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Abstract

A poor prognosis of pancreatic ductal adenocarcinoma (PDAC) associated with chemoresistance has not changed for the
past three decades. A multidisciplinary diagnosis followed by surgery and chemo(radiation)therapy is the main treatment
approach. However, gemcitabine- and 5-fluorouracil-based therapies did not present satisfying outcomes. Novel regimens
targeting pancreatic cancer cells, the tumor microenvironment, and immunosuppression are emerging. Biomarkers
concerning the treatment outcome and patient selection are being discovered in preclinical or clinical studies.
Combination therapies of classic chemotherapeutic drugs and novel agents or novel therapeutic combinations might
bring hope to the dismal prognosis for PDAC patients.
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Background
Pancreatic ductal adenocarcinoma (PDAC) is associated
with the poorest prognosis of gastrointestinal cancers and
will become the second leading cause of cancer-related
mortality in the USA by 2030. Only 10–20% of patients
are resectable when first diagnosed [1]. An aggressive
tumor biological nature, a desmoplastic microenviron-
ment, and resistance to standard cytotoxic therapies also
contribute to the poor prognosis.
It has been identified that KRAS, TP53, CDKN2A, and

SMAD4 are four major driver genes participating in the
whole process of disease development [2]. More than 90%
of tumors harbor KRAS mutations, which are known to
increase the tumor invasive ability by reprogramming pan-
creatic cell metabolism and promoting stromal reaction.
Complex genetic and metabolic pathways were identified
and utilized for treatment. Additionally, some receptors
that are essential to certain pathways were studied for
therapeutic use, including epidermal growth factor recep-
tor (EGFR), human epidermal growth factor receptor 2

(HER2), and vascular endothelial growth factor receptor
(VEGFR).
Jones S et al. first found 12 core signaling pathways in

pancreatic cancer (PC) and determined that they were
each genetically altered in 67 to 100% of the tumors by
performing global genomic analysis [3]. Their finding
suggested that targeting downstream mediators or key
nodal points might be more effective than targeting
specific mutated genes. Bailey et al. revealed that the
complex mutational landscape of PDAC comprised four
subtypes—squamous, pancreatic progenitor, immuno-
genic, and aberrantly differentiated endocrine exocrine
(ADEX). Squamous, pancreatic progenitor, and ADEX
tumors were enriched in different mutations, such as
TP53 and KDM6A, FOXA2/3, PDX1, and MNX1, and
expressed preferentially at the early stage and with regu-
lative genes involved in KRAS activation. By targeting
certain immune modulators, specific mechanisms under-
lying the immunogenic subtype inferred future thera-
peutic development. Ten distinct molecular mechanisms
concerning 32 recurrently mutated genes were also iden-
tified and included KRAS, TGF-β, WNT, Notch, ROBO/
SLIT signaling, G1/S transition, SWI-SNF, chromatin
modification, DNA repair, and RNA processing [4].
Notta et al. found that this aggressive disease progressed
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rapidly as mitotic errors of complex rearrangement pat-
tern occurred simultaneously rather than sequentially
[5]; the tumor microenvironment plays a key role in
treatment resistance because it creates a mechanical bar-
rier consisting of dense stroma with fibroblasts, leuko-
cytes, hyaluronic acid (HA), cancer stem cells (CSCs),
collagen, and some extracellular matrix protein, resulting
in hypoxia and anti-angiogenesis, which promotes
carcinogenesis, facilitates tumor progression and induces
chemotherapeutic resistance.
Great effort has been made to combine classic chemo-

therapies and novel agents targeting the discovered mu-
tations and pathways to improve the outcome of PDAC.

Current therapies for PDAC
The CONKO-001 trial showed that the addition of
6 months of gemcitabine as adjuvant therapy could prolong
disease-free survival (DFS) and overall survival (OS) in pa-
tients with resected PC. The minimal survival benefit be-
tween the gemcitabine and observation groups could be
explained by gemcitabine treatment after disease progres-
sion in the control arm (DFS, 13.4 vs 6.9 months, P < 0.001;
mOS, 22.1 vs 20.2 months, P = 0.06) [6]. Gemcitabine-
based chemotherapy is the current standard adjuvant ther-
apy, as an 11-year follow-up study showed it dramatically
decreased 45% of the DFS rate and 24% of the mortality
risk [7]. The ESPAC-3 trial included 1088 patients after sur-
gery to receive either bolus 5- fluorouracil (5-FU) followed
by intravenous 5-FU or gemcitabine for 6 months. The me-
dian survival agreed with that in the CONKO-001 trial
(23.0 vs 22.1 months), with no significant difference be-
tween the bolus of 5-FU and gemcitabine, but the gemcita-
bine arm showed a 10% improvement in OS [8]. Nab-
paclitaxel and FOLFIRINOX (folinic acid, fluorouracil, iri-
notecan, oxaliplatin) showed considerable efficacy in the
metastatic setting [9, 10]. Direct comparison of the efficacy
in the adjuvant setting between nab-paclitaxel/gemcitabine
and FOLFIRINOX for resected PDAC is still under clinical
trials, including the APACT and PRODIGE trials
(NCT01964430, NCT01526135). With the modern radi-
ation technique updates, a remarkable promotion of sur-
vival was presented by higher dose radiotherapy plus
chemotherapy in early-stage resected PDAC [11]. Thus, it
raises hope that chemoradiation therapy might extend the
survival in patients with PDAC.
Although approximately 20% of early-staged PDAC pa-

tients undergo resection, the 5-year survival rate remains
low. Tagged cells of the PC mouse model unexpectedly
entered the bloodstream and seeded into the liver without
the invasion of primary lesions, suggesting that PDAC is a
systemic disease rather than localized. Xu and Liu et al.
discovered that patients with CEA(+)/CA125(+)/CA19–
9 ≥ 1000 U/mL showed no survival advantage benefit from
pancreatectomy and postoperative elevation of CA125/

