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Abstract: Intraduodenal activity of taste receptors reduces food intake. Taste receptors are expressed
throughout the entire gastrointestinal tract. Currently, there are no data available on the effects
of distal taste receptor activation. In this study, we investigate the effect of intraduodenal and/or
intraileal activation of taste receptors on food intake and satiety. In a single-blind randomized
crossover trial, fourteen participants were intubated with a naso-duodenal-ileal catheter and received
four infusion regimens: duodenal placebo and ileal placebo (DPIP), duodenal tastants and ileal
placebo (DTIP), duodenal placebo and ileal tastants (DPIT), duodenal tastants and ileal tastants
(DTIT). Fifteen minutes after cessation of infusion, subjects received an ad libitum meal to measure
food intake. Visual analog scale scores for satiety feelings were collected at regular intervals. No
differences in food intake were observed between the various interventions (DPIP: 786.6 ± 79.2 Kcal,
DTIP: 803.3 ± 69.0 Kcal, DPIT: 814.7 ± 77.3 Kcal, DTIT: 834.8 ± 59.2 Kcal, p = 0.59). No differences in
satiety feelings were observed. Intestinal infusion of tastants using a naso-duodenal-ileal catheter did
not influence food intake or satiety feelings. Possibly, the burden of the four-day naso-duodenal-ileal
intubation masked a small effect that tastants might have on food intake and satiety.

Keywords: satiety; tastants; food intake; intraduodenal infusion; intraileal infusion; overweight;
weight management

1. Introduction

Obesity is considered a major healthcare problem with worldwide obesity almost being tripled
since 1975 [1]. Therefore, there is an increasing need for non-invasive therapies for weight management.
Gastrointestinal (GI) hormones, such as cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1),
have been shown to reduce food intake and hunger after intravenous administration [2–4]. Therefore,
the GI-tract is an interesting target for non-invasive therapies to reduce food intake and induce
satiety/satiation.

Intestinal macronutrient infusion decreases food intake and induces the release of CCK, GLP-1,
and peptide YY (PYY) [5]. This mechanism is commonly referred to as intestinal- or ileal brake [6,7].
A recent review proposed a proximal to the distal gradient in the small intestine, where a more
profound effect on food intake can be found after distal compared to proximal macronutrient
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infusion [8]. Previous studies have demonstrated that besides macronutrients, substances referred to as
tastants are able to activate certain taste receptors in the GI-tract which are coupled to enteroendocrine
cells (EEC), and can trigger the release of satiety hormones (i.e., CCK, GLP-1, and PYY) [9–13]. These
taste receptors can be found throughout the entire GI-tract. Expression levels for the various taste
receptor differ throughout the gut. Table 1 gives a simplified visual representation of the relative
expression of taste receptors throughout the human gut based on current literature [14–17].

In a recent study, van Avesaat et al. have shown that duodenal infusion of a combination of sweet,
bitter, and umami tastants significantly decreased ad libitum meal intake, whilst increasing satiety
and decreasing hunger feelings. These effects were not accompanied by changes in systemic levels of
GLP-1, PYY, and CCK [18]. Up to now, no data are available on the effect of activation of taste receptors
in the more distal small intestine. Since one of the functions of taste receptors in the gut is to sense
food being present in the lumen, it should be investigated whether the beforementioned proximal to
distal gradient found for the intestinal brake is operative for taste receptor activation.

Therefore, in the present study, we compared the effects of intraduodenal infusion versus intraileal
infusion of a combination of tastants (sweet, bitter, and umami) on ad libitum food intake, satiation,
and GI-complaints in healthy subjects. Since sweet and umami taste are sensed by various subtypes of
the taste receptor family 1 (TAS1R) and bitter taste is sensed by the taste receptor family 2 (TAS2R),
the combination will activate a wide range of taste receptors. We hypothesized that infusing tastants
at both infusion sites (duodenum and ileum) will decrease food intake and increase satiation to the
greatest extent when compared with infusion of placebo or single port infusion. Infusing in solely
the duodenum or the ileum will also decrease food intake and increase satiation when compared to
placebo, albeit to a lesser degree than infusing at both infusion sites simultaneously. Furthermore, we
expect intraileal delivery of tastants will decrease food intake and increase satiation to a greater extent
when compared with intraduodenal delivery of tastants.

Table 1. A simplified visual representation of the relative expression of taste receptors and gustducin
throughout the human GI-tract.

