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Abstract

Phosphate-buffered saline (PBS) and Alsever’s solution (AS) are frequently used as

media in blood-related studies, while 0.9% normal saline (NS) is frequently used in trans-

fusion medicine. Despite the frequent use, the effects of these solutions on the shape and

volume of red blood cells (RBCs) have not been reported. We collected blood samples

from five healthy adults and used three-dimensional refractive index tomography to inves-

tigate the changes in the morphology of RBCs caused by changes in osmolality and sol-

utes at the single-cell level. After diluting 2 μL of RBCs 200-fold with each solution (PBS,

AS, and 0.9% NS), 40 randomly selected RBCs were microscopically observed. RBC

shape was measured considering sphericity, which is a dimensionless quantity ranging

from 0 (flat) to 1 (spherical). RBCs in plasma or AS showed a biconcave shape with a

small sphericity, whereas those in 0.9% NS or PBS showed a spherical shape with a

large sphericity. Moreover, we confirmed that sodium chloride alone could not elicit the

biconcave shape of RBCs, which could be maintained only in the presence of an osmotic

pressure-maintaining substance, such as glucose or mannitol. Although 0.9% NS solution

is one of the most commonly used fluids in hematology and transfusion medicine, RBCs

in 0.9% NS or PBS are not biconcave. Therefore, as the debate on the use of NS contin-

ues, future clinical studies or applications should consider the effect of glucose or manni-

tol on the shape of RBCs.
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Introduction

Red blood cells (RBCs) are highly differentiated cells, lacking all cell organelles, including the

nucleus. Normal RBCs have been shown to exhibit an axially symmetric biconcave disc shape,

typically with a diameter of approximately 7.8 μm and a thickness of approximately 2.5 μm [1].

The cytoplasm, the content of the RBCs, which is surrounded by the membrane, has a volume

of approximately 94 μm3 at 300 mOsm/kgH2O [2]. Several studies have described the changes

in the shape and volume of RBCs due to various chemical agents and environmental condi-

tions [1, 3–5]. Particularly, the shape and volume of RBCs have been reported to be highly

affected by osmolality and solutes, and in clinical practice, a biocompatible solution, such as

0.9% sodium chloride solution, which is considered to be isotonic, is frequently used with

blood [6]. Previous studies have been conducted using changes in concentration of sodium

chloride solution. It has been reported that the higher the concentration, the lower the RBC

volume, and that hemolysis is induced when concentration is above 5.85% [7]. Moreover, the

increase in osmotic pressure can change the biophysical properties of RBCs including radius,

surface area, volume, viscosity, deformability [8], and hemoglobin concentration [9].

Both phosphate-buffered saline (PBS) and Alsever’s solution (AS) are frequently used as

media in blood-related studies [10, 11]. Particularly, PBS, which is composed of 0.9% sodium

chloride, 0.0795% sodium phosphate dibasic, and 0.0144% potassium phosphate monobasic, is

a buffer solution commonly used in biological research. The composition of PBS is known to

match the osmotic pressure and ion concentration of the human body. Similarly, AS is an iso-

tonic solution suggested by Alsever in 1941, consisting of 0.42% sodium chloride, 2.05% glu-

cose, 0.8% trisodium citrate, and 0.055% citric acid [12]. This solution is primarily used for

storing blood and RBCs [13, 14]. Although PBS and AS are frequently used in blood-related

experiments, the shape and volume of RBCs in these solutions have not been reported.

In general, an automated blood cell counter is necessary to analyze hematological parame-

ters of RBCs, including the cell volume [15]. However, as this equipment is used to measure

and calculate the hemotological parameters using impedance or light scattering methods after

dilution of the blood sample, it is difficult to investigate the morphology of RBCs directly and

examine the changes in the shape and volume of RBCs caused by changes in osmolality [16,

17]. In addition, cell surface area and sphericity have been addressed using indirect methods

like osmotic feasibility tests or flow-based imaging methods with low precision and technical

limitations [18, 19]. Recently, a three-dimensional (3D) quantitative phase-imaging technique

has been widely used for analyzing RBCs at the single-cell level [20, 21]. This technique has the

potential to be applied for improved understanding of RBCs and for characterizing the hema-

tological parameters of individual RBCs [9, 22]. Therefore, this study aimed to investigate the

changes in the morphology of RBCs caused by changes in osmolality and the concentration of

solutes using engineering techniques.

