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ABSTRACT

Many mammalian mRNAs possess long 5 UTRs
with numerous stem-loop structures. For some of
them, the presence of Internal Ribosome Entry
Sites (IRESes) was suggested to explain their sig-
nificant activity, especially when cap-dependent
translation is compromised. To test this
hypothesis, we have compared the translation
initiation efficiencies of some cellular 5 UTRs
reported to have IRES-activity with those lacking
IRES-elements in RNA-transfected cells and cell-
free systems. Unlike viral IRESes, the tested 5’
UTRs with so-called ‘cellular IRESes’ demonstrate
only background activities when placed in the
intercistronic position of dicistronic RNAs. In
contrast, they are very active in the monocistronic
context and the cap is indispensable for their
activities. Surprisingly, in cultured cells or cyto-
plasmic extracts both the level of stimulation with
the cap and the overall translation activity do not
correlate with the cumulative energy of the
secondary structure of the tested 5° UTRs. The
cap positive effect is still observed under
profound inhibition of translation with elF4E-BP1
but its magnitude varies for individual 5° UTRs irre-
spective of the cumulative energy of their
secondary structures. Thus, it is not mandatory to
invoke the IRES hypothesis, at least for some
mRNAs, to explain their preferential translation
when elF4E is partially inactivated.

INTRODUCTION

Eukaryotic cells use two principal ways of translation
initiation, a 5" end dependent (cap-dependent) mode and
the mechanism of internal ribosome entry. The first mode
can be employed by all eukaryotic cellular mRNAs, the
second one was initially demonstrated for genomic RNAs
from viruses with RNA positive genomes that replicate in
the cytoplasm and have no m’G-cap at the 5 end
(picornaviruses, some flaviviruses, pestiviruses) (1). The
existence of IRES elements within the 5 UTRs of these
viral RNAs was first inferred from experiments with
dicistronic  DNA constructs (2), and for some
representatives of the picornavirus family, pestiviruses
and flaviviruses was definitely proven by direct
reconstitution of translation initiation complexes from
purified components combined with site-specific
mutagenesis (3—6). Moreover, the sites of binding of key
canonical and auxiliary factors within the IRESes of these
viral mRNAs were determined, thereby giving us some
idea as to how these IRES elements work (4,7-9).

Later, the IRES elements were also proposed for 5
UTRs of many cellular mRNAs (see refs 10-13 and
references cited therein) which are known to be all
capped. They have usually been found within the 5
UTRs with complex secondary structure, and, as a rule,
their corresponding mRNAs encode proteins with
regulatory functions. The concept of cellular IRESes
became very attractive because it helped to explain how
ribosomes cope (10) with numerous stem-loop structures
present within their 5 UTRs. The IRES concept is also
appealing as an explanation of the relative resistance of
some mRNA translation to special conditions of cell
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stress, mitosis or apoptosis when the cap-dependent trans-
lation is compromised (11).

However, unlike viral IRESes, for none of numerous
cellular TRESes proposed to date has the molecular
mechanism of their operation been dissected. To demon-
strate the presence of an IRES in a 5" UTR, the dicistronic
test has been employed as the ‘gold standard’. According
to this criterion, the sequence is declared as possessing
IRES activity, if it only stimulates, o any extent, the trans-
lation of the second gene in the dicistronic construct, as
compared to the ‘empty’ vector. Until recently, the most
popular variant of the dicistronic test usually applied has
been the transfection of cultured cells with a dicistronic
DNA plasmid (for in vivo tests) and translation of the
corresponding dicistronic transcript in vitro in nuclease
treated rabbit reticulocyte lysate (RRL), the widely used
mammalian cell-free system. However, both of these
methods have been recently shown to produce a
collection of artifacts (14-22). The RNA transfection of
cultured cells has been suggested as an alternative
approach. However, the poor activity of some cellular
IRESes was revealed in these RNA dicistronic tests
raising concern about its functional significance.

The classical IRES elements from viral RNAs can be
quite distinct in secondary and tertiary structures (e.g.
compare EMCV and HCV IRESes). However, all studied
viral IRESes have one common feature: they all have
highly specific sites for binding key translation initiation
components (1). Consequently, even point mutations in
these or other functionally important sites produce a
killing effect on the IRES activity (4,7-9,23,24). To the
best of our knowledge, such ‘killing mutations’ have not
been reported for cellular IRESes. In most cases, attempts
to localize a ‘key sequence’ or a “critical structural element’
within proposed cellular IRESes have been unsuccessful.
In those few cases when such ‘critical sequences’ are found,
the translation components that recognize them have
not been identified (25,26). This situation prompted us
to think about an alternative explanation for the differen-
tial effect of stress conditions on the translation initiation
of individual mRNAs.

In this study, we have compared with each other the
translation initiation potentials of several 5 UTRs
(derived from B-actin, B-globin, LINE-1, Apaf-1, c-Myc,
hsp70 and several viral mRNAs) in different constructs
and under different conditions. We show that, unlike in
monocistronic constructs, all the sequences tested, except
viral IRESes, demonstrate an extremely low translation
level when placed between two cistrons. Having
proceeded to monocistronic constructs, we show that the
selected capped 5" UTRs with putative IRES-elements are
unexpectedly efficient in the cap-dependent translation,
irrespective of their length and GC content, contradicting
the generally accepted view (27).