Stomach Duodenum Jejunum Ileum Colon

TAS1R1
(Bezencon et al. [14]) ++ + ++ + +/−

TAS1R2
(Bezencon et al. [14]) − ++ + +/− +

TAS1R2
(Young et al. [15]) −− $ + ++ # N/A N/A

TAS1R3
(Bezencon et al. [14]) + ++ ++ + +

TAS1R3
(van der Wielen et al. [16]) N/A + + + +

TAS1R3
(Young et al. [15]) + $ ++ ++ # N/A N/A

TAS2R102–TAS2R144
(Gu et al. [17]) * N/A + + + N/A

Gustducin
(Bezencon et al. [14]) −− ++ ++ + −

Gustducin
(Young et al. [15]) − $ + ++ # N/A N/A

Expression levels are relative to each other and a simplified visual representation with ++ indicating very high
expression, + indicating high expression, +/− indicating medium expression, − indicating low expression, and
−− indicating very low expression. $ Young et al. displayed the stomach as fundus, body, and antrum. For details,
please refer to Young et al. [15]. # Young et al. displayed jejunum as proximal jejunum and distal jejunum. For details,
please refer to Young et al. [15]. N/A: not available. * T2R family is expressed throughout the entire small intestine
in a comparable fashion with some subtypes more abundant proximally and some distally. For details, please refer
to Gu et al. [17].
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2. Materials and Methods

This study was approved by the Medical Ethics Committee of the Maastricht University
Medical Center+ (MUMC+), Maastricht, The Netherlands, and performed in full accordance with
the Declaration of Helsinki (latest amendment by the World Medic Association in 2013) and Dutch
Regulations on Medical Research Involving Human Subjects (WMO, 1998). This study was registered
in the US National Library of Medicine (http://www.clinicaltrials.gov, ID NCT03140930). All subjects
gave written informed consent before screening.

2.1. Subjects

Healthy men and women were recruited by local advertisements. Inclusion criteria were age
between 18 and 65 years, a body mass index (BMI) between 18 and 25 kg/m2, with a stable weight over
the past six months (<5% body weight change). Exclusion criteria were gastrointestinal complaints,
history of chronic or severe disease, use of medication influencing endpoints within 14 days prior
to testing, administration of investigational drugs which interfere with this study, major abdominal
surgery, dieting, pregnancy or lactation, excessive alcohol consumption (>20 alcoholic consumptions
per week), smoking, weight <60 kg, non-tasters of sweet, bitter or umami stimuli, evidence of
monosodium glutamate (MSG)-hypersensitivity.

Prior to testing, screening was performed where abovementioned inclusion and exclusion criteria
were checked, and a taste perception test was performed. Subjects tasted quinine (0.5 mmol/L),
Reb A (50 mmol/L), MSG (50 mmol/L), and tap water blindly and had to indicate their sense of taste.
Subjects had to identify each taste correctly in order to be eligible for the study. Furthermore, their
length and weight were measured to calculate their BMI.

A sample size calculation was based on the difference in meal intake between duodenal infusion
of a combination of tastants and duodenal infusion of placebo as reported by van Avesaat et al. [18].
Using a difference in means of 64 Kcal, a standard deviation of difference of 63, a power of 80%, and
an alpha of 1.67%, a total number of 13 subjects were needed. An alpha of 1.67% was used to correct
for multiple testing.

2.2. Study Design

In this single-blind randomized, placebo-controlled crossover study, subjects received the
combination of tastants (sweet, bitter, and umami) and/or placebo (tap water) in the duodenum
and/or the ileum for four consecutive test days. This results in four combinations which were infused
on the various test days: duodenal placebo and ileal placebo (DPIP), duodenal tastants and ileal
placebo (DTIP), duodenal placebo and ileal tastants (DPIT), duodenal tastants and ileal tastants (DTIT).

2.3. Catheter Positioning

A 305 cm long silicon 9-lumen (8-lumen, 1 balloon inflation channel, the outer diameter of 3.5 mm)
custom-made naso-ileal reusable catheter (Dentsleeve International, Mui Scientific, Mississauga,
Canada) was used for intubation.