CEA with normal CA19–9 being associated with a poor
prognosis [12, 13]. Luo et al. sequenced fucosyltransferase
3, pointing out that CEA and CA125 have the potential to
be applied as biomarkers and should be routinely mea-
sured for Lewis-negative genotypes [14]. Several phase I/II
retrospective studies showed that neoadjuvant therapy
benefited patients with high-risk factors by promoting
secondary resection rates, and FOLFIRINOX presented
valuable efficacy. However, because phase III randomized
control and multicenter clinical trials are lacking, the opti-
mized regimen for neoadjuvant therapy has not yet been
validated [15–20].
Gemcitabine-based therapy is the standard treatment for

metastatic PDAC (MPC). Compared with gemcitabine,
FOLFIRINOX showed a survival advantage for good-
performance patients, and monotherapy S-1 presented
well-tolerated, non-inferiority OS in patients with
gemcitabine-refractory PDAC [10, 21]. Nab-paclitaxel/gem-
citabine demonstrated an improved response rate (23%),
progression-free survival (PFS) (5.5 months), OS
(8.5 months), and a better HR of 0.72 compared with other
phase III studies of gemcitabine-based therapy. Although
erlotinib could decrease tumor growth, prevent metastasis,
and improve the anticancer effect of gemcitabine to some
extent, with only a 10-day benefit, it is not routinely applied
in the clinical setting because the biomarkers for a treat-
ment response are lacking despite skin rash and p53
expression [22]. The anti-EGFR monoclonal antibody
cetuximab inhibits PC cell growth via antibody-dependent
cell-mediated cytotoxicity and complement-dependent
cytotoxicity, but a phase III study failed to prove a clinical
benefit compared with gemcitabine (mOS, 6.3 vs
5.9 months, P = 0.23; mPFS, 3.4 vs 3.0 months) [23]. EGFR
and the HER2 inhibitor lapatinib did not show obvious sur-
vival improvement in a single-arm phase II study (mPFS,
2.6 months, P = 0.001; mOS, 5.2 months, P = 0.023) [24].
Thus, the study indicated that EGFR/HER2 expression,
quantified by immunohistochemistry, can hardly identify
tumorigenetic subgroups driven by EGFR/HER2, and
biomarkers predicting a good response have not yet been
detected. Familial PDAC harbors BRCA mutations, which
reduce gene recombination and DNA damage repair ability.
PARPi inhibits the DNA repair of cancer cells and enhances
the efficacy of platinum drugs. Olaparib monotherapy
presented a promising response to the second-line setting
because it showed a response rate of 20% and a median OS
of 9.8 months. PARPi is the first real PC-targeted drug, and
it has the potential to be used for combination therapy [25].

Novel therapies in PDAC
Therapies targeting pancreatic cancer cells

Enhanced efficacy of cytotoxic agents Because the effi-
cacy of classic PDAC cytotoxic agents is limited, novel
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formulations of classic agents or drugs targeting the
desmoplastic and hypoxic environment were developed.
A randomized phase III study NAPOLI-1 added nanoli-
posome irinotecan prior to 5-FU/leucovorin (LV) in
MPC, and the results showed that the objective response
rate (ORR) and median OS were significantly improved
compared with those in patients in the 5-FU/LV arm
(mOS: 6.1 vs 4.2 months, P = 0.012) [26]. An oral pro-
drug of 5-FU, S-1, was verified as non-inferior, even su-
perior, and was well tolerated compared with
gemcitabine among resected PC patients from Asia in
the JASPAC-01 study (HR = 0.57, 95% CI 0.44–0.72, P <
0.0001) [27]. This study was launched in 33 hospitals in
Japan, and the proportion of male patients younger than
65 years old with a performance status (PS) of 0 was rela-
tively larger in the S-1 group than in the gemcitabine
group (male 57 vs 54%, < 65 years old 41 vs 39%, PS 0 70
vs 67%). Another oral prodrug of 5-FU, capecitabine, in
combination with gemcitabine as adjuvant therapy among
resected PC patients from Europe, showed a significantly
better median OS than gemcitabine alone (28 vs
22.5 months, P = 0.032) [28]. The 5-year survival was
28.8% in patients treated with capecitabine plus gemcita-
bine in the ESPAC-4 trial compared with 44.1% in the S-1
group of the JASPAC-01 trial. The large survival benefit
difference between the two trials might because the JAS-
PAC trial included patients with a better risk, such as a
lower R1 resection rate (13 vs 60%), a lower proportion of
CA19–9 levels exceeding the upper normal limit (26 vs
32%), and a higher proportion of N0 patients (37% vs
20%) and PS0 patients (69 vs 42%). Oral prodrugs of 5-FU
are considered new standard treatment for patients with
resectable PC after surgery despite racial differences. Glo-
bal multicenter phase III studies are needed to further
confirm racial differences and possibly the underlying
mechanism, indicating a possible breakthrough for Asia
PDAC patients. Evofosfamide is a prodrug that selectively
targets tumor cells under hypoxic conditions and results
in the release of a strong alkylating agent, dibromoisopho-
sphoramide mustard. A phase II trial of evofosfamide
demonstrated a 2.4-month longer PFS for unresectable
PDAC than in those treated with gemcitabine alone (P =
0.005) [29]. Based on the encouraging result of the phase
II study, the phase III MAESTRO randomized trial of evo-
fosfamide and gemcitabine as first-line therapy was re-
cently completed (NCT01746979), showing an improved
OS compared with gemcitabine alone (mOS, 8.7 vs
7.6 months, P = 0.059). However, because patients from
Asia achieved a longer OS than other races, further con-
firmation of subgroup analysis could be a breakthrough
for Asia PDAC patients.

