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Abstract: Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the
thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can
reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains ob-
scure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri
only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyan-
ions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important
for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36.
Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate
formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a
gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of
PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained
Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite
and selenoprotein biosynthesis via the formation of TrxA–selenium complexes.

Keywords: bacteria; selenite; selenium delivery system; selenoprotein; thioredoxin

1. Introduction

Selenium is an essential trace element in many organisms [1–3]. Most of its important
roles in cells are exerted as the 21st amino acid selenocysteine (Sec) [4], which is transla-
tionally incorporated into selenoproteins such as formate dehydrogenase (FDH), glycine
reductase, and hydrogenase in bacteria as well as glutathione peroxidases, selenoprotein
P, and thioredoxin reductase (TXNRD) in mammals [5,6]. Bacterial selenoproteins mostly
function in anaerobic energy metabolism, while those of mammals generally play antioxi-
dant roles [5,6]. Compared with cysteine, that contains a thiol group, Sec with a selenol
group is more nucleophilic and, thus, often serves as a catalytic residue in enzymes with
redox activity [7].

In bacteria, selenide with ATP and water is converted to selenophosphate together
with AMP and phosphate by selenophosphate synthetase (SPS) for Sec synthesis [8]. Seryl-
tRNASec, formed by the aminoacylation of tRNASec with serine by seryl-tRNA synthetase,
is nucleophilically attacked by selenophosphate through the catalysis of selenocysteine
synthase (SelA), resulting in selenocysteyl-tRNASec generation [9]. Sec is incorporated
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into selenoproteins at UGA codons [10–13]. The specific translation elongation factor, SelB,
delivers selenocysteyl-tRNASec to the ribosome by recognizing the Sec insertion sequence
(SECIS) located immediately downstream of the UGA codon on the mRNA. Mammalian
selenoprotein synthetic machinery is slightly different from that of bacteria. First, seryl-
tRNASec is further converted to O-phosphoseryl-tRNASec by O-phosphoseryl-tRNA Sec

kinase, then selenocysteyl-tRNASec is produced by Sep-tRNA:Sec-tRNA synthase using
selenophosphate [14]. Second, mammalian SECIS is present in the 3’-untranslated region,
and the SelB recognizes SECIS via a SECIS binding protein [6].

Although selenium plays essential roles in many organisms, it is toxic when present
in excess [1,2,15]. Therefore, selenium delivery systems have been proposed to sequester
toxic selenium intermediates to utilize the toxic element [16]. Glutathione (GSH) system
and/or thioredoxin system (Trx system) are supposed to be involved in the reduction
of selenite to selenide via NADPH [17–19]. GSH is the most abundant thiol in many
organisms including Escherichia coli [20], and it is considered a major facilitator of selenite
assimilation. However, selenium and GSH metabolites such as glutathione selenotrisulfide,
are unstable [21]. Moreover, GSH is not found in most Gram-positive bacteria [20], and
GSH reductase knockout mutants of E. coli produce a selenoprotein, FDH, suggesting that
selenite assimilation via the GSH system is not a universal mechanism [22]. In contrast
to GSH reductase, gene disruption of thioredoxin reductase (TrxR) decreases the FDH
activity of E. coli cells [22]. TrxR, with thioredoxin 1 (TrxA) and NADPH, comprises the
Trx system, which appears to be ubiquitous in many bacteria and participates in various
redox reactions [23,24]. TrxA reduces oxidized substrate using two vicinal Cys residues in
the active center, and the oxidized form of TrxA is reduced by TrxR using NADPH [23].
TXNRD can directly reduce selenite to selenide without mammalian thioredoxin, whereas
that from E. coli cannot act without TrxA [25].

Although the previous study using 75Se-labeled selenite demonstrated that TrxA was
labeled with 75Se even in the absence of TrxR [26], the mechanism of selenite reduction by
TrxA has not been established. In this study, we focused on the reaction between selenite
and TrxA from Pseudomonas stutzeri F2a [27] (PsTrxA), which is 70% identical to that of
E. coli (EcTrxA). Since P. stutzeri F2a was isolated from seleniferous soil, the strain may
serve as an interesting model for studying bacterial selenium metabolism. We observed
the formation of a PsTrxA–SeO complex, implicating the early steps of selenite reduction
via TrxA as a selenium delivery system in bacteria.