One day prior to the first test day, subjects arrived at 7:40 AM at the Maastricht University Medical
Center+ (MUMC+) after an overnight fast. If preferred by the subject, local anesthesia of nasal mucosa
using xylocaine (10% spray, AstraZeneca, Zoetermeer, The Netherlands) was applied. After placement
of the catheter in the stomach, the catheter was guided through the pylorus and into the duodenum
under intermittent fluoroscopic control. Progression of the catheter from duodenum to ileum was
performed as described earlier [19]. Fluoroscopy was used to check the positioning of the catheter on
the first and the last test day. Radio-opaque markers were added to the infusion ports on the catheter,
which accounted for the determination of the catheter position. On all test days, intestinal fluid was
sampled from various infusion ports, and pH was measured using pH strips (MColorpHast™, Merck,
Darmstadt, Germany) in order to estimate the catheter positioning.

http://www.clinicaltrials.gov
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2.4. Preparation and Infusion of Tastants

The combination of three tastants was infused in the duodenum, the ileum, or both the duodenum
and the ileum. In order to prevent side effects from occurring, 75% of acceptable daily intake
(ADI) of these tastants was infused. 540 mg Rebaudioside A (Reb A, Stevija Natuurlijk, Drachten,
The Netherlands), 75 mg Quinine (Arnold Suhr, Hilversum, The Netherlands), and 2 g Monosodium
Glutamate (MSG, Ajinomoto, Hamburg, Germany) were dissolved in 120 mL tap water and was used
as tastant mixture for infusion, as was done by van Avesaat et al. [18]. All tastants used were non-caloric
and yielded no nutritional value. The placebo infusion consisted of 120 mL of tap water. A magnetic
stirrer was used to dissolve the tastants. The mixture was infused over a 60-min period with an
infusion rate of 2 mL/min. This was consistent with the infusion rate of van Avesaat et al. mimicking
the slow influx from the stomach to duodenum and slow transit through the gut in the ileum.

2.5. Protocol

On each test day, after an 8 h overnight fast, subjects arrived at 8:00 AM at the MUMC+. Subjects
were instructed to consume the same habitual meal on the evening prior to testing. Hereafter, at
t = 0 min, a standardized liquid breakfast meal (250 mL Goedemorgen drinkontbijt (Vifit); energy
145 Kcal per portion, 20.25 g carbohydrates, 8.5 g protein, and 2 g fat) was consumed. One hundred
and fifty min (at t = 150 min) after breakfast consumption, a syringe containing the mixture for infusion
was connected to the duodenal and ileal infusion port. The infusion was performed in 60 min at an
infusion rate of 2 mL/min. Subjects received a standardized ad libitum lunch meal (Lasagna Bolognese
(Plus supermarket); energy density per 100 g: 152 Kcal, 11 g carbohydrates, 7.1 g protein, and 8.6 g
fat) fifteen min (at t = 225 min) after cessation of the infusion. The test meal was offered in excess and
subjects were instructed to eat until they felt satiated.

2.6. VAS for Satiation and GI-Complaints

Feelings of satiation-/satiety feelings and GI-complaints (e.g., satiety, hunger, stomach pain, and
nausea) were measured using visual analog scales (VAS, 0–100 mm) scores at various time points
(t = −30, 30, 90, 150, 165, 180, 195, 210, and 240 min) during the day. Subjects were asked to indicate on
a line, anchored at the low end with the lowest intensity feelings, with opposing terms at the high end,
which place on the scale best reflected their feeling at that moment [20].

2.7. Statistical Analyses

Data were analyzed using IBM SPSS statistics 24 (IBM Corporation, Armonk, NY, USA). A visual
check of the normality of the data was performed. The primary outcome of this study was the amount
of food intake in Kcal during an ad libitum lunch meal. Secondary outcomes were VAS scores for
satiation-/satiety feelings and GI-complaints.

Age, BMI, and gender were calculated by descriptive statistics. Food intake in Kcal and area
under the curve (AUC) for VAS scores were compared using a linear mixed model with intervention
(DTIP, DPIT, and DTIT, and DPIP), test day and the interaction of intervention × test day as fixed
factors. When no significant interaction was found, the interaction was removed from the model to get
the best model fit.

For VAS scores, a linear mixed model that included abovementioned fixed factors with the
addition of fixed factors time and time × treatment interaction was also performed.

Data are presented as mean ± standard error of the mean (SEM) (unless specified otherwise), and
a p < 0.05 was considered statistically significant.
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3. Results

3.1. Subjects

In total, 19 subjects met the inclusion and exclusion criteria. Two subjects dropped out due to
discomfort induced by the naso-ileal catheter, two subjects dropped out due to incorrect position
of the catheter on the first test day, and one subject was excluded after not properly following the
instructions for the ad libitum meal on the first test day. Therefore, 14 healthy volunteers (11 female,
age 25.6 ± 10.5 years, BMI 22.3 ± 1.7 kg/m2) completed the study protocol and were included in
the analyses.