RAS/RAF/MEK/ERK and PI3K/AKT/mTOR path-
ways KRAS mediates signal transduction between

membrane growth factor receptors and downstream
pathways, such as PI3K/AKT/mTOR and RAS/RAF/
MEK/ERK, which all contribute to tumor growth,
progression, and metastasis [30]. Efforts have been made
to target KRAS, but all have failed, such as the use of
the farnesyltransferase inhibitor R115777 and tipifarnib
[31, 32]. However, a new approach to target KRAS
through engineered exosomes carrying short interfering
RNA or short hairpin RNA specific to oncogenic
KrasG12D was recently discovered in a PC mouse model
and proved to be associated with increased OS [33]. The
use of engineered exosomes and interfering RNA offered
a potential prospective for even more accurate transpor-
tation for precision treatment. Chu et al. found that
KRAS-integrin-linked kinase (ILK) allows PC cells to
regulate KRAS expression, and the inhibition of ILK
blocked KRAS-driven epithelial-to-mesenchymal transi-
tion (EMT) as well as growth factor-stimulated KRAS
expression. Thus, ILK inhibitors may be a viable
therapeutic strategy for PDAC [34].
Other therapeutic strategies were mainly developed

targeting the downstream effectors MEK, PI3K/AKT,
and ERK. The PI3K-AKT-mTOR signaling pathway reg-
ulates cell metabolism, cell cycle, protein synthesis, and
apoptosis. The PI3K inhibitor LY294002 can inhibit can-
cer cell growth and suppress angiogenesis [35]. Drug
combinations targeting multiple pathways might achieve
a certain clinical benefit. However, the potent and highly
selective MEK1/2 inhibitor selumetinib plus the PI3K/
AKT inhibitor MK-2206 did not show a survival benefit
but increased adverse events compared with mFOLFOX
alone in gemcitabine-refractory MPC patients (Fig. 1)
[36]. It is possible that the toxicity effects of two or more
kinase inhibitors overlapped, and 45% of the patients in
the experimental arm experienced toxicity-related treat-
ment delays and dose reduction. Refametinib is an orally
active, non-competitive MEK kinase inhibitor with high
affinity to MEK 1/2. A continuous dosing regimen maxi-
mized refametinib-induced tumor growth inhibition.
The half-life of refametinib was approximately 10–20 h
after dosing on day 1, which was significantly longer
than 8.3 h of selumetinib. Refametinib is generally well
tolerated compared with selumetinib because grade 3–4
rash, and hematologic toxicity were observed more often
in selumetinib users. The highly selective MEK1/2
inhibitor refametinib showed a promising ORR (ORR
23%; mOS, 8.9 months), similar to previously reported
trametinib and gemcitabine (ORR 22%; mOS,
8.4 months) in advanced pancreatic cancer (APC) pa-
tients with detectable KRAS mutations (Fig. 2) [37, 38].
Because it showed a trend toward improved outcomes in
APC patients without KRAS mutations (ORR 48%;
mOS, 18.2 months), refametinib in combination with
gemcitabine is especially encouraged when patients
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Fig. 1 Novel therapies targeting different elements involved in PDAC development. Therapeutics targeting signaling pathways participating in
tumorigenesis and progression, the tumor microenvironment, inflammatory and immune responses, and angiogenesis. It also contains future
possible therapeutic targets and specific biomarkers for the evaluation of efficacy
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harbored KRAS mutations. MEK inhibitors showed
disappointing efficacy as single agents because they often
block the Ras-MARK pathway and activate PI3K to-
gether. The compromised efficacy might be due to the
existence of resistance cells imposed by the MEK inhibi-
tor and intratumoral heterogeneity [39]. A phase I study
combining the PI3K inhibitor buparlisib with sonidegib
or mFOLFOX6 was recently completed (NCT01571024).
Moreover, cell cycle checkpoint inhibitors have been
emerging in recent years and have showed considerable
efficacy in reducing PC growth in preclinical study [40].
A phase II study of the PI3K/mTOR/DNA-PK inhibitor
LY3023414 and CDK inhibitor abemaciclib is currently
recruiting, and the results of this combination are
awaited (NCT02981342, Table 1). Targeting the down-
stream effectors of KRAS mutation showed mediocre
results, and more effort should be devoted to new ap-
proaches for targeting KRAS.
The mutations of tumor suppressor genes are more

randomized and diverse; thus, it is very difficult to de-
velop target therapy directly. SGT-53 is a complex of
cationic liposome that could efficaciously deliver the p53
cDNA to the tumor cells. A phase II trial of SGT-53 and
gemcitabine/nab-paclitaxel for MPC is ongoing
(NCT02340117). Drugs targeting SMAD4 and CDKN2A
are still under development.

Notch pathway Notch activation triggers pancreatic
nestin (+) precursor cells to accumulate and metaplastic
ductal epithelium to expand. By expanding undifferenti-
ated precursor cells, it also mediates TGF-α, which
induces epithelial differentiation. A phase II study of the
Notch pathway inhibitor RO4929097 was launched
among MPC patients as second- or third-line treatment,
and it showed a cytostatic effect rather than cell death as
monotherapy [41]. A phase I study of MK0752 added to
gemcitabine hydrochloride as first-line treatment in late-
stage PDAC has been completed (NCT01098344). The
Notch2/Notch3 antagonist tarextumab reduced the
tumor-initiating cell frequency in patient-derived xeno-
graft tumors [42]. The ALPINE trial, which studied the
addition of tarextumab to nab-paclitaxel and gemcitabine,
was recently completed (NCT01647828). Ponnurangam et
al. found that quinomycin significantly inhibited tumor
growth in nude mice, coupled with the reduction of CSC
markers and Notch signaling proteins [43]. Because
unwanted gastrointestinal toxicity was associated with γ-
secretase inhibitors (GSIs), chemopreventive natural
agents, such as curcumin, sulphoraphane, and genistein,
might serve as potential Notch inhibitors while easing the
toxicity [44, 45].