The m’G-cap is still involved in the mechanism of
translation initiation when the process is strongly
inhibited by addition of the recombinant 4E-BP1 to the
cell-free system, thereby mimicking stress conditions.
However, the potential to direct translation initiation
under these inhibitory conditions varies between different
cap-dependent 5 UTRs, thereby providing an alternative

explanation for a relative resistance of translation of some
mRNASs to stress conditions.

MATERIALS AND METHODS
Plasmid constructs

All dicistronic DNA constructs were prepared on the basis
of pGL3R vector (28). The plasmids containing full-length
LINE-1 5 UTR (29), hsp70-1A 5 UTR (the variant most
widely represented in human EST sequences) (30), EMCV
mut (30) and complete HCV IRES (nts 40-375) (29) were
described previously. Rluc-HRV-Fluc plasmid (28) was a
gift from A. Willis. For other constructs, RT-PCR
fragments were obtained with total RNA from
HEK293T cells (for B-actin, Apaf-1 and c-Myc) or RRL
(for B-globin). For cDNA synthesis, dT;s primer was
used, followed by PCR with the pairs of gene-specific
primers: CCGGCACTAGTGTAATACGACTCACTAT
AGGACCGCCGAGACCGCGTCC and CGCGCCAT
GGTGAGCTGGCGGCGGGTGTGGAC for P-actin,
AAGAAGAGGTAGCGAGTGGACG and CGCGCCA
TGGTCCCTCAGATCTTTCTCTCTCTG for Apaf-1,
ACTTGCTTTTGACACAACTG and CGCGCCATGG
TCTGTCTGTTTTGGGGGATTGC for rabbit
B-globin, CTGCGCGCAACTCGCTGTAGTAATTCC
AGC and CGCGCCATGGAGATATCCTCGCTGGG
CGC for c-Myc [which results in a fragment correspond-
ing to the complete P2 promoter-directed 5 UTR plus the
first 150 nt of coding region, see ref. (31)]. The resulting
PCR products were inserted into pGL3R vector digested
with Pvull and Ncol. The plasmid containing encephalo-
myocarditis virus (EMCV) IRES (nts 315-846) was
obtained in a similar way using Smal-Ncol fragment
from the plasmid pTE1 (32). pRluc plasmid used for the
monocistronic Rluc mRNA production was described
in (29).

All mutants of the Apaf-1 5 UTR were prepared
by PCR with corresponding primers; mut Al-A4
correspond to deletions of nts 27-98, 106-345, 354-426
and 455-554, respectively. For the AUGI mutant, nts
216-237 were replaced by aaaaccatggataaa (or by aaaacc
taggataaa for UAGI). For AUG2 and UAG2 mutants,
nts 434-443 were replaced by the same sequences as in
the case of AUGI and UAGI, respectively.

mRNA preparation

To prepare capped polyadenylated mRNAs, PCR
products were first obtained from the corresponding
plasmids. The same reverse primer Ts(AACTTGTTTAT
TGCAGCTTATAATGG was used along with the T7
promoter containing 5 UTR-specific primers (CGCCGT
AATACGACTCACTATAGGGACACTTGCTTTTGA
CACAACTGTG for B-globin, CCGGCACTAGTGTAA
TACGACTCACTATAGG for B-actin, CCGCCGTAAT
ACGACTCACTATAGGGCGGAGGAGCCAAGATG
GCCGAATAGG for LINE-1, CGCCGTAATACGACT
CACTATAGGGAAGAAGAGGTAGCGAGTGGACG
for Apaf-1, CGCCGTAATACGACTCACTATAGGG
CTGCGCGCAACTCGCTGTAGTAATTCCAGC for
c-Myc), or with universal primer CGCCGTAATACGA



CTCACTATAGGGAGCTTATCGATACCGTCG
annealing to pGL3R region upstream of a 5 UTR (in the
case of the viral IRESes). The PCR products were used
then as templates for in vitro RNA transcription by T7
RiboMAX Large Scale RNA Production kit (Promega).
For preparation of m’G- or A-capped transcripts
the 3’-O-Me-m’GpppG or ApppG (NEB) was added to
the transcription mix in a proportion of 10: 1 to GTP. The
resulting RNAs were purified by LiCl precipitation and
checked for integrity by PAGE.

Cell culture and transfection procedures

HEK?293T and HeLa cells were cultivated in DMEM sup-
plemented with 10% FBS, as described (29). The day
before transfection, exponentially growing cells were
replated to 24-well plates at densities 1:2 or 1:3 (for
RNA or DNA transfection, respectively). After 12-16h
of growth, when the cell density reached 60-80% (for
RNA) or 50-60% (for DNA), transfection was
performed using Lipofectamin 2000 (Invitrogen). DNA
was transfected exactly as recommended by manufacturer.
For a typical RNA transfection, 0.5 pg of reporter mRNA
(or equimolar Fluc and Rluc encoding mRNA mix, 0.5 pug
in total) was incubated with 1.3l of the transfection
reagent in 50 ul DMEM for 20 min and then added into
the growth medium. Two hours later, cells were harvested
and luciferase activities were analyzed with the Dual
Luciferase Assay kit (Promega). All the transfections
were repeated several times in different cell passages. For
the most important experiments, the procedure was
repeated with an alternate transfecting regent, Unifectin
(RusBioLink) (29).