3.2. Food Intake

No intervention × test day interaction was found. No differences in ad libitum food intake in Kcal
were observed after intraduodenal, intraileal or combined infusion of tastants versus placebo infusion
(DPIP: 786.6 ± 79.2 Kcal, DTIP: 803.3 ± 69.0 Kcal, DPIT: 814.7 ± 77.3 Kcal, DTIT: 834.8 ± 59.2 Kcal;
p = 0.59) (Figure 1). Furthermore, as depicted in Figure 2, no trends in individual responses were found.
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Figure 1. The amount eaten in Kcal (mean + SEM) 15 min after cessation of the infusion of placebo
both intraduodenal and intraileal (DPIP), tastants intraduodenal and placebo intraileal (DTIP), placebo
intraduodenal and tastants intraileal (DPIT), and tastants both intraduodenal and intraileal (DTIT).
Based on a linear mixed model, no difference in food intake was observed between the conditions
(p = 0.59).
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Figure 2. An individual representation per subject of amount eaten in Kcal 15 min after cessation of
the infusion of placebo both intraduodenal and intraileal (DPIP), tastants intraduodenal and placebo
intraileal (DTIP), placebo intraduodenal and tastants intraileal (DPIT), and tastants both intraduodenal
and intraileal (DTIT). Treatment order was randomized for each subject. Each line with a unique
symbol represents an individual subject. Based on a linear mixed model, no difference in food intake
was observed between the conditions (p = 0.59).

3.3. Satiation/Satiety Scores

The mean VAS scores for the desire to eat, hunger, satiety, and fullness are depicted in Figure 3.
No differences in area under the curve (AUC150–210) for these VAS scores were observed between the
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various interventions. Furthermore, no intervention × timepoint interactions were found for these
VAS scores.
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3.4. GI-Complaints

The mean VAS scores for stomach pain, bloating, and nausea are depicted in Figure 4. No
differences in area under the curve (AUC150–210) for these VAS scores were observed between the
various interventions. Furthermore, no intervention × timepoint interactions were found for these
VAS scores.
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Figure 4. VAS scores for stomach pain (A), bloating (B), and nausea (C) (mean + SEM) before, during,
and after the infusion of placebo both intraduodenal and intraileal (DPIP), tastants intraduodenal
and placebo intraileal (DTIP), placebo intraduodenal and tastants intraileal (DPIT), and tastants both
intraduodenal and intraileal (DTIT). t = −30, 30, 90, 150, 165, 180, 195, 210, and 240 min. No VAS scores
were taken at t = 225 min. At t = 0 min, subjects received a standardized breakfast, infusion of mixtures
was performed from t = 150 until t = 210 min, and ad libitum test meal was presented at t = 225 min.
Based on a linear mixed model of mean scores and area under the curve (AUC150–210), no differences in
stomach pain, bloating, and nausea were observed between the various conditions.

4. Discussion

Our results do not reveal any difference in satiety or food intake between duodenal administration,
ileal administration or combined duodenal administration of a tastant mixture (sweet, bitter, and
umami) or infusion of placebo. Moreover, no GI-complaints were caused by infusing tastants or
placebo into the duodenum and/or the ileum.

Van Avesaat et al. have investigated the effect of intraduodenal infusion of the same tastant
mixture on food intake [18]. In that study, intraduodenal infusion of this combination of tastants, in
similar study design, using the same amount of tastants significantly reduced food intake by 64 Kcal
and was accompanied by changes in satiation/satiety feelings. However, it must be noted that this is a
small difference, which on its own might not be clinically significant. Repeating this effect multiple
times per day with each meal might result in a clinically significant decrease of caloric intake. This
difference in results of food intake between the two studies may be related to differences in study
design. In the study of van Avesaat et al., the subjects were intubated with a naso-duodenal catheter
on every test day for the administration of tastants. The catheter was removed immediately thereafter
before the subjects were presented with the ad libitum test meal. In the present study, subjects were
intubated for several days with a naso-ileal catheter, and therefore this catheter was present while
meals were offered and ingested. We hypothesize that having a naso-ileal catheter in situ for multiple
days negatively influences meal ingestion to such a degree that this masks the smaller magnitude of
effect that infusion of non-caloric tastants into the intestine has. On the other hand, mean caloric intake
showed no major differences between the two studies.

Previous studies from our group investigating the ‘intestinal brake’ by infusing macronutrients
in the ileum have repeatedly shown that infusion of even low doses of macronutrients results in a
significant reduction of food intake, ranging between 64–188 Kcal, corresponding to a percentual
decrease of 11.7%–32% of caloric intake during a single meal [5,21]. This indicates a negative feedback
mechanism on food intake that arises from nutrient sensing. These data demonstrate that magnitude
of the effect of macronutrient infusion on food intake is greater than the effects of infusing tastants.

