, it was recently shown that 
IDO was a very strong predictive biomarker of active tuberculosis in HIV co-infected patients 
[68]. We found a significant association between INFγ and death in our cohort. Moreover, the 
kynurenine pathway is an important regulator of both the innate and adaptive immune response 
[69], which were upregulated in our death cohort. Thus, further studies in our cohort evaluating 
IDO activity and the levels of kynurenine that results from the breakdown of tryptophan by IDO 
are warranted. 

Our study has several limitations. The case-cohort for whom stored samples were available was 
relatively small, which limited the power to detect other associations between biomarkers and risk 
of death. The availability of stored plasma may have potentially introduced bias due to possible 
differences between participants with and without stored plasma. In addition, the cross-section-
al nature does not allow causality to be established, but only generates conceptual linkages by 
inference for hypothesis testing in future, larger prospective studies. We used multiplex cytokine 
methodology, whereas individual platform assays may have performed differently for some of the 
biomarkers, such as for the discrepancy between MCP-1 (not elevated) and MCP-3 (elevated) in 
cases of death. Yet, there was internal consistency for the immune response to M. tuberculosis as 
evidenced by significant increases in IFNγ, IL-15, and IL-17 in cases of death, a profile typical of 
M. tuberculosis mono-infected patients [32, 53]. Indeed, activation of both the innate and adap-
tive immune responses was exaggerated in our dying participants. Finally, because PBMCs col-
lected from the case-cohort were not viable, we could not measure cellular activation markers. 

Regardless, treatment naive participants dying in the months after enrolling in the study had 
more profound inflammation, which appeared to be globally associated with activation of both 
innate and adaptive immunity. Future studies that include quantification of different cellular phe-
notypes and their activation in addition to soluble markers will be needed to unravel the mecha-
nisms underlying our important preliminary observations related to inflammation-associated risk 
for death in these dually infected patients. 
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