Preparation of Krebs-2 cells S30 extract and in vitro
translation

S30 extracts were prepared as described in (16). Briefly,
Krebs-2 ascites cells were collected in a centrifuge tube
with isotonic buffer (150mM NaCl, 35mM Tris—HCI
pH 7.5), and four times washed with centrifugation
(Beckman JA-20, 1200 rpm, 10min) in equal volumes
of the same buffer. After the fourth centrifugation, cells
were re-suspended in 1.5 volumes of hypotonic buffer
(10mM Tris—HCI pH 7.5, 10mM KCH;COO, 1.5mM
Mg(CH;COOQO),, 2.5mM DTT) and incubated on ice for
20min. Then the cells were disrupted using a Dounce
homogenizer (type B pestle, 15-20 strokes), and the
lysate was centrifuged for 20min at 15000rpm. The
supernatant was aliquoted and stored at -75°C.
Translation experiments were performed in a total
volume of 10 pl, which contained 5 pl of the S30 extract,
translation buffer 20mM Hepes—KOH pH 7.6, 1 mM
DTT, 0.5mM spermidine-HCI, 0.6 mM Mg(CH;COO),,
8mM creatine phosphate, ImM ATP, 0.2mM GTP,
120mM KCH;COO and 25uM of each amino acid), 2
units of Human Placental Ribonuclease Inhibitor
(HPRI, Fermentas) and 0.25pmol mRNA (or mRNA
mix), for 1h. The luciferase activities were measured
using the Dual Luciferase Assay kit. Translation in
nuclease treated RRL (Promega) was performed exactly
as suggested by the manufacturer, with the addition

Nucleic Acids Research, 2009, Vol. 37, No. 18 6137

of 25uM of L-methionine (instead of radiolabel
[**S]methionine). When indicated, various amounts of
m’GTP (equilibrated with respective amount of
Mg(CH;COO),) were added, and the translation mix
was pre-incubated for 5min before the addition of
mRNA. For experiments with 4E-BP1, the recombinant
protein was used. Plasmid pGEX-6pl1-h4E-BP1 (a gift
from Y. Svitkin and N. Sonenberg, McGill University,
Montreal) encoding human 4E-BP1-GST fusion was
expressed in Escherichia coli, and 4E-BP1 was purified
using  Glutathione-Sepharose 4B and  PreScission
Protease (Amersham) and dialyzed against buffer A100
(20mM Tris—HCI pH 7.5, 100mM KCI, 0.1 mM EDTA,
ImM DTT, 10% glycerol). Highly purified 4E-BP1
protein was added to the translation mix in a volume
less than 1.5pl and incubated for Smin before the
addition of reporter mRNAs. In the control, an equal
amount of A100 buffer was added.

RESULTS

Transfection of cells with dicistronic DNAs produces
artifacts even in the case of some viral IRESes

In our study we used 5 UTRs from nine different
mammalian mRNAs (see Supplementary Table S1). 5
UTRs from Apaf-1, c-Myc and hsp70 mRNAs were
reported to contain IRES-elements (28,30,31,33). In
contrast, the relatively short B-globin (53 nt) and B-actin
(84 nt) leaders represented classical cap-dependent 5
UTRs. The cap-dependent scanning mechanism was also
exemplified by a very long leader (900 nt) from the LINE-1
mRNA (29). The well-characterized viral IRESes used as
control were from encephalomyocarditis virus (EMCV),
human rhinovirus (HRV) and hepatitis ¢ virus (HCV)
RNAs. They are known to be different in their structure
and mechanisms of internal ribosome entry (34).

The standard Rluc-5" UTR-Fluc ¢cDNA constructs
under control of SV40 promoter (Figure 1A) were
prepared with these 5 UTRs and co-transfected into
human kidney cells (HEK293T) with or without plasmid
pRLi. The pRLi test was proposed by R. Lloyd and
co-workers (20). pRLi encodes an siRNA to the first
cistron (RLuc). Its co-transfection with dicistronic
cDNAs results in the degradation of RLuc sequences
and a corresponding inhibition of RLuc protein
synthesis in the cell. If Rluc and Fluc are translated
exclusively from an intact dicistronic mRNAs, then both
Rluc and Fluc activities should be proportionally reduced
following the Rluc-targeted RNAI response. However, if
an mRNA is monocistronic, encoding only Fluc, then the
Fluc activity should be unaffected by the presence of Rluc
siRNA. As seen from Figure 1B, only the dicistronic
constructs with the HRV IRESes, and, to a lesser extent,
with the 5 UTRs from the EMCV and Apaf-1 mRNAs
passed this control test. The expression from the Fluc
cistron when it was directed by other 5 UTRs was
remarkably resistant to degradation of Rluc sequences.
The HCV IRES does not stand the test, either, in
agreement with data by Dumas er al. (18). It is
important to note that similar conclusions were derived
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Figure 1. Effect of RNA interference against Rluc in cells transfected by DNA dicistronic constructs on the activity of the second cistron (Fluc)
directed by different 5 UTRs. (A) Schematic presentation of the DNA dicistronic constructs used in the experiments. (B) Results of the DNA
transfections of HEK293T cells with and without pRLi plasmid. For each dicistronic construct the activities of Rluc and Fluc in the presence of
pRLi were normalized to those in its absence, which were set to 100%. pR + pF is a control test where two monocistronic constructs pR and pF were

contransfected with or without pRLi.

for classical swine fever virus (CSFV), porcine Tescho
virus-1 (PTV-1) and cricket paralysis virus (CrPV)
IRES-elements (data not shown). This experiment is one
more convincing illustration of why we cannot rely on the
use of dicistronic cDNA transfections to test nucleotide
sequences for IRES activity and should proceed to
transfection of cells with RINAs.