Conclusively, studies investigating differences in food intake should be aware that naso-ileal
intubation might mask a small effect. Therefore, other delivery options, such as encapsulation, should
be considered in the future.

Results of studies investigating the effects of single tastants on food intake, satiation/satiety, and
GI peptides are not consistent. An initial strong decrease of hunger with a steep increase thereafter has
been observed after administration of a non-caloric sweetener [22]. Ingestion of low caloric sweeteners
did not influence energy intake compared with a control condition (intake of water) [23]. Adding an



Nutrients 2019, 11, 472 8 of 10

umami tastant to a meal did not affect appetite sensations, but has been shown to result in an increase
of subsequent food intake [24]. Recently, increased attention has been given to the effects of bitter
substances on satiety and food intake. Intake or infusion of bitter substances (quinine, denatonium
benzoate) not only reduced antral motility [25,26] but also increased satiety scores and resulted in a
significant decrease in food intake [27]. A possible mechanism explaining the strong aversive effects of
bitter tastants is that bitter taste is evolutionarily linked to toxic substances, as has been showed by
presenting newborn infants with bitter substances [28].

Alleleyn et al. have shown that the inhibition of food intake shows a proximal to the distal
gradient, with higher effects observed after distal versus proximal administration of nutrients [8].
Based on our data, such a gradient was not observed for intestinally administered tastants. Intestinal
taste receptor expression varies for various taste receptors, where some taste receptors are more
profound proximally in the GI-tract, while expression of other taste receptors is higher in the more
distal intestine [14–17].

We thought the proximal to distal gradient found for macronutrient infusion might be operable
for taste receptor activation, which was clearly not the case. It is possible that taste receptors inhibit
food intake in a different fashion than macronutrients. For instance, it has been speculated that taste
receptors function by sensing the type of food (i.e., sweet for carbohydrates, umami for amino acids,
and bitter for toxic substances) [29]. Since bitter tastants are linked to toxic substances, another working
mechanism for bitter tastants could be through an aversive reaction of subsequent food intake.

From an evolutionary perspective, a more pronounced inhibitory or aversive effect for toxic
substances could be expected to occur in the most proximal parts of the GI tract. However, there are
no data available with respect to activation of oral (bitter) taste receptors on subsequent food intake. It
is therefore unclear, whether activation of more proximal taste receptors will reveal more pronounced
effects on food intake and satiation/satiety. Consequently, further studies are needed to investigate
whether more proximal activation of taste receptors results in a stronger decrease in food intake.

Published data on the role of GI peptides in the regulation of food intake after administration
of tastants are not in line. Van Avesaat et al. found a clear effect of intraduodenal administration
of tastants on food intake that was not accompanied by changes in GLP-1- or PYY level [18]. Other
studies, however, did show a decrease in systemic ghrelin- and motilin levels [25,26] and an increase
in systemic CCK levels [27] after administration of a bitter tastant.

A limitation of our study is that the wash-out period consisted of only one day. Prolonging the
wash-out period over one day would have resulted in a longer period of naso-ileal catheter intubation
increasing the discomfort to our volunteers. No interaction effect between intervention and test
day was found on food intake, satiety scores or GI-complaints, indicating that no carry-over effect
was present.

Another limitation of the present study was the absence of systemic GI hormone measurements.
This would have provided a complete analysis of the effects of intestinal tastant administration on
eating behavior. However, van Avesaat et al. showed a decrease in food intake and an increase in
satiety scores, which was not accompanied by changes in systemic GI hormone levels [18]. Therefore,
no systemic GI hormone measurement was conducted in the present study.

It has to be noted that the ideal duration of administration of the intervention and of the timing
between intervention and serving the ad libitum meal is unknown. We employed a design similar to
that of van Avesaat et al. based on their positive results [18]. Future research protocols should consider
these factors.

Studies investigating the effects of tastants on food intake up to now focus on only acute effects
in a single ad libitum meal. It is not known whether repetitive or chronic administration of tastants
will lead to other results. More data are needed on the long-term effects of tastants, especially on daily
energy intake.



Nutrients 2019, 11, 472 9 of 10

Author Contributions: The authors’ responsibilities were as follows: Conceptualization, D.K. and A.A.M.M.;
methodology, T.K., D.K., F.J.T. and A.A.M.M.; formal analysis, T.K.; investigation, T.K., A.M.E.A. and M.v.A.;
resources, T.K. and F.J.T.; writing-original draft preparation, T.K.; writing-review and editing, T.K., A.M.E.A.,
D.K. and A.A.M.M.; supervision, D.K. and A.A.M.M.; project administration, T.K.; funding acquisition, D.K. and
A.A.M.M.