2. Results
2.1. Reduction Activity of the Trx System from P. stutzeri

The insulin disulfide-reductive cleaving activity of PsTrxA with dithiothreitol (DTT)
was evaluated using the method previously described [28]. The turbidity of the reaction
mixture increased due to the fact of precipitation of the free insulin B chain (Figure 1A),
showing that PsTrxA reduced the disulfide bonds in insulin. The Cys33 and Cys36 residues
of PsTrxA are broadly conserved in other TrxAs (Figure S1). To examine the involve-
ment of these Cys residues in the disulfide-reducing activity, we constructed the PsTrxA
mutants, C33A, C36A, and C33A/C36A, in which each Cys was substituted by Ala, and
measured their activities. Unlike the wild-type PsTrxA, the mutants did not reduced insulin
(Figure 1A), suggesting that the Cys residues are important active site residues in PsTrxA.

We next examined the selenite reduction activity of the Trx system using PsTrxA
and TrxR from P. stutzeri F2a (PsTrxR) (Figure 1B). The Trx system with the wild-type
PsTrxA exhibited selenite reduction activity, whereas that with the PsTrxA mutants did not,
indicating that the active site Cys residues of PsTrxA play an essential role in the selenite
reduction activity. These results are consistent with the previous findings that selenite is
not reduced by bacterial TrxR alone, and that TrxA is required for selenite reduction [25].
We also examined whether the Trx system reduced other oxyanions, such as selenate,
sulfite, sulfate, thiosulfate, nitrite, and nitrate. However, none of them served as a substrate
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(Figure S2). These results indicated that the Trx system is specific to selenite among the
oxyanions examined in this study.
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is re-converted to the reduced form by TrxR. Tamura et al. reported that EcTrxA was ra-
diolabeled with 75Se derived from [75Se] selenite [26], implying the formation of a sele-
nium-bound TrxA intermediate. In the GSH system, GSSeSG is formed by binding of se-
lenium to the thiol groups of GSH [17]. We speculated that a somewhat similar selenium-
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the thiol groups of PsTrxA in selenite reduction by gel retardation assays using malei-
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Figure 1. Reduction activity of the Trx system from P. stutzeri F2a. (A) Insulin disulfide-reducing
activity of PsTrxA with DTT as measured by the increase in A650 due to the fact of insulin precipitation.
(B) Selenite reducing activity of PsTrxA with PsTrxR and NADPH as measured by the decrease in
A340 due to NADPH oxidation. PsTrxA proteins used in the assays were wild type (red), C33A (blue),
C36A (green), and C33A/C36A (purple). Assays without PsTrxA are shown in black. Representative
data obtained for each experiment are shown.

2.2. Number of Free Thiols in PsTrxA Incubated with Selenite

In the Trx system, selenite may be reduced by the reduced form of TrxA, resulting
in the formation of selenide and oxidized TrxA with an intramolecular disulfide bond,
which is re-converted to the reduced form by TrxR. Tamura et al. reported that EcTrxA
was radiolabeled with 75Se derived from [75Se] selenite [26], implying the formation of a
selenium-bound TrxA intermediate. In the GSH system, GSSeSG is formed by binding of
selenium to the thiol groups of GSH [17]. We speculated that a somewhat similar selenium-
bound intermediate could also occur in the Trx system, and that selenium would bind to
TrxA via the thiol groups of the Cys residues. We further examined the involvement of the
thiol groups of PsTrxA in selenite reduction by gel retardation assays using maleimide-
conjugated polyethylene glycol (PEG-PCMal), which labels cysteine-thiol groups. Reduced
PsTrxA was incubated with a five-fold molar excess of selenite, labeled with PEG-PCMal,
and resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE)
(Figure 2).