Identification of IRESes by RNA transfection:
conventional criterion

As in the case of dicistronic DNAs, the conventional
approach to identify IRES-elements from transfection
experiments with dicistronic RNAs is to compare the
second cistron expression (e.g. Fluc) driven by the test 5’
UTR with its expression from the corresponding ‘empty’
dicistronic vector. Alternatively, one can use a construct
where the second cistron is preceded by the sequence
whose IRES activity is close to 0. In our work we used
for this purpose the inactivated EMCV IRES
(EMCVmut) (30).

m’G-capped and polyadenylated dicistronic mRNAs
containing in the intercistronic position all cellular and
viral 5 UTRs listed above (Figure 2A) were transfected
into HEK293T cells. Their Fluc expression values
normalized to Rluc are shown in Figure 2B. It can be
seen that for all our constructs the Fluc activity was

higher than for the control EMCVmut construct.
The stimulation of Fluc expression was from 2-fold
(B-globin, c-Myc) to 6-fold (Apaf-1). Formally, it
appears as if all the 5 UTRs of cellular mRNAs used in
this study possess some IRES activity. Given that even the
B-globin 5" UTR reveals a weak IRES activity, it is not
clear what degree of stimulation should be observed to
conclude that a particular sequence is an IRES: 4-fold,
10-fold or more? It was also clear that the IRES activity
of all the tested cellular 5 UTRs was much lower than that
for the classical viral IRESes, especially picornavirus
IRESes (EMCV and HRV).

Similar data were obtained when the same constructs
were translated in vitro, in nuclease untreated cytoplasmic
extracts of Krebs-2 cells (Figure 2C). The significant
difference was that, for some reason, the control HRV
IRES was weaker in this system than in transfected
HEK?293T cells whereas in contrast, the other control,
HCV IRES, worked much better. Otherwise, the results
in vivo and in vitro correlated with each other. As it has
been stressed earlier (16,35), nuclease untreated cyto-
plasmic extracts from cultured cells are the only
available in vitro system which is adequate to study
complex mechanisms of translation initiation and
regulation (see also below). In this system the tested
mRNAs are translated under conditions of competition
with cellular mRNAs (35). In addition, in contrast to
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RRL, the cytoplasmic extract from cultured cells appears
to contain the entire set of mRNA-binding proteins which
can presumably modify the molecular mechanism and the
efficiency of translation initiation (see ‘Discussion’
section).

Thus, the Fluc/Rluc values obtained for cellular 5
UTRs in the intercistronic position in both systems
produce the impression that they represent just
background activities, inherent to any experimental
system, and may be of no physiological significance.
To clarify this point, it was important to use other
approaches and alternative criteria. First of all, we
wanted to know what was the actual translation
initiation potential of selected 5 UTRs when they are in
their natural situation, i.e. at the 5 end of m’G-capped
monocistronic mRNAs.

Comparison of the 5 UTR activities in mono- versus
dicistronic capped mRNAs

All eukaryotic mRNAs are both monocistronic and
m’G-capped, and dicistronic  constructs therefore
represent an artificial situation. To determine the actual
translation initiation potential, it was important to
compare translation initiation activities of tested &
UTRs in their natural 5'-terminal position vs. the
intercistronic one. To this end, m’G-capped polyadeny-
lated mono- and dicistronic mRNAs (Figure 3A) were
synthesized, transfected into two cell lines (HEK293T
and HeLa) in the same molar amounts and the
translational activity was determined for each of the
constructs. Figure 3B shows the data for HEK293T
cells, the level of Fluc/Rluc for monocistronic constructs
being set to 100%. It is clear that the activities of cellular
5 UTRs in the dicistronic position are dramatically lower
than in monocistronic mRNAs whereas the correspond-
ing values do not differ significantly for picornaviral
IRESes. Similar data were obtained for HeLa cells (see
Supplementary Figure S1), and also in vitro, in the cell-
free system prepared from ascite cells Krebs-2 (Figure 3C).
(Interestingly, the HCV IRES also demonstrated a sub-
stantial difference in activity between the two constructs.
The possible explanation of this phenomenon is given in
the next section.) These data convincingly indicate that the
putative cellular IRESes selected for this study do not
meet by definition the critical criterion characteristic of
true IRES-eclements: they demonstrate only very low
background activities when placed in the intercistronic
position, especially in comparison with the corresponding
monocistronic constructs. It is important to note that
the all capped monocistronic mRNAs used in these
experiments revealed very high absolute levels of
luciferase activity (see below).