Funding: This study was an investigator-initiated study. Will Pharma B.V. received funding from ‘Subsidie MKB
Innovatiestimulering Topsectoren’ (MIT), grant number MTHLA16192, and covered all relevant costs related to
the execution of the study.

Acknowledgments: We thank all the volunteers for participating in this study.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript or in the decision to publish the results. No specific
grant was received for open access publication. T.K. received a salary from Will Pharma BV as part of the ‘Subsidie
MKB Innovatiestimulering Topsectoren’ (MIT) for the period related to the execution of the present study. D.K.
and A.A.M.M. have received an unrestricted grant from Will Pharma B.V. for execution of a study unrelated to the
present study. A.M.E.A., M.v.A., F.J.T. reported no conflicts of interest.

References

1. WHO. Obesity and Overweight 2018. Available online: http://www.who.int/en/news-room/fact-sheets/
detail/obesity-and-overweight (accessed on 3 August 2018).

2. Lieverse, R.J.; Jansen, J.B.; Masclee, A.A.; Lamers, C.B. Satiety effects of a physiological dose of
cholecystokinin in humans. Gut 1995, 36, 176–179. [CrossRef] [PubMed]

3. Lieverse, R.J.; Jansen, J.B.; van de Zwan, A.; Samson, L.; Masclee, A.A.; Lamers, C.B. Effects of a physiological
dose of cholecystokinin on food intake and postprandial satiation in man. Regul. Pept. 1993, 43, 83–89.
[CrossRef]

4. Verdich, C.; Flint, A.; Gutzwiller, J.P.; Naslund, E.; Beglinger, C.; Hellstrom, P.M.; Long, S.J.; Morgan, L.M.;
Holst, J.J.; Astrup, A. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum
energy intake in humans. J. Clin. Endocrinol. Metab. 2001, 86, 4382–4389. [CrossRef] [PubMed]

5. van Avesaat, M.; Troost, F.J.; Ripken, D.; Hendriks, H.F.; Masclee, A.A. Ileal brake activation:
Macronutrient-specific effects on eating behavior? Int. J. Obes. 2015, 39, 235–243. [CrossRef] [PubMed]

6. Maljaars, P.W.; Peters, H.P.; Mela, D.J.; Masclee, A.A. Ileal brake: A sensible food target for appetite control.
A review. Physiol. Behav. 2008, 95, 271–281. [CrossRef] [PubMed]

7. Shin, H.S.; Ingram, J.R.; McGill, A.T.; Poppitt, S.D. Lipids, CHOs, proteins: Can all macronutrients put a
‘brake’ on eating? Physiol. Behav. 2013, 120, 114–123. [CrossRef] [PubMed]

8. Alleleyn, A.M.; van Avesaat, M.; Troost, F.J.; Masclee, A.A. Gastrointestinal Nutrient Infusion Site and Eating
Behavior: Evidence for A Proximal to Distal Gradient within the Small Intestine? Nutrients 2016, 8, 117.
[CrossRef] [PubMed]

9. Sternini, C.; Anselmi, L.; Rozengurt, E. Enteroendocrine cells: A site of ‘taste’ in gastrointestinal
chemosensing. Curr. Opin. Endocrinol. Diabetes Obes. 2008, 15, 73–78. [CrossRef] [PubMed]

10. Jang, H.J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.;
Juhaszova, M.; et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like
peptide-1. Proc. Natl. Acad. Sci. USA 2007, 104, 15069–15074. [CrossRef] [PubMed]

11. Rozengurt, N.; Wu, S.V.; Chen, M.C.; Huang, C.; Sternini, C.; Rozengurt, E. Colocalization of the
alpha-subunit of gustducin with PYY and GLP-1 in L cells of human colon. Am. J. physiol. Gastrointest.
Liver Physiol. 2006, 291, G792–G802. [CrossRef] [PubMed]

12. Sutherland, K.; Young, R.L.; Cooper, N.J.; Horowitz, M.; Blackshaw, L.A. Phenotypic characterization of
taste cells of the mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1420–G1428.
[CrossRef] [PubMed]

13. Wu, S.V.; Rozengurt, N.; Yang, M.; Young, S.H.; Sinnett-Smith, J.; Rozengurt, E. Expression of bitter taste
receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc. Natl. Acad.
Sci. USA 2002, 99, 2392–2397. [CrossRef] [PubMed]