The molecular mass of the wild-type and mutant PsTrxA proteins without PEG-PCMal
labeling did not significantly differ according to SDS-PAGE (Figure 2). In contrast, various
bands shifted in SDS-PAGE when proteins were labeled with PEG-PCMal. Based on the
fact that the wild-type PsTrxA has three Cys residues, Cys33, Cys36, and Cys57 (Figure S1),
whereas C33A and C36A has two and C33A/C36A has one, the changes in molecular mass
apparently corresponded to the number of thiol groups labeled by PEG-PCMal.
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Figure 2. Band shifts of PsTrxAs on SDS-PAGE. PsTrxAs were labeled with PEG-PCMal depending on
the numbers of free thiol groups. Recombinant PsTrxA proteins (A) were reduced by incubation with
DTT, then DTT was removed by size exclusion chromatography. The resulting reduced proteins were
incubated without (B) or with (C) selenite, labeled with PEG-PCMal, then resolved by SDS-PAGE. W,
wild type; S1, C33A; S2, C36A; D, C33A/C36A.

In contrast, when the wild-type PsTrxA incubated with selenite was labeled with
PEG-PCMal, the band shift diminished, and the molecular mass corresponded to the
PsTrxA protein labeled with only one PEG-PCMal, indicating that the two thiol groups
were not labeled (Figure 2). This result could be explained by the loss of reactivity between
PEG-PCMal and the Cys residues due to the fact of their oxidation or modification with
selenite. A weak band corresponding to the protein labeled with two PEG-PCMal was
observed. This may be a non-specific product, because the identical band was also seen in
the Cys33A/Cys36A, which has only one Cys residue, after incubation with PEG-PCMal
in the absence of selenite.

We also incubated PsTrxA mutants with selenite, then performed a PEG-PCMal
labeling assay (Figure 2). The molecular masses of most C33A and C33A/C36A were
not changed, irrespective of selenite. In contrast, a large portion of C36A incubated with
selenite was labeled with only one PEG-PCMal, whereas the mutant without selenite was
labeled with two PEG-PCMal. Since Cys32 of EcTrxA corresponding to Cys33 of PsTrxA
has a lower pKa and is more reactive [29], the thiol group of Cys33 might attack selenite
nucleophilically to produce a thioselenite moiety (–S-SeO2

−) as previously suggested [26],
then the thiol group would not be labeled with PEG-PCMal. The lower bands were also
observed in C33A and C33A/C36A incubated with selenite followed by PEG-PCMal
labeling. These bands were most likely due to the non-specific binding of reactive selenite
to Cys residues, then the thiol group(s) would not be labeled with PEG-PCMal.

2.3. Formation of PsTrxA Complex with Selenium

We assumed that selenite oxidized or modified PsTrxA to prevent labeling with
PEG-PCMal. To gain insight into the molecular state of PsTrxA reacted with selenite,
the molecular mass of PsTrxA was analyzed using electrospray ionization (ESI)-mass
spectrometry (MS) (Figure 3). A predominant protein species with a molecular mass of
13,839 Da corresponded with the recombinant PsTrxA lacking the N-terminal Met, which
was calculated to be 13,837 Da from its amino acid sequence (Figure 3A). The intact PsTrxA
with the N-terminal Met was also observed as a second major species with 13,970 Da, which
is close to the calculated mass of 13,968 Da. When DTT-reduced PsTrxA was incubated with
a five-fold molar excess of selenite, a protein species with a mass of 13,936 Da appeared as
a new second major peak, while PsTrxA without the N-terminal Met (13,839 Da) remained
predominant (Figure 3B). The shift of 97 Da was larger than the mass of selenium (79 Da),
but close to that of SeO (95 Da). These data suggested that selenium bound to a significant
fraction of PsTrxA in the form of SeO upon reaction with selenite.
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Figure 3. Reconstructed ESI-MS spectra of PsTrxA. PsTrxA protein was incubated without (A) or
with (B) DTT and selenite, followed by ESI-MS analysis.