Comparison of m’G-capped versus A-capped
monocistronic mRNAs

The strikingly poor initiation activities of cellular 5 UTRs
in the intercistronic position may be accounted for by
the inhibitory effect of upstream nucleotide sequences,
by the absence of the m'G-cap or both. The negative
influence of upstream sequences is difficult to analyze as
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we do not know the mechanism of translation initiation
on intercistronic sequences. However, it is easy and
important to assess the contribution of the m’G-cap to
the translation initiation of different cellular 5 UTRs,
those which use a classical cap-dependent mechanism
and those which are claimed to possess IRES activity.
To this end, both m’G-capped and uncapped mono-
cistronic constructs were synthesized. As above, all
transcripts were polyadenylated (50 A-residues). In
so-called ‘uncapped’ transcripts the functional m’G-cap
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(B) Comparison of indicated capped vs. uncapped monocistronic
transcripts in the RNA transfection assay for HEK293T cells. Fluc/
Rluc values for capped mRNAs were taken as 100% for each
individual construct. (C) Translation of the same pairs of constructs
as in (B) and (C) in the S30 extract from cells Krebs-2.

was substituted by a non-functional A-residue to protect
the 5'-end of mRNA from the 5'-exonuclease degradation.
Hereafter, the corresponding transcripts are referred
to as m’G-capped and A-capped mRNAs, respectively
(Figure 4A). The results of RNA transfection experiments
with these transcripts are shown for cells HEK293T in
Figure 4B. It is clear that the omission of the m’G-cap
from the 5" end of the mRNAs dramatically inhibited the



translation directed by all tested cellular 5 UTRs but had
almost no effect on the picornaviral IRESes. Similar
conclusions can be drawn from experiments with
transfected HeLa cells (Supplementary Figure S2) and
the cytoplasmic extract of Krebs-2 cells (Figure 4C). It is
interesting that capping of the HCV IRES strikingly
stimulates translation of the reporter gene, especially in
living cells. Thus, m’G capping of the HCV IRES
switched its mode of translation initiation from IRES-
dependent to cap-dependent, the latter being more
efficient. [The same observation was made with a
transcript containing the CrPV IRES (data not shown)].
This conclusion is in agreement with the data of Wiklund
et al. (36) and the recent report from Belsham group (37).

However, quantitatively, the m’G-cap omission did
not exert the same effect on different cellular 5* UTRs.
The most dramatic negative effect was noted for the 5
UTR of B-actin mRNA, the lowest—for the Apaf-1 5
UTR, especially in HEK293T cells. The data obtained
for the same mRNA pairs in vitro (see Figure 4C) nicely
correlated with those obtained in experiments with
transfected cells.

It was very important to know whether degradation
of mRNA affected values obtained, in particular when
we determined the contribution of the m’G-cap to the
translational initiation of individual mRNAs with
different 5 UTRs. It is logical to think that the
A-capped mRNAs are more sensitive to degradation
since they have no initiation factors protecting the 5 end
and are presumably less loaded with translating
ribosomes. If a preferential degradation of A-capped
mRNAs occurs and its extent is different for different
mRNAs used in the study, then all our ratios m’G-
capped mRNA/A-capped mRNA won’t reflect the real
contribution of the m'G-cap to the translational activity.

A conventional way to determine the integrity of a
RNA is to extract it from cells and perform Northern
assay or real-time PCR. However, in the case of RNA
delivery by lipofection when the translation activity is
measured soon after transfection, these methods are not
correct to apply (38). Instead, we analyzed the time course
of cap-dependence for various 5 UTRs used in the
study. To this end, ratios of expression levels of m’G
capped mRNAs vs. those for A-capped mRNAs were
determined. We found that these ratios are nearly
constant until 3h post-transfection (see Supplementary
Figure S3). Thus, the detected translational activities
and their ratios are not significantly affected by deg-
radation of A-capped mRNAs within the indicated
period since all our results on the m’G-cap contri-
bution to the translational potentials of various 5
UTRs shown on Figure 4A were obtained at 2h post-
transfection.

m’GTP or eIF4E-BP differentially inhibit translation of
m’G-capped mRNAs with different cellular 5’ UTRs

The different influence of the m’G-cap omission on the
translation directed by individual 5 UTRs prompted us
to compare the effect of known inhibitors of the cap-
dependent initiation, m’GTP and eIF4E-BP (Figure 5A),
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on the cellular and viral 5 UTRs selected for this study.
Whereas m’GTP is not a naturally occurring inhibitor, the
translational repressor 4E-BP1 appears to be involved in
many control mechanisms switched on under various
stress conditions (39). All experiments were performed in
an in vitro system where we could control precisely the
concentrations of inhibitors. As before, the nuclease
untreated S30 extract from ascite cells Krebs-2 was
employed.

First, we performed titration of the system with
different concentrations of m’GTP and 4E-BPI to find
concentrations of each that produced a maximum
inhibition effect on the standard cap-dependent B-actin
5" UTR (Figure 5B). It is important to note that the
maximum inhibition we could achieve with 4E-BP1 was
only 4-fold. However, this result is in a good agreement
with the known effect of 4E-BP1 overexpressed in cells
[2.5-fold inhibition of cap-dependent translation by non-
phosphorylatable 4E-BP1 mutant—see, e.g. ref. (40)]. This
suggests that under conditions of profound inhibition of
translation by this translational repressor, the elF4E-
elF4G interaction is not completely excluded from the
initiation process even for classical cap-dependent
mRNAs. As expected (see Figure 5C and D), the
m’GTP caused a much more dramatic inhibitory effect
on the translation of mRNAs directed by cellular 5
UTRs than 4E-BP1. In fact, the initiation activity for all
cellular m’G-capped mRNAs at the concentration of
m’GTP as high as 100pM was reduced to the level
observed for the corresponding A-capped constructs,
also in the presence of the m’GTP (A-capped mRNAs
were stimulated by addition of the analog, presumably
because of relieving the competition with endogenous
capped mRNAs). However, even this background
activity was not the same for all the cellular 5 UTRs
selected for this study. The differential response of
individual cellular 5 UTRs to the inhibition of initiation
at the level of the eIF4E was more pronounced in the
experiments with 4E-BP, an inhibitor with another
mechanism of action (see Figure 5A). Some of the ¥
UTRs (B-globin, B-actin and LINE-1 5§ UTRs)
responded stronger, whereas Apaf-1, c-Myc and hsp70
were more resistant to inhibition (Figure 5D). It is of
interest that under the selected concentration (0,1 mg/ml)
the 4E-BP1 inhibited the Apaf-1 5 UTR less than twice
(see columns Apaf-1 in Figure 5D). As expected, the
activity of viral IRES-elements was not suppressed.