JAK/STAT pathway The JAK family consists of JAK1,
JAK2, JAK3, and TYK2, which play critical roles in

hematopoiesis [46]. STAT3 is essential for disease pro-
gression in a PDAC mouse model harboring KRAS mu-
tation [47]. High-throughput gene expression analysis
found evidence of the JAK-STAT pathway in PDAC.
Because phosphorylation of STAT transcription factors
relies on the activation of JAK receptors, especially
JAK2/STAT3, preclinical studies showed that the
efficacy of JAK2 inhibitors could be predicated by
phosphorylated STAT3 [47]. JAK/STAT together is re-
lated to inflammatory reaction and drives tumor pro-
gression [48, 49]. A double-blind, phase II study of
the JAK1/JAK2 inhibitor ruxolitinib in combination
with capecitabine for selected MPC patients with high
levels of serum C-reactive protein levels showed
prolonged survival and good tolerance [50]. The
JANUS 1 trial is a phase III study of ruxolitinib and
capecitabine as second-line therapy for MPC, but it
was terminated because the results of planned interim
analysis demonstrated futility (NCT02117479). Napa-
bucasin—a STAT3 inhibitor—showed promising anti-
cancer effects, as 52% of MPC patients achieved a ≥
24-week disease control rate (DCR) in a phase Ib
study (NCT02231723). A phase III study of napabuca-
sin combined with nab-paclitaxel and gemcitabine for
MPC is currently recruiting (NCT02993731).

Therapies focused on the tumor microenvironment
The tumor microenvironment of PDAC is different from
that of other solid tumors because it is rich in stroma
but lacks an oxygen and blood supply. This unique
environment results in disappointing drug efficacy.
Thus, depleting stromal HA, enhancing drug delivery,
anti-angiogenesis, and inhibiting metabolic reprogram-
ming might prolong survival.

Hedgehog inhibitors
Activated pancreatic stellate cells (PSCs) are essential to
neural invasion in PDAC. The overexpression of Sonic
hedgehog, one of the Hedgehog (HH) signaling ligands,
could activate the HH signaling pathway in PSCs, thus
triggering the initiation of PDAC and resulting in des-
moplastic stroma [51, 52]. In recent years, clinical efforts
have been devoted to smoothened targeting, which could
regulate HH signaling. The addition of vismodegib to
gemcitabine experienced a setback in improving survival
in MPC [53]. Vismodegib did not increase drug delivery
efficacy or survival in metastatic colorectal cancer and
ovarian cancer [54]. A phase II study of saridegib plus
gemcitabine for MPC also announced the termination of
the trial because a higher rate of progressive disease
appeared in the saridegib arm. Because reducing HH sig-
naling promotes angiogenesis, the imbalance of epithelial
and stromal elements might explain the clinical trial’s
failure. HH inhibitors were likely to result in a strong
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reduction in signaling, but they were metabolized and
excreted between doses; thus, the possible key consider-
ation to elevate the efficacy might be the HH inhibitor
dosage [55]. However, there is no clinical trial concern-
ing the combination therapy in this field. SHH and Gli1
are independent prognostic factors for resected PDAC
because a lower expression of Gli1 or SHH led to longer
DFS and OS [56]. Thus, HH signaling showed promise
to become a diagnostic tool for APC, such as NF-κB ex-
pression, MMP9 expression, and Gli1 expression and
guide therapies in the future.

Therapies enhancing drug delivery
PDAC is characterized by dense stroma with a redun-
dant amount of HA, which regulates cancer initiation,
progression, angiogenesis, and chemotherapy resistance.
A high expression of HA is an independent prognostic
factor of resected PDAC; thus, therapeutics targeting
HA might cross the drug delivery barrier [57]. 4-MU is
well recognized for its function to suppress HA synthesis
and high safety profile, proving its anti-cancer activity in
vitro and in vivo in other cancers [58, 59]. 4-MU inhib-
ited liver metastasis in mice inoculated with human PC
cells, showing the prospect for it to become a PDAC
treatment targeting hyaluronan in the clinical setting.
HA interacts with CD44 on the cell surface, regulating

the invasion of PDAC. The CD44-HA interaction resulted
in the abrogation of cellular events by digesting HA
oligosaccharides, which could be a potential direction for
targeted therapy. The downstream of CA44-HA inter-
action could reduce metastasis to the peritoneum induced
through HA by the PI3K inhibitor wortmannin [60].
Depleting stromal HA in PDAC could reduce the

tumor pressure and vascular compression and improve
drug delivery efficiency. A phase II study combined
PEGPH20, which degrades HA, with nab-paclitaxel/
gemcitabine for MPC, with promising results. The PFS
was significantly higher among HA-high patients in the
PEGPH20 plus nab-paclitaxel/gemcitabine arm (HR =
0.51, 95% CI 0.26–1.00, P = 0.048), and thromboembolic
events were similar in both arms. These data suggested
that PEGPH20 is a potential agent for combination ther-
apy in the high-HA subgroup, and the results of the on-
going global phase III HALO 301 trial with co-primary
endpoints are awaited (NCT01839487).
Hyaluronan also compresses the intratumoral micro-

vasculature and creates a drug delivery barrier. Angio-
tensin receptor blocker (ARB) could reduce stromal
collagen and hyaluronan production, downregulating the
expression of TGF-β1, CCN2, and ET-1 [61]. Preclinical
studies concluded that it increased vascular perfusion,
oxygen, and potentiates chemotherapy [62]. A phase II
clinical trial concerning FOLFIRINOX plus losartan and
radiation with proton to confirm whether ARB could

sensitize PDAC compared with classic chemotherapy
alone is currently recruiting (NCT01821729).