2.4. Involvement of PsTrxA in Selenoprotein Synthesis

To explore whether TrxA is involved in delivering selenide for selenoprotein biosyn-
thesis in vivo, the activity of the selenoprotein FDH was assayed in whole E. coli cells
anaerobically cultured on solid medium using benzyl viologen as previously described [22].
The benzyl viologen assay directly reflects FDH activity in cells and indirectly reflects
selenoprotein biosynthetic activity. Figure 4 shows that the wild-type E. coli cells stained
purple, indicating FDH activity, whereas the cells with a disrupted SelA gene (∆selA) were
not stained as they could not express selenoproteins. E. coli with a disrupted EcTrxA
gene (∆EctrxA) had low levels of activity, suggesting that EcTrxA is a major facilitator
of selenoprotein biosynthesis in this bacterium. Introducing the wild-type PsTrxA gene
into the ∆EctrxA strain recovered FDH activity (Figure 4), suggesting that PsTrxA can
complement the deletion of EcTrxA. In contrast, introducing the PsTrxA mutants, C33A,
C36A, and C33A/C36A, did not complement EcTrxA disruption. These results suggest
that Cys33 and Cys36 residues in PsTrxA are important for selenoprotein biosynthesis.
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Figure 4. Whole cell FDH assay using E. coli. E. coli cells of the wild type, a SelA gene disruptant
(∆selA), and EcTrxA disruptants (∆EctrxA) complemented without (none or empty vector) or with
PsTrxA variants (wild type, C33A, C36A, or C33A/C36A) were anaerobically cultured on Luria–
Bertani medium containing 0.5% glucose, then FDH activity was assayed using benzyl viologen.
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3. Discussion

Selenite can serve as a nutritional source of selenium for bacteria. Selenite is also
provided from another inorganic selenium source, selenate, by selenate reductases such
as E. coli YnfEFGH [30]. Selenite is then reduced to selenide in cells. Selenophosphate,
which is essential for selenoprotein biosynthesis, is produced from selenide, ATP, and
water by SPS [8]. However, since the Km values of SPS for selenide reside in the toxic
range (20–46 µM) for many organisms [31,32], it has been thought that selenium deliv-
ery systems may sequester the toxic element [16]. Some proteins, such as rhodanese,
glyceraldehyde-3-phosphate dehydrogenase, and 3-mercaptopyruvate sulfurtransferase,
are able to bind selenium and, therefore, debated as possible candidates for selenium
delivery proteins [33,34]. However, their physiological relevance to selenium assimilation
remains unclear.

The Trx system, which is distributed in many bacterial phyla, appeared as a promising
candidate for selenium delivery system in bacteria [16]. The Cys33 and Cys36 residues in
PsTrxA are broadly conserved in TrxAs (Figure S1). Disrupting these residues resulted in
the loss of not only insulin, but also selenite reduction activity (Figure 1), suggesting that
the conserved Cys residues are important for selenite reduction. The results of gel-shift
assays suggested that Cys33 and Cys36 were oxidized and/or modified with selenite
(Figure 2). A comparison of the two Cys residues suggested that Cys36 was not reactive
to selenite without Cys33, due to the fact having less reactivity than Cys33. The ESI-
MS analysis suggested that a specific fraction of PsTrxAs proteins formed a PsTrxA–SeO
complex, which might be an intermediate in the initial step of selenite reduction by PsTrxA
(Figure 3). The results of the benzyl viologen assays indicated that disrupted EcTrxA in
E. coli led to a decrease in FDH activity (Figure 4). Considering the previous report that
the disruption of TrxR in E. coli results in a decrease in FDH activity [22], the Trx system
functions as the main selenium delivery system from selenite to selenoprotein synthesis in
E. coli. In addition, since the Cys33 and Cys36 mutants did not complement EcTrxA gene
deletion, these residues are important for selenoprotein biosynthesis from selenite in vivo.
Taken together, these results indicate that the Trx system actually functions in the selenite
assimilation pathway for selenoprotein biosynthesis in bacteria.