mRNAs with long and highly structured 5° UTRs reveal
efficient cap-dependent translation initiation

We have recently reported that the 900 nt long and highly
structured 5 UTR of LINE-1 mRNA is capable of
efficient cap-dependent translation initiation and that
this mRNA wuses an efficient scanning rather than
shunting mechanism to locate its initiation codon (29).
It was not clear, however, whether this mRNA repre-
sented a unique (exotic) case and hence all these features
were accounted for by a special organization of its 5
UTR. However, when performing the experiments
described in the previous sections, we noted that the



6142 Nucleic Acids Research, 2009, Vol. 37, No. 18

A elF4G
+

elF4A

) ' 0 4E-BP1
elFAE J

7
' o MIGTP

Capped
mRNA Aue

B  4EBP1 0 004 008 012 016 020mg/mL
10 4 . . . .

100

= g1 O 4E-BP1
=]

g 807 —e—m7GTP
o

L

[&]

=2

(0]

=

=

©

[0)

4

|Krebs-2 S30

Relative luciferase units

O

175

150 -
125 1
100 +
75 A
50
25 1

Krebs-2 S30

Relative luciferase units

N
m
w
T

1

m7G A m7G A m7G A m7G A

m7G A m7G A m7G A m7G A m7G A

B-globin B-actin Apaf-1

c-Myc EMCV HRV

Figure 5. Differential inhibition of translation of capped mRNAs containing different cellular ¥ UTRs by m’GTP or 4E-BPI in the cytoplasmic
extract of cells Krebs-2. (A) Interpretative drawing showing distinct mechanisms of inhibition of the cap-dependent translation by m’GTP or el F4E-
BP. (B) Titration curves to determine the concentrations of m’GTP or 4E-BP1 which exert maximum inhibitory effects on the translation of
the standard cap-dependent mRNA (B-actin 5 UTR directed Flue mRNA). (C) and (D) Effects of m’GTP (100 uM) and 4E-BP1 (0.1 mg/ml) on
the translation of m’G-capped and uncapped (A-capped) monocistronic mRNAs containing various cellular 5 UTRs and viral IRESes in the
cytoplasmic extract of cells Krebs-2. As before, the extract was not treated with micrococcal nuclease to ensure competitive conditions for translation

of exogenous mRNAs.

cap-dependent translation efficiency of Apaf-1 and c-Myc
5" UTRs was rather high, in spite of the fact that they had
a highly developed secondary structure. Some sequences
making up these 5 UTRs form not only standard stem-
loop structures but reveal also long distance interactions
(41). Therefore, we decided to directly compare the

translation initiation potentials of all 5 UTRs used in
this study in transfected HEK293T cells (Figure 6A).
Similar pattern was observed at different time points
(from 0.5 to 12h, see Supplementary Figure S4)
suggesting that degradation of mRNAs, if any, does not
affect the levels observed. Analogous ratios of the
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Figure 6. Demonstration of efficient cap-dependent translation
initiation of mRNAs with long and highly structured 5 UTRs both
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translational levels were obtained for another cell line
(HeLa, see Supplementary Figure S5).

One can see that the translation initiation efficiency of
Apaf-1 and ¢c-Myc 5" UTRs is only half that for the 5
UTRs from B-globin and B-actin mRNAs in HeLa cells.
The difference between these leaders is even less significant
in HEK293T cells. One should recall that the short 5
UTRs of B-globin and B-actin mRNAs are regarded as
standard efficient natural mRNAs that use the classical
cap-dependent scanning mechanism. Among cellular
5" UTRs, the lowest activity was found for the LINE-1
5" UTR. However, as was shown in our recent report (29),
this is accounted for by the existence of a short uORF at
the very 5 end of this 5 UTR rather than by its length or
highly developed secondary structure. Notably, all tested
viral IRES were significantly less active than the cap-
dependent mRNAs, at least in HEK293T and HeLa cell
lines.

The conclusion that the highly structured Apaf-1 and
c-Myc 5 UTRs are efficient in the m’G-cap-assisted
translation initiation was reinforced by experiments in
the S30 extract (Figure 6B). In this case, the translation
initiation activity of Apaf-1 mRNA even exceeded that of
the 5 UTRs of B-globin or B-actin mRNAs.