Anti-angiogenesis
Preclinical studies have shown that vascular endothe-
lial growth factor (VEGF) could bind to VEGFR to
mediate signaling events, which increase endothelial
cell proliferation and migration in PDAC. Favorable
results of phase II studies did not lead to a satisfying
outcome in phase III studies. A recombinant fusion
protein, aflibercept, comprising VEGFR-1 and
VEGFR-2, was used in a phase III randomized trial
with gemcitabine for APC patients, but it was stopped
for futility due to a short OS and frequent adverse
events [63]. Anti-VEGF-A monoclonal antibody beva-
cizumab plus gemcitabine compared with gemcitabine
alone in APC did not improve OS or PFS in a phase
III CALGB 80303 study (mOS, 5.8 vs 5.9 months, P
= 0.95; mPFS, 3.8 vs 2.9 months, P = 0.07). Similarly,
sorafenib, targeting Ras-dependent signaling, and an-
giogenic pathways, showed considerable efficacy and
safety with gemcitabine in a phase I trial. However, a
randomized phase III trial—the BAYPAN study—ob-
served no improvement in OS upon the addition of
sorafenib to gemcitabine in APC [64]. A phase II
study of the addition of VEGFRs, PDGFRs, and the
SCFR inhibitor sunitinib to gemcitabine failed to im-
prove PFS or OS but was associated with more
toxicity [65]. Axitinib, a selective oral inhibitor of
VEGFR-1, − 2 and − 3, showed an ineffective outcome
in improving the survival in APC patients in phase
II/III studies [66]. The contrast between preclinical
studies and clinical trials may be because experimen-
tal models are rich in vascularity and lack desmoplas-
tic reaction. The promising outcome of phase II
studies was not obtained in phase III studies likely
because the design of phase II studies was non-
randomized and single armed. Studies of anti-
angiogenic agents/gemcitabine-based therapies have
achieved no superiority in survival. However, because
35% of PDACs are of the angiogenic phenotype, it is
possible that a subgroup of patients would benefit
from antiangiogenic therapies [67]. One hundred fifty-
six patients enrolled in CALGB 80303 underwent
detection for histidine-rich glycoprotein and comple-
ment factor H to predict the response to bevacizu-
mab. However, only histidine-rich glycoprotein was
weakly associated with OS [68]. Subsequently, three
predictive biomarkers were discovered in the same
group of patients. A low level of VEGF-D was a fa-
vorable factor to benefit from bevacizumab/gemcita-
bine, and Ang-2 and SDF-1 were favorable to the
gemcitabine/placebo arm [69]. The identification of
survival-related biomarkers and discoveries of other
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involved angiogenic pathways may salvage the present
dilemma.

Metabolism
Metabolic tumor burden evaluation mainly includes
total lesion glycolysis and the metabolic tumor volume,
which showed strong consistency with CA19–9 and
clinical prognosis for resectable PDAC [70]. Because the
desmoplastic microenvironment results in hypoxia and
jejuneness, PC cells metabolized 10 times more glucose
than normal cells. Glucose deprivation leads to the de-
velopment of mutations in genes in the KRAS pathways
in PC cells, which later reprogram the cellular metabol-
ism and sustain unrestricted tumor growth [71]. To
improve survival under this nutrient-deprived condition,
autophagy is activated to promote the use of an inner
source [72]. Yang et al. demonstrated that chloroquine
and its derivatives could effectively inhibit autophagy,
leading to tumor regression in PDAC [73]. Hydroxy-
chloroquine (HCQ) has been studied in several clin-
ical trials as single-agent therapy in the MPC setting
and as neoadjuvant therapy plus gemcitabine/nab-pac-
litaxel in resectable PC or MPC (NCT01978184 and
NCT01506973). However, HCQ did not achieve con-
sistent inhibition of autophagy as a monotherapy
agent, and whether it is effective in combination with
classic chemotherapy remains uncertain. Liang et al.
demonstrated that ADP-ribosylation factor 6 (ARF6)
was a downstream target of KRAS/ERK signaling. The
silencing of ARF6 reduced PC cell proliferation and
attenuated the Warburg effect [74].
PC cells tend to metabolize glucose through pyruvate

in aerobic mitochondrial metabolism and glycolysis to
convert pyruvate to lactate [75]. CPI-163—a mitochon-
drial metabolism inhibitor—could suppress the activity
of α-ketoglutarate dehydrogenase and pyruvate dehydro-
genase. A phase I study of the addition of CPI-163 to
mFOLFIRINOX for MPC compared with FOLFIRINOX
alone revealed that the ORR was higher in the CPI-163
arm with no increase in toxicity (ORR 53.9 vs 31.8%,
NCT01835041). Argininosuccinate synthase inhibitor
ADI-PEG 20 demonstrated a median PFS of 6.1 months
and a median OS of 11.3 months in MPC when treated
with the phase II dose combined with nab-paclitaxel and
gemcitabine in a phase I/Ib study. However, adverse
events increased with the use of enzyme inhibitors; thus,
concern should be raised focusing on the efficacy of the
combination with chemotherapy and associated toxicity
profile [76].

Immunotherapy
The immunosuppressive microenvironment of PC is
highly heterogeneous and complex. Macrophages,
myeloid-derived suppressor cells (MDSCs), and regulatory

T cells (Tregs) are the three major leukocyte subtypes in
the early stages of pancreatic intraepithelial neoplasia,
which results in the rise of Tregs and inactivation of
effector T cells. Immunosuppressive cells also accumulate
in the peripheral blood, stroma, and PC tissues, inhibiting
the proliferation and response of normal effector T cells.
In addition, NK cell immunity, FoxP3 + T cells and CD8 +
T cells were positively correlated with the survival of pa-
tients. Regulation of these immune cells may inhibit or
limit tumor growth [77].
Immunotherapies against PDAC could be categorized

as passive or active immune responses. Passive immune
responses were more involved in impeding molecules
that regulate cancer initiation, development, and pro-
gression. Mesothelin (MSLN) is a differentiated antigen
that is overexpressed in more than 90% of PDACs. Anti-
MSLN antibody SS1P binds to MSLN, resulting in the
inhibition of protein synthesis and apoptosis. A phase I/
II study of SS1P plus pentostatin and cyclophosphamide
is being studied for PC and other MSLN-expressing ma-
lignancies (NCT01362790). Anti-MSLN monoclonal
antibody MORAb-009 plus gemcitabine failed to dem-
onstrate any clinical benefit compared with gemcitabine
alone in a phase II study (mOS, 6.5 vs 6.9 months;
mPFS, 3.4 vs 3.5 months; NCT00570713). Monoclonal
antibodies MVT-5873 targeted at CA19–9 are under
safety and tolerability study (NCT02672917). Cetuximab
and matuzumab—two monoclonal antibodies that target
EGFR—have demonstrated convincing preclinical
results. The addition of cetuximab to gemcitabine in
APC patients showed no clinical significance, while
stable disease and a partial response were achieved with
the addition of matuzumab to gemcitabine [23].
Active immune responses could be interpreted as ex-