A reaction mechanism for alkylthiols with selenite has been proposed [35], in which
alkylthioselenic acid (R-S-SeO2H) is generated first, then attacked by another alkylthiol,
resulting in the formation of dithioselenite (R-S-Se(O)-S-R), which is further converted to
the isomerized form (R-S-Se-O-S-R) [36]. Based on that mechanistic proposal [35,36] and
the present results, we propose the early steps of the selenite delivery system with TrxA
(Figure 5). First, selenite is attacked by the higher reactive thiol group of Cys33 to form
thioselenite (Cys-S-SeO2H) which is suggested by the band shift of C36A caused by the
incubation with selenite (Figure 2). Then, further nucleophilic attack by another thiol group
of Cys36 results in the formation of dithioselenite (Cys-S-Se(O)-S-Cys), which is supported
by our ESI-MS results (Figure 3). This TrxA–SeO complex can also be isomerized (Cys-S-Se-
O-S-Cys), and these complexes could be dedicated to further reduction to selenide in later
steps of the selenite delivery system. How the TrxA–SeO complex is further reduced to
provide a selenide substrate for SPS remains an open question. Other TrxA molecules may
be involved in the reduction of the TrxA–SeO complex, and the resulting oxidized TrxA
would be reduced by TrxR in an NADPH-dependent manner, or alternatively, it may also
be possible that TrxR directly reduces TrxA–SeO to produce selenide. Future studies will
focus on a comprehensive understanding of the selenium delivery mechanisms.
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4. Materials and Methods
4.1. Preparation of the Recombinant Proteins

To prepare His-tagged recombinant proteins, we constructed plasmids carrying the
PsTrxA and PsTrxR genes as follows. The coding region of each gene (PszF2a_05700
for PsTrxA and PszF2a_19560 for PsTrxR) [27] was amplified from the genomic DNA of
P. stutzeri F2a by PCR using the primer sets PsTrxA-f/PsTrxA-r and PsTrxR-f/PsTrxR-r
for PsTrxA and PsTrxR, respectively (Table S1). After digestion with NdeI (New Eng-
land Biolabs, Ipswich, MA, USA) and BamHI (New England Biolabs), the fragments
were individually inserted into the same restriction sites of pCold I (Takara Bio Inc.,
Kusatsu, Japan) to generate pCold-PsTrxA and pCold-PsTrxR. For site-directed mutagene-
sis, PCR proceeded using pCold-PsTrxA and the primer sets PsTrx_C33A-f/PsTrx_C33A-r
and PsTrx_C36A-f/PsTrx_C36A-r for the PsTrxA mutants, C33A and C36A, respectively
(Table S1). After digestion of the template plasmid with DpnI (New England Biolabs), the
mutated constructs were introduced into E. coli DH5α, resulting in pCold-PsTrxA_C33A
and pCold-PsTrxA_C36A. The plasmid for gene expression of the PsTrxA C33A/C36A
mutant, pCold-PsTrxA_C33A/C36A, was constructed using pCold-PsTrxA_C36A and the
primer set PsTrx_C33A/C36A-f/PsTrx_C33A/C36A-r using the same procedure described
above (Table S1).

Plasmids for the expression of PsTrxA and its mutants were introduced into E. coli
DH5α, and pCold-TrxR was introduced into E. coli BL21(DE3). The cells were grown at
37 ◦C in Luria–Bertani (LB) medium containing 100 µg mL−1 ampicillin (Nacalai Tesque,
Kyoto, Japan) [37] until their optical density at 660 nm reached 0.4. The cells were cooled
on ice for 30 min, then gene expression was induced by 0.2 mM isopropyl 1-thio-β-D-
galactopyranoside (Protein Ark, Sheffield, UK), and the cells were further incubated at
16 ◦C for 24 h. The cells were harvested by centrifugation (10,000× g, 5 min, 4 ◦C), washed
with phosphate-buffered saline [37], and collected again by centrifugation (10,000× g,
5 min, 4 ◦C). The cells were resuspended in 20 mM potassium phosphate (pH 7.4) con-
taining 500 mM NaCl, 20 mM imidazole, and 5 mM 2-mercaptoethanol, sonicated, then
centrifuged (15,000× g, 20 min, 4 ◦C). The crude extract was applied to a Ni-NTA Super
Flow column (Thermo Fisher Scientific, Waltham, MA, USA), and the recombinant proteins
were eluted by a stepwise increase in the imidazole concentration up to 500 mM. The puri-
fied proteins were buffer-exchanged to 40 mM potassium phosphate (pH 7.0) containing
5 mM 2-mercaptoethanol by ultrafiltration using an Amicon Ultra (Merck, Darmstadt, Ger-
many). Protein concentration was determined using Protein Assay CBB Solution (Nacalai
Tesque) by a Bradford protein assay [38].