The finding that the 5 UTRs of Apaf-1, c-Myc and
LINE-1 mRNAs do not yield significantly to the ¥
UTRs of B-globin or P-actin mRNAs in translation
activity is not a trivial observation since it looks as con-
tradicting the scanning rules (27). This observation is not
without precedent (see ‘Discussion’ section). Nevertheless,
this fact had not been given due consideration presumably
because researchers normally used the translation in the
standard nuclease treated RRL. The advantages of
nuclease untreated cytoplasmic extracts of cultured cells
have not yet become widely recognized. Thus, we decided
to compare the translation initiation activities of different
5 UTRs in RRL with those in the extract from cells
Krebs-2. These data are shown in Figure 6B and C.
They demonstrate a striking difference in the relative
translation efficiencies of 5 UTRs in these two cell-free
systems. As expected from numerous previous reports,
the classical cap-dependent 5 UTRs of B-globin or
B-actin mRNAs proved to be very active in RRL
whereas long and structured 5 UTRs are not. However,
in the S30 extract they all have substantial activity. As the
relative translation efficiencies in the nuclease untreated
S30 extract reflect much better the situation observed in
transfected cells, we conclude that RRL is not an adequate
system to study the translation initiation mechanisms for
mRNAs with complex 5 UTRs, a conclusion that had
been already made in our recent reports (16,17).

The sequence of the Apaf-1 5° UTR is efficiently scanned
by the ribosome to locate the start codon

What are the mechanisms of cap-dependent and cap-
independent translation initiation on highly structured 5’
UTRs? Certainly, every particular 5 UTR should be
analyzed separately. We decided to focus our attention
on the Apaf-1 5 UTR since this highly structured leader
is the least cap-dependent among those studied in this
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article and was therefore more likely to harbor some
‘IRES-like” sequences. We made deletions of principal
structural domains (42) within this 5 UTR (see
Figure 7A) and analyzed the corresponding capped and
uncapped transcripts in transfected HEK293T cells. As
seen from Figure 7B, for the m’G-capped mRNAs these
deletions resulted in some stimulation of translation
though the maximum effect did not exceed 2-fold.
More important results were obtained with A-capped
transcripts: none of the deletions produced a strong
effect on translation, thereby, once again, arguing
against a true IRES in this 5 UTR. Moreover, insertion
into the Apaf-1 5 UTR of additional AUG triplets
(but not termination UAG codons) in a good Kozak
context dramatically inhibited translation of both m’G-
and A-capped transcripts (Figure 7C). We conclude that
the 40S ribosome ‘sees’ AUG codons within the entire
sequence of this highly structured 5 UTR and hence
is able to efficiently scan it regardless of whether the
Apaf-1 5 UTR is capped or not.

DISCUSSION

The m’G-cap structure is present at 5-termini of all
nuclear encoded eukaryotic mRNAs and plays a central
role in the scanning mechanism of AUG selection in
eukaryotes. According to the scanning model proposed
by Kozak (27), the secondary structure of 5 UTRs of
eukaryotic mRNAs causes an inhibitory effect on transla-
tion initiation, since it should interfere with movement of
the 40S ribosomal subunit along the polynucleotide chain
(43). Thus, existence of efficiently translated mRNAs with
long and structured 5 UTRs is poorly compatible with the
prevailing idea on the scanning mechanism. This accounts
for a widely accepted opinion that such mRNAs should be
weak cap-dependent mRNAs.

In this article we show that this view can be challenged.
It has most probably been implanted in the mind of many

researchers owing to the results of translation assays
performed in RRL with various 5 UTRs including those
used in this study. To the best of our knowledge, no one
has systematically compared the absolute translation
initiation potentials of different 5 UTRs in systems
other than RRL, especially in living cells. We have
decided to fill this gap, at least partially, with this study.

We show [(29) and this work] that three long and highly
structured 5" UTRSs from cellular mRNAs (Apaf-1, c-Myc
and LINE-1) which were arbitrarily selected for our
studies, reveal a high translation initiation potential,
comparable with that for standard cap-dependent
mRNAs (B-globin and -actin). Our observations are
not without a precedent. Indeed, (i) Hensold et al. (44)
showed that the 5 UTR of Spi-1 (PU.1) mRNA was
highly structured. It decreased translation of Spi-1
transcripts in RRL 8- to 10-fold. However, the effect of
the 5 UTR on translation in vivo was negligible; (ii)
Stonely et al. (45) showed that the m’G-capped c-Myc 5/
UTR was even more efficient in Balb/c 3T3 and MCF-7
cells than the short leader of the standard Luc mRNA
transcribed from the pGL3 vector; (iii) van der Velden
et al. (46) reported that the 5 UTR (leader 1) of insulin-
like growth factor IT (592nt) was highly structured, did
not contain an IRES and did not use shunting to initiate
translation. The leader 1 driven reporter expression was
low in RRL but was very efficient in cells; (iv) Bert et al.
(15) noted that the monocistronic firefly luciferase
mRNAs containing the HIF-1ow or ¢-Myc 5 UTRs gave
rise to luciferase levels that are 62%—77% of what was
produced from the control monocistronic luciferase
mRNA which had only a short, relatively unstructured
5" UTR. The authors concluded that the GC-rich HIF-
loo and c-Myc UTRs were not particularly inhibitory to
translation but did not discuss this point further.