posing the tumor antigen to stimulate tumor-specific
immunity. A phase I/II study of the telomerase peptide
vaccine GV1001 showed a survival benefit when com-
bined with granulocyte-macrophage colony stimulating
factor (GM-CSF) in unresectable PC [78]. However,
phase III studies of GV1001 plus classic chemotherapy
failed to significantly prolong survival in unresectable
PC compared with that in the chemotherapy-alone
group (NCT00358566, TeloVac ISRCTN4382138). Pan-
creatic GVAX is composed of GM-CSF that is irritated
by two allogenic pancreatic cancer cell lines, inducing T
cells against PDAC antigens. A randomized phase II
study was conducted using GVAX with low-dose cyclo-
phosphamide (Cy) followed by CRS-207 to inhibit
regulatory T cells and induce adaptive immunity [79].
The results showed that MPC patients who received Cy/
GVAX followed by CRS-207 had a survival advantage
compared with those who received Cy/GVAX alone.
This finding is supported by Lutz ER’s finding that
immune-based therapies could convert non-
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immunogenic tumors into immunogenic tumors. Thus,
vaccine therapy plus immune-modulating agents would
show better results than single-vaccine therapy [80].
Algenpantucel-L was irritated by two allogenic PC cell
lines (HAPa-1, HAPa-2) and was engineered by retro-
virus transduction to express galactosyltransferase. An
open-label phase II trial concerning the addition of
algenpantucel-L to standard adjuvant therapy for
resected PDAC noted that patients benefited from 300
million cells/dose compared with 100 million cells/dose
(1 year DFS, 81 vs 51%; 1 year OS, 96 vs 79%) [81].
However, the phase III IMPRESS study comparing gem-
citabine plus CRT with/without algenpantucel-L for
resected PC did not achieve its primary endpoint (mOS,
27.3 vs 30.4 months; NCT01072981). The poor efficacy
of immunotherapy might be associated with multiple
immunosuppressive mechanisms.
Bispecific antibodies (BsAb) can redirect effector cells

to tumor cells without MHC restriction [82]. BsAb binds
to therapeutics and tumor cells and blocks two different
oncogenic mediators simultaneously [83]. The clinical
outcome of BsAb is more appealing in hematologic ma-
lignancies than in solid tumors. MT110 is a bispecific T
cell engager with two scFvs that bind to the CSC marker
EpCAM on tumor cells and CD3 on T cells [84]. Cioffi
et al. found that MT110 could eliminate CSCs of PC in
vivo and in vitro [85]. Azria et al. used PC xenografts in
nude mice to successfully develop a BsAb targeting
TNF-α/CEA plus TNF-α and radiotherapy to control
tumor growth [86]. A phase II study of BsAb targeting
HER3/IGF-IR plus nab-paclitaxel and gemcitabine in
MPC is currently ongoing (NCT02399137). To improve
BsAb efficacy in the treatment of solid tumors, finding a
specific target and extending the short half-life of BsAb
are essential in future explorations.
Mycobacteria play an irreplaceable role in modulating

immune responses by enhancing the crosstalk between
innate and adaptive immunity. A phase II, randomized,
open-label study of heat-killed mycobacterium obuense
IMM-101 plus gemcitabine was well tolerated but not
significantly improved in midian OS among APC pa-
tients (6.7 vs 5.6 months, P = 0.074) [87, 88]. However,
OS was significantly improved for 2.6 months in the
pre-defined metastatic subgroup in the IMM-101 plus
gemcitabine group. A large, adequately powered, phase
III study of IMM-101 is needed to retain clinical efficacy
in treating APC.
Targeting immune checkpoint pathways are well

received currently, and promising immune checkpoint
inhibitors are being developed, such as CTLA-4/B7 and
PD-1/PD-L1 [77]. However, 26 locally advanced and
MPC patients showed no response to ipilimumab (anti-
CTLA-4) except for one patient who showed a delayed
response in a phase II study [89]. Pembrolizumab (anti-

PD-1) demonstrated a durable response with the median
PFS and OS not reached in PC deficient in mismatch re-
pair, indicating that mutant neoantigens in mismatch
repair-deficient cancers are sensitive to immune check-
point blockade [90]. Durvalumab (anti-PD-L1) showed
anti-PC activity with a 12-week DCR of 21% and an
ORR of 7% in a phase II study. Additionally, MDX1105-
01 (anti-PD-L1) show no objective response in 14 APC
patients [91, 92]. The lack of infiltration of effector T
cells might cause resistance to single-agent checkpoint
inhibitor treatment in PDAC. Innovative combination
therapies of immune checkpoint inhibitors are also being
explored. A phase II study of MEDI4736 (anti-PD-L1)
monotherapy or in combination with tremelimumab
(anti-CTLA-4) in MPC was recently completed
(NCT02558894). Phase I studies of durvalumab plus
pexidartinib or nivolumab plus nab-paclitaxel/gemcita-
bine for MPC are ongoing (NCT02777710,
NCT02309177). Under the treatment of ipilimumab and
GVAX for previously treated PC, two patients showed
stable disease (7 and 22 weeks, respectively) without a
CA19–9 biochemical response in the ipilimumab arm
and three patients showed prolonged disease
stabilization (31, 71 and 81 weeks) with CA19–9
declined in the ipilimumab plus GVAX arm [93]. A
phase II study of nivolumab (anti-PD-1 antibody) and
GVAX/CRS-207 combinations was launched in MPC to
improve the T cell-specific response (NCT02243371).
Checkpoint blockade in combination with GVAX has
the potential for clinical use and should be evaluated in
larger studies. Because T cells are not the only key cell
population essential to activate the immune response
and immune checkpoint inhibitors, macrophages, and
MDSCs are also indispensable members of tumor-
infiltrating immune cells. Thus, it could be concluded
that a future direction would be well-designed combina-
torial immunotherapy and therapy approaches targeted
at multiple immune cells.
Chimeric antigen receptors (CARs) are the core com-