14. Bezencon, C.; le Coutre, J.; Damak, S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial
cells. Chem. Senses 2007, 32, 41–49. [CrossRef] [PubMed]

http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
http://dx.doi.org/10.1136/gut.36.2.176
http://www.ncbi.nlm.nih.gov/pubmed/7883212
http://dx.doi.org/10.1016/0167-0115(93)90410-A
http://dx.doi.org/10.1210/jc.86.9.4382
http://www.ncbi.nlm.nih.gov/pubmed/11549680
http://dx.doi.org/10.1038/ijo.2014.112
http://www.ncbi.nlm.nih.gov/pubmed/24957485
http://dx.doi.org/10.1016/j.physbeh.2008.07.018
http://www.ncbi.nlm.nih.gov/pubmed/18692080
http://dx.doi.org/10.1016/j.physbeh.2013.07.008
http://www.ncbi.nlm.nih.gov/pubmed/23911804
http://dx.doi.org/10.3390/nu8030117
http://www.ncbi.nlm.nih.gov/pubmed/26927170
http://dx.doi.org/10.1097/MED.0b013e3282f43a73
http://www.ncbi.nlm.nih.gov/pubmed/18185066
http://dx.doi.org/10.1073/pnas.0706890104
http://www.ncbi.nlm.nih.gov/pubmed/17724330
http://dx.doi.org/10.1152/ajpgi.00074.2006
http://www.ncbi.nlm.nih.gov/pubmed/16728727
http://dx.doi.org/10.1152/ajpgi.00504.2006
http://www.ncbi.nlm.nih.gov/pubmed/17290008
http://dx.doi.org/10.1073/pnas.042617699
http://www.ncbi.nlm.nih.gov/pubmed/11854532
http://dx.doi.org/10.1093/chemse/bjl034
http://www.ncbi.nlm.nih.gov/pubmed/17030556


Nutrients 2019, 11, 472 10 of 10

15. Young, R.L.; Sutherland, K.; Pezos, N.; Brierley, S.M.; Horowitz, M.; Rayner, C.K.; Blackshaw, L.A. Expression
of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 2009,
58, 337–346. [CrossRef] [PubMed]

16. van der Wielen, N.; van Avesaat, M.; de Wit, N.J.; Vogels, J.T.; Troost, F.; Masclee, A.; Koopmans, S.-J.;
van der Meulen, J.; Boekschoten, M.V.; Müller, M.; et al. Cross-species comparison of genes related to
nutrient sensing mechanisms expressed along the intestine. PLoS ONE 2014, 9, e107531. [CrossRef] [PubMed]

17. Gu, F.; Liu, X.; Liang, J.; Chen, J.Y.; Chen, F.X.; Li, F. Bitter taste receptor mTas2r105 is expressed in small
intestinal villus and crypts. Biochemical and biophysical research communications. 2015, 463, 934–941. [CrossRef]
[PubMed]

18. van Avesaat, M.; Troost, F.J.; Ripken, D.; Peters, J.; Hendriks, H.F.; Masclee, A.A. Intraduodenal infusion of a
combination of tastants decreases food intake in humans. Am. J. Clin. Nutr. 2015, 102, 729–735. [CrossRef]
[PubMed]

19. Maljaars, P.W.; Symersky, T.; Kee, B.C.; Haddeman, E.; Peters, H.P.; Masclee, A.A. Effect of ileal fat perfusion
on satiety and hormone release in healthy volunteers. Int. J. Obes. 2008, 32, 1633–1639. [CrossRef] [PubMed]

20. Parker, B.A.; Sturm, K.; MacIntosh, C.G.; Feinle, C.; Horowitz, M.; Chapman, I.M. Relation between food
intake and visual analogue scale ratings of appetite and other sensations in healthy older and young subjects.
Eur. J. Clin. Nutr. 2004, 58, 212–218. [CrossRef] [PubMed]

21. van Avesaat, M.; Ripken, D.; Hendriks, H.F.; Masclee, A.A.; Troost, F.J. Small intestinal protein infusion
in humans: Evidence for a location-specific gradient in intestinal feedback on food intake and GI peptide
release. Int. J. Obes. 2017, 41, 217–224. [CrossRef] [PubMed]

22. Meyer-Gerspach, A.C.; Biesiekierski, J.R.; Deloose, E.; Clevers, E.; Rotondo, A.; Rehfeld, J.F.; Depoortere, I.;
Van Oudenhove, L.; Tack, J. Effects of caloric and noncaloric sweeteners on antroduodenal motility,
gastrointestinal hormone secretion and appetite-related sensations in healthy subjects. Am. J. Clin. Nutr.
2018, 107, 707–716. [CrossRef] [PubMed]