Thus, in disagreement with the currently prevailing
view, the efficiency of mRNA translation in cultured
cells and crude S30 cell-free system is little affected by
the 5 UTR length and GC-richness. The m’G-cap plays



a crucial role in this high initiation activity. Again, we did
not find any correlation of the m’G-cap contribution with
the length, complexity or initiation efficiency of 5 UTRs.
For instance, the highly structured Apaf-1 5 UTR (42)
is less cap-dependent than the simple 5 leader of beta-
actin mRNA.

What is the mechanism that is used by highly structured
5" UTRs to efficiently initiate translation in a 5-end-
dependent mode? Certainly, every individual mRNA
should be investigated separately. Using as an example
the Apaf-1 5 UTR, we show that the ribosome is able
to efficiently scan the entire Apaf-1 leader in spite of its
well developed secondary structure. Indeed, we present
compelling evidence [see analogous data for the LINE 5
UTR (29)] that the 40S ribosome recognizes additional
AUGs inserted into its sequence. In contrast, none of
the deletions within uncapped Apaf-1 5 UTR produces
a significant deleterious effect on the translation initiation
thereby arguing against the existence of an IRES within
this leader. These data taken together with those obtained
recently for the IRES-less 900 nt long 5 UTR from the
LINE mRNA strongly suggest that in cultivated cells
or corresponding cytoplasmic extracts 40S ribosomes
hardly ‘notice’ natural stem-loop structures in the course
of initiation. We speculate that various mRNA-binding
proteins present in the system mostly facilitate rather
than inhibit the process of the start codon location. This
may explain why the inhibition is observed in RRL: this
system is known for its highly reduced content of many
mRNA-binding proteins. The fact that the translation
initiation efficiencies of 200 and 900 nt long 5" UTRs are
comparable (29) strongly suggests that the unwinding of
stem-loops occurs sequentially. Therefore, in our opinion,
the current practice to calculate cumulative energies of 5
UTRs to get some idea about their translation efficiency
makes no sense.

We think that the set of novel criteria used in this study
allows us to determine the actual rather than possible
modes of translation initiation used by these 5" UTRs.
These criteria include: (i) comparison of translation
initiation potentials for tested 5 UTRs in capped dicistro-
nic versus monocistronic mRNAs; (ii) comparison of
capped (m’G-capped) versus uncapped (A-capped)
monocistronic mRNAs; (iii) evaluation of the effect of
m’GTP or eIF4E-BP on the translation initiation
directed by 5" UTRs of natural mRNAs; (iv) effect of
deletions within 5 UTRs on the initiation activity of
uncapped monocistronic mRNAs: for true IRESes, the
deletions should cause dramatic reduction of the
initiation activity. Using these criteria we come to
conclusion that, at least under normal conditions, the 5
UTRs from Apaf-1, c-Myc and hsp70 mRNAs and also
LINE-1 mRNA (29) reveal only background activities
when placed in the intercistronic positions, in comparison
with their natural (capped 5'-terminal) context. Very poor
activities in the intercistronic position of dicistronic
transcripts have been reported for several other putative
cellular IRESes (15,20,22).

The artifacts of the cDNA dicistronic method appear to
be responsible for hot debates over the concept of cellular
IRESes (20,47-50). Without coming to grips with them,

Nucleic Acids Research, 2009, Vol. 37, No. 18 6145

and without questioning the existence of cellular IRESes
in principle (especially, as only three of them have been
investigated in this article), we simply propose a view
which could explain a change in the relative expression
of individual mRNAs observed under stress conditions
but is alternative to the concept of cellular IRESes. We
suggest that individual 5 UTRs have a different m’G-cap
contribution and are resistant to inhibition of elF4E
activity to a different extent. This view is supported by
the data presented in Figure 5 of this article. This idea
is not new and has been proposed by N. Sonenberg and
co-workers many years ago (51,52). However, we add here
a substantial modification to this widely shared opinion:
we show that this different cap-dependence is not directly
related to the overall stability of the secondary structure,
number of stem-loops or length of the 5 UTR. It should
be emphasized here that we dealt with real 5 UTRs rather
with artificial 5’ leaders into which extremely stable stem-
loop structures (e.g. several BamHI linkers) were artifi-
cially inserted. It is difficult to find such perfect
structures in natural cellular mRNAs.

What might be the mechanism for the differential
resistance of mammalian 5 UTRs to the inhibition of
the cap-assisted initiation? Our working hypothesis is
that some elements within 5 UTRs and some mRNA-
binding proteins may be involved in recruiting key
initiation factors (e.g. elF4G, elF3, elF2, etc.) or/and
40S ribosomal subunits to mRNAs. These elements may
be rudiments of the true IRESes found in viral mRNAs.
However, unlike the case of classical viral IRESes this
recruitment occurs with a low specificity and affinity. It
simply augments the local concentration of translation
components near the 5 end of an mRNA. We believe
that the 5 terminus of an mRNA [whether it is capped
or uncapped, see ref. (53)] is the only available site on
eukaryotic mRNAs that can accommodate the translation
initiation machinery and start going the scanning process
when IRESes are absent. It should be noted that we are far
from thinking that variations of cap-dependence and
resistance of some mRNAs to stress conditions are
determined exclusively by their 5 UTRs. Other parts of
the mRNAs may be also involved. The solution of this
and other problems requires investigation of each
individual 5 UTR with sophisticated approaches and,
hence, is beyond the scope of this study. Work in this
direction is one of the priorities in our laboratory.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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