4.2. Reduction Activity of the Recombinant Proteins

The disulfide-reducing activity of PsTrxA was evaluated by insulin reduction as-
says [28]. The reaction mixture (400 µL) contained 100 mM potassium phosphate (pH 7.0),
2 mM ethylenediaminetetraacetate, 150 µM insulin (Merck), 0.5 mM DTT, and 1 µM PsTrxA
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or its mutant protein. After preincubation at 37 ◦C for 3 min followed by addition of DTT
and further incubation for 3 min, the reaction was initiated by adding PsTrxA proteins. The
increase in absorbance at 650 nm due to the fact of precipitation of insulin by reductive
cleavage of the disulfide bond by DTT reduced PsTrxA was measured.

The selenite-reducing activity of the Trx system of P. stutzeri F2a was assayed as
follows. The reaction mixture (700 µL) contained 50 mM potassium phosphate (pH 7.0),
100 µM selenite, 300 µM NADPH, 2 µM PsTrxR, and 5 µM PsTrxA or its mutant protein.
After preincubation at 37 ◦C for 5 min, the reaction was initiated by adding selenite, and
the decrease in absorbance at 340 nm due to the decrease in NADPH was measured. The
reducing activity towards other oxyanions was tested with 2 µM PsTrxA and 100 µM
selenate, sulfite, sulfate, thiosulfate, nitrite, or nitrate instead of 100 µM selenite.

4.3. Cysteine–Thiol Group Labeling with PEG-PCMal

The numbers of free thiol groups in PsTrxA and its mutants were determined by
labeling them with PEG-PCMal (Dojindo, Kumamoto, Japan) followed by SDS-PAGE. The
PsTrxA and its mutants were reduced by incubation with 5 mM DTT in 50 mM potassium
phosphate (pH 7.0) at 25 ◦C for 15 min. The mixture was applied to a Micro Bio-Spin 6
size exclusion column (Bio-Rad, Hercules, CA, USA) to remove DTT. The reduced PsTrxAs
were incubated in a mixture containing 50 mM potassium phosphate (pH 7.0), 50 µM
selenite, and 10 µM PsTrxA or its mutants at 25 ◦C for 15 min, followed by incubation with
1 mM PEG-PCMal at 37 ◦C for 20 min. Labeled samples were mixed with 17% (v/v) of
loading buffer containing 10% SDS, 50% glycerol, 0.2 M tris(hydroxymethyl)aminomethane
(Tris)-HCl (pH 6.8), and 0.05% bromophenol blue and separated on an 18% polyacrylamide
gel by SDS-PAGE analysis.

4.4. ESI-MS Analysis

PsTrxA was DTT-reduced and incubated with selenite in the same manner as described
in Section 4.3. The buffer of the PsTrxA mixture was replaced with sterile water to remove
excess selenite using the Micro Bio-Spin 6. The protein samples were then mixed with
the same volume of 98% methanol containing 2% formic acid and analyzed using a triple-
quadrupole Sciex API 3000™ mass spectrometer (Applied Biosystems, Foster City, CA,
USA) equipped with an electrospray ionization source in positive mode.

4.5. FDH Activity in Whole E. coli Cells

The FDH activity of the whole E. coli cells was examined as an indicator of selenopro-
tein biosynthesis using the strains, BW25113, JW5856-KC, and JW3564-KC as the wild type,
∆EctrxA, and ∆selA strains, respectively, from the Keio collection [39]. For complementa-
tion analysis of the decrease in FDH activity by PsTrxA and its mutants, the ∆EctrxA strain
was transformed using pColdI, pCold-PsTrxA, pCold-PsTrxA_C33A, pCold-PsTrxA_C36A,
or pCold-PsTrxA_C33A/C36A. The activity of FDH was assayed using the benzyl viologen
agar overlay method [40]. E. coli cells were anaerobically cultivated overnight on LB solid
medium containing 0.5% glucose at 37 ◦C. The medium was then overlayed with 0.75%
agar containing 1.0 mg mL−1 benzyl viologen, 3.4 mg mL−1 KH2PO4, and 17 mg mL−1

sodium formate. The agar solidified within a few minutes, and cells with FDH activity
were stained purple.
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