23. Fantino, M.; Fantino, A.; Matray, M.; Mistretta, F. Beverages containing low energy sweeteners do not differ
from water in their effects on appetite, energy intake and food choices in healthy, non-obese French adults.
Appetite 2018, 125, 557–565. [CrossRef] [PubMed]

24. Luscombe-Marsh, N.D.; Smeets, A.J.; Westerterp-Plantenga, M.S. The addition of monosodium glutamate
and inosine monophosphate-5 to high-protein meals: Effects on satiety, and energy and macronutrient
intakes. Br. J. Nutr. 2009, 102, 929–937. [CrossRef] [PubMed]

25. Deloose, E.; Corsetti, M.; Van Oudenhove, L.; Depoortere, I.; Tack, J. Intragastric infusion of the bitter tastant
quinine suppresses hormone release and antral motility during the fasting state in healthy female volunteers.
Neurogastroent. Motil. 2017. [CrossRef] [PubMed]

26. Deloose, E.; Janssen, P.; Corsetti, M.; Biesiekierski, J.; Masuy, I.; Rotondo, A.; Van Oudenhove, L.;
Depoortere, I.; Tack, J. Intragastric infusion of denatonium benzoate attenuates interdigestive gastric motility
and hunger scores in healthy female volunteers. Am. J. Clin. Nutr. 2017, 105, 580–588. [CrossRef] [PubMed]

27. Andreozzi, P.; Sarnelli, G.; Pesce, M.; Zito, F.P.; Alessandro, A.D.; Verlezza, V.; Palumbo, I.; Turco, F.;
Esposito, K.; Cuomo, R. The Bitter Taste Receptor Agonist Quinine Reduces Calorie Intake and Increases the
Postprandial Release of Cholecystokinin in Healthy Subjects. J. Neurogastroenterol. Motil. 2015, 21, 511–519.
[CrossRef] [PubMed]

28. Steiner, J.E.; Glaser, D.; Hawilo, M.E.; Berridge, K.C. Comparative expression of hedonic impact: Affective
reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev. 2001, 25, 53–74. [CrossRef]

29. Breslin, P.A.; Spector, A.C. Mammalian taste perception. Curr. Biol. 2008, 18, R148–R155. [CrossRef]
[PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1136/gut.2008.148932
http://www.ncbi.nlm.nih.gov/pubmed/19039089
http://dx.doi.org/10.1371/journal.pone.0107531
http://www.ncbi.nlm.nih.gov/pubmed/25216051
http://dx.doi.org/10.1016/j.bbrc.2015.06.038
http://www.ncbi.nlm.nih.gov/pubmed/26071358
http://dx.doi.org/10.3945/ajcn.115.113266
http://www.ncbi.nlm.nih.gov/pubmed/26289437
http://dx.doi.org/10.1038/ijo.2008.166
http://www.ncbi.nlm.nih.gov/pubmed/18794896
http://dx.doi.org/10.1038/sj.ejcn.1601768
http://www.ncbi.nlm.nih.gov/pubmed/14749739
http://dx.doi.org/10.1038/ijo.2016.196
http://www.ncbi.nlm.nih.gov/pubmed/27811949
http://dx.doi.org/10.1093/ajcn/nqy004
http://www.ncbi.nlm.nih.gov/pubmed/29722834
http://dx.doi.org/10.1016/j.appet.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/29526693
http://dx.doi.org/10.1017/S0007114509297212
http://www.ncbi.nlm.nih.gov/pubmed/19267954
http://dx.doi.org/10.1111/nmo.13171
http://www.ncbi.nlm.nih.gov/pubmed/28776826
http://dx.doi.org/10.3945/ajcn.116.138297
http://www.ncbi.nlm.nih.gov/pubmed/28148502
http://dx.doi.org/10.5056/jnm15028
http://www.ncbi.nlm.nih.gov/pubmed/26351252
http://dx.doi.org/10.1016/S0149-7634(00)00051-8
http://dx.doi.org/10.1016/j.cub.2007.12.017
http://www.ncbi.nlm.nih.gov/pubmed/18302913
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Subjects 
	Study Design 
	Catheter Positioning 
	Preparation and Infusion of Tastants 
	Protocol 
	VAS for Satiation and GI-Complaints 
	Statistical Analyses 

	Results 
	Subjects 
	Food Intake 
	Satiation/Satiety Scores 
	GI-Complaints 

	Discussion 
	References