ponent of chimeric antigen receptor T cells (CAR-Ts),
which confer T cells to tumor antigens through the
recognition of MHC-independent ligands. CAR-T cell
therapy is designed to redirect a patient or donor’s T
cells to destroy tumor cells, which are highly targeted
and show long-term persistence in vivo [94, 95]. It has
achieved great success in hematologic malignancies but
restrained efficacy in solid cancers because of antigen
loss in tumor cells and reacting in an immune-
suppressive environment that lacks exclusive antigens.
Preclinical studies of EGFR-specific CAR-T cell therapy
promote the antitumor activity of cytokine-induced
killer cells against EGFR-positive malignancies [96]. Be-
cause EGFR is overexpressed in 90% PDAC, EGFR-
specific CAR-T cell therapy presents future potent
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therapeutic use. HER2 overexpression leads to cellular
transformation and tumorigenesis associated with a poor
prognosis. However, anti-HER2-monoclonal antibodies
showed no significant survival improvement in PDAC.
Investigators have developed HER2-specific CAR-T cell
therapy targeting HER2-positive cancer. A phase I/II
study of anti-HER2 CAR-modified T cells evaluating the
cytokine storm response and adverse events in refractory
PDAC are currently ongoing (NCT02713984). Some
studies have suggested that MSLN is the receptor of
CA125/MUC16, which is closely related to metastasis in
PDAC [97]. MSLN-specific CAR-T cells showed cytolytic
activity toward MSLN-positive tumor cells but induce
on-target/off-tumor toxicity, causing severe adverse
events [98]. A phase I study of meso-CART by vascular
intervention in APC is currently recruiting APC, hoping
to increase the antitumor effect by suitable formation of
tumor-associated antigen-targeted-CAR-T cells and
decrease the accumulation of CAR-T cells in normal
MSCL tissue (NCT02706782) [99]. The restricted effi-
cacy of CAR-T cells is probably due to low CAR-T cell
trafficking to tumors; thus, intravenous injection and in-
corporation of CARs with more effector molecules
might help to improve the efficacy. Fourth-generation
CARs are known to augment T cell activation and at-
tract innate immune cells, still arousing enthusiasm for
novel PDAC treatment [100].

From bench to bedside: potential therapeutics and
biomarkers
Cancer stem cell therapy
CSCs function as tumor-initiating cells and are prone
to chemoresistance and tumor progression. The ex-
pression of aldehyde dehydrogenase in PC cells marks
their stem cell features, which are associated with a
poor prognosis [101]. In vivo study showed that spe-
cific CD133+CXCR4+CSCs are the only subpopulation
responsible for tumor metastasis, providing a possible
direction for the eradication of CSCs and target ther-
apy [102]. The mTOR inhibitor rapamycin reduced
the viability of CD133+ PC cells and suppressed CSC
survival when combined with gemcitabine [103].
FAM83A is overexpressed significantly and associated
with a poorer outcome in PDAC, which activates the
well-characterized CSC-associated pathways. Silencing
FAM83A inhibited TGF-β and Wnt/β-catenin path-
ways, resulting in oncogenicity reduction and poten-
tial as a target. Preclinical studies indicated that the
JNK-ROS axis, LKB1-AMPK axis, and RAF family ki-
nases may be involved in CSC maintenance and sur-
vival. However, because certain molecular mediators
and interactions between signaling pathways remain
unclear, clinical translation needs further exploration
into CSC-specific pathways and markers [104].

MicroRNAs and long non-coding RNAs
MicroRNAs (miRNAs) are normally non-coding 22-
nucleotide endogenous RNA sequences that play a key
role in modulating gene expression by targeting protein-
coding mRNAs and resulting in silencing and degrad-
ation. Certain miRNAs have unique predictive potential
to be used in the clinic as biomarkers. Emerging data
have shown that miRNAs are associated with abnormal-
ities in transcription factors and function as both tumor
suppressors and oncogenes in PDAC [105]. Sicard et al.
found that miR-21 depletion prevented PDAC from pro-
gressing and the combination of miR-21 targeting and
chemotherapeutic treatment resulted in tumor regres-
sion [106]. An in vivo study discovered that targeting the
miR-34a delivery system could inhibit tumor growth and
induce apoptosis. Such bifunctional CC9 peptide miR-
34a delivery nanocomplexes are a possible future vision
of effective therapy for PDAC [107]. miRNAs still re-
quire much development to be widely used in clinical
settings. The plasma miR-223 level could discriminate
the invasiveness between malignant IPMN and PDAC
and might be applied to the early diagnosis of PDAC
[108]. Additionally, miR-10b is correlated with the re-
sponse to neoadjuvant therapy and is recognized as a
powerful diagnostic biomarker for PDAC [109]. Schultz
NA et al. identified two diagnostic miRNA panels (miR-
145, miR-150, miR-223, miR-636) in whole blood that
distinguished PDAC from healthy controls and potenti-
ated the future early detection of PDAC when applied to
serum CA19–9 together [110]. miRNAs (miR-21, miR-
155, miR-101) were also revealed as possible non-
invasive indicators for patients with the degeneration of
IPMNs, fundamentally making early surgery possible
and improving the prognosis. The best part of potential
miRNA inhibitors compared with current approaches
targeting genes and specific pathways is that they are
aimed at multiple tumor suppressors in oncogenic net-
works simultaneously. The novel molecular targets of
miRNAs that regulate molecular signaling will be identi-
fied with further research into miRNA dysregulation.
Long noncoding RNAs (lncRNAs) are non-coding

RNAs with more than 200 nucleotides. Studies have
shown that lncRNAs have an important function in epi-
genetic regulation as well as the regulation of the cell
cycle and cell differentiation [111]. They function as crit-
ical regulators of processes from oncogenesis to metasta-
sis. lncRNAs regulate EMT transition in PDAC. A novel
lncRNA, LOC389641, which is upregulated in PDAC,
promoted disease progression and expressed a negative
correlation with E-cadherin levels. The knockdown of
LOC389641 or regulation of E-cadherin could impair
cell proliferation and invasion and induce apoptosis
[112]. The overexpression of the lncRNA AFAP1-AS1
was found to be associated with lymph node metastasis,
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perineural invasion, and poor survival. It served as a
prognostic marker to predict PDAC progression within
6 months and 1 year. The molecular mechanisms of
lncRNAs have not been fully understood, but lncRNAs
have the potential to be used as biomarkers to predict
the prognosis and as rational therapeutic targets.

Epithelial-to-mesenchymal transition
Cells with EMT features gradually lose epithelial cell
characteristic and produce mesenchymal vimentin cyto-
skeleton. Under certain conditions, EMT facilitates mes-
enchymal stem cell conversion into tumor cells. EMT
enables immotile epithelial cells to acquire mesenchymal
characteristic and become motile and invasive at early
stage [113, 114]. Studies have shown that chemoresis-
tance is associated with high expression of ZEB1 and
vimentin in PDAC [115].
The gemcitabine-resistant cell population was ob-

served accompanied by increased CSC markers and relo-
calization of EMT components like β-catenin, E-
cadherin, and vimentin. CSCs and EMT-type cells have
similar characteristics because they are not only both in-
volved in the Notch and Wnt pathways but also interact
with each other. Forced expression of FoxM1 promotes
the expression of vimentin, Zeb-1, Snail2, and a quanti-
tative rise in CSCs in PDAC [116]. The side population
of PDAC is recognized as gemcitabine resistant because
they express genes with high multidrug resistance, such
as ABCG2, ABCA9, and EMT (SNAI2, LEF1). miRNAs
(miR-99a, miR-100, miR-429) that gain stem cell-like
properties during EMT contribute to drug resistance in
PC [117]. TGF-β, TNF-α, and NF-κB signaling pathways
are also closely related to the mediator of EMT [118].
TGF-β is the major regulator of EMT because it down-
regulates miR-200 expression and results in E-cadherin
downregulation and EMT induction [119]. Although the
crosstalk between TGF-β and EMT was not fully discov-
ered, several targets have been identified to regulate EMT
downstream of TGF-β for potential use in the clinic. NF-
κB does not directly induce EMT, but TGF-α induces
EMT through NF-κB activation. It promotes metastasis by
upregulating PGE2 and EP2 signaling. Clinical trials to in-
hibit the TGF-β pathway (NCT01373164, NCT02734160)
and Wnt pathway (NCT02050178, NCT01764477) are
still ongoing.
Recent studies have demonstrated the correlation

between high inflammatory activity and EMT with a bidir-
ectional effect and joint stimulation of tumor metastasis
[120]. Han et al. demonstrated that indomethacin—an in-
hibitor of COX-2—downregulated high-glucose-induced
PC cell proliferation and invasion by regulating E-
cadherin but not COX-2 [121]. They indicated that anti-
inflammatory drugs could be a novel therapeutic strategy
in PDAC patients who also suffered from diabetes.

Future challenge: personalized therapies
In the past three decades, PDAC has made slow progress
compared with other tumors. Classic treatments have
remained gemcitabine and 5-FU-based chemo(radia-
tion)therapy. Over the past 5 years, preclinical studies
and clinical research have gradually shed light on the
crosstalk between tumor cells and the complex micro-
environment. Novel regimens have been developed to
target PDAC oncogenesis, the tumor microenvironment,
immunosuppression, signaling pathways, and DNA dam-
age repair. Combinations of novel agents and classic
chemo(radiation)therapy prolonged the survival to some
extent, but the optimized treatment combinations still
need validation from more high-quality clinical trials. It
also highlights the importance of biomarkers associated
with efficacy. Specific biomarkers assist in selecting
patients with a good response and well tolerance are
desperately needed, such as CA19–9, CEA, CA125,
ACIN1, TNFRSCF10C, and diagnostic miRNA panels.
Dividing PDAC as four independent diseases delivers a

message that different subtypes have distinct survival
rate, treatment methods, and genetic characteristics.
Precision treatment is based on the identification of
different subtypes of PDAC, indicating that PDAC has
heterogeneous and mutation-accumulated features. Be-
cause a subset of PC harbors complex rearrangement
patterns with mitotic errors simultaneously rather than
sequentially, it provides insight into the tumorigenesis
and tumor progression for future mechanism explor-
ation. Deep sequencing of KRAS found that a subgroup
of KRAS wild-type was observed with elevated levels of
mTOR pathway proteins, suggesting that mTOR inhibi-
tors might benefit patients with KRAS wild-type PDAC.
In addition, multiple KRAS mutations were detected in
the same cancer cells, possibly implying that a second
KRAS mutation occurred due to selective advantage and
leading to stronger KRAS signaling. It is vital that we
recognize these additional intratumoral KRAS mutations
and associated therapeutic resistance in future clinical
settings. There is no doubt that immunotherapy is the
prospect of future treatment. Similar to targeted therapy,
it is crucial that further investigations should be made to
characterize the underlying mechanisms among patients
with the immunogenic subtype, and clinical trials of
combinatorial immunotherapies are encouraged after
certain patient selection.

Conclusions
With the success of the JASPAC-01 trial, S-1 paved its
way as monotherapy for patients with resected PDAC
after surgery or MPC patients with poor performance.
Anti-PD-1 antibody pembrolizumab also showed promis-
ing outcomes in highly selective patients. Some combina-
tions of novel agents may be efficacious as monotherapy,
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such as the nanoliposome irinotecan prior to 5-FU/LV,
the HA degrader PEGPH20, or STAT3 inhibitor napabu-
casin in combination with nab-paclitaxel/gemcitabine, the
MEK1/2 inhibitor refametinib in combination with gemci-
tabine, and the immune checkpoint inhibitor ipilimumab
in combination with GVAX. It is still hopeful for some ra-
tional combinations of novel agents to produce a certain
clinical benefit, encouraging patients to enroll in clinical
trials that would undoubtedly accelerate the process of
improving outcomes for this fatal malignancy.
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