Materials and methods

Study design and preparation of solutions

This study was conducted to observe the shape of RBCs according to the osmolality and con-

centration of solutes, and all experiments were performed using blood samples collected from

five healthy adults. Blood was collected in an EDTA tube, and after centrifugation at 2500 rpm

for 5 min, the plasma was separated without disturbing the buffy coat. RBCs were then divided

into three groups and added to plasma, PBS (Thermo Fisher Scientific, Waltham, MA, USA),

or AS (Sigma-Aldrich, St. Louis, MO, USA). For conducting additional experiments, we used

0.9% and 0.45% sodium chloride solutions (CJ Healthcare, Seoul, Korea), as well as 3% sodium
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chloride solution, glucose, and mannitol solutions (Daihan Pharmaceutical, Seoul, Korea),

which are used as clinical solutions. Because sodium and glucose are the most differing factors

in the PBS and AS, and are the main factors that determine the effective osmolality of serum

[23], we performed the experiments of mixing sodium with glucose or mannitol to evaluate

the effect of osmolality and solutes on the morphology of RBCs. The level of sodium chloride

was fixed at 0%, 0.15%, 0.3%, 0.45%, 0.6%, or 0.75%, and glucose or mannitol was added to the

each sodium chloride solution to increase the respective osmolality, including the normal ref-

erence range of serum osmolality (275–295 mOsm/KgH2O) [23]. The osmolality of the mixed

solution was measured using the Fiske 2020 osmometer (Advanced Instruments, Norwood,

MA, USA).

Analysis of biochemical properties of blood

Before performing the experiments, the blood samples of all subjects were tested. Venous

blood was collected after the subjects fasted for at least 8 h to ensure the quality of the samples

and minimize the total preanalytical variability [24]. Subsequently, the blood samples were

transferred to an EDTA tube and refrigerated at 4˚C before performing the tests and experi-

ments. All blood tests and experiments were performed within 6 hours after blood collection.

A complete blood count test was conducted using the Sysmex XN1000 automated blood cell

counter (Sysmex, Kobe, Japan) [16]. Blood urea nitrogen, creatinine, total protein, albumin,

sodium, potassium, and chloride levels were measured using the Cobas 8000 c702 modular

analyzer (Roche, Penzberg, Germany).

Determination of morphological parameters of RBCs

The morphology of individual RBCs was determined by a common-path diffraction optical

tomography (cDOT) setup microscope (HT-1H, Tomocube, Daejeon, Korea) using a 3D

quantitative phase-imaging technique. This method helps reconstruct the 2D or 3D tomogra-

phy of individual cells without labelling based on the common-path laser interferometry and

optical diffraction tomography principles. To ensure RBCs were unaffected by the surround-

ing cells, 2 μL of collected blood was diluted by a factor of 200 with each solution. The diluted

samples were then loaded in Tomodish (Tomocube), which is a specialized cell dish providing

proper conditions for obtaining holotomographic images. Subsequently, 40 randomly selected

RBCs were observed under the microscope [25, 26]. The RBCs were observed within 30 min-

utes after exposure to a new solution. Commercial software (Tomostudio, Tomocube) was

used to visualize and analyze the measured 3D refractive index using phase-retrieval algorithm

to retrieve the amplitude and phase images of the RBCs. Data on the morphological parame-

ters of RBCs were obtained using refractive index threshold values and implicit function

(regionprops3) in MATLAB (Mathwork, Natick, MA, USA). Further details of the equipment

and software can be found in previous studies [27, 28]. For quantitative comparison of the

morphology of RBCs in the different solutions, we calculated two morphological parameters,

namely the aspect ratio and sphericity, which are described in previous papers for measuring

the morphology of RBCs including discocytes, echinocytes, and spherocytes [26, 29]. The

aspect ratio, a dimensionless quantity ranging from 0 to 1, was calculated as the ratio of diame-

ters of the long to short axes of each RBC. The long and short axes were determined by fitting

an ellipse to the cell boundary [30]. The sphericity, a dimensionless quantity ranging from 0 to

1, was obtained by the following equation: sphericity = π1/3(6V)2/3/A, where V represents the

volume and A represents the surface area. Based on this parameter, a sphericity of 1 indicates a

spherical shape, whereas 0 indicates a flat shape [31].
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Statistical analyses

When comparing the morphological parameters of RBCs between the three groups (plasma,

PBS, and AS), ANOVA was performed followed by Bonferroni’s post-hoc analysis. When the

sphericity was evaluated according to the solution, the t-test was applied for independent com-

parisons. All statistical analyses were performed using the GraphPad Prism 8 software (Graph-

Pad, San Diego, CA, USA) and R version 3.6.0 (https://www.r-project.org). Statistical

significance was set at p< 0.05.

Ethical consideration

The study protocol was approved by the Institutional Review Board of the Gwangju Institute

of Science and Technology (20200302-BR-52-01-01). All participants provided informed con-

sent. This study conforms to the principles outlined in the Declaration of Helsinki, 7th revision

of 2013.

Results

Biochemical characteristics of blood

All subjects showed normal hematology and blood chemistry values in laboratory tests. The

average mean cell volume of RBCs was estimated to be 89.5 fL. The mean concentration of

sodium and glucose, and mean osmolality were 140 mmol/L, 91 mg/dL, and 294 mOsm/

kgH2O, respectively.

Morphology of RBCs in the conventional solutions

To investigate the morphology of RBCs in the solutions, individual RBCs were observed using

cDOT. As shown in Fig 1, RBCs in plasma or AS displayed a biconcave shape, whereas those

in PBS showed a spherical shape. This was consistent across the tested samples obtained from

all subjects. Additionally, 3D images of RBCs in the three solutions are shown in S1 Fig. Simi-

lar to the observations from the 2D images, RBCs in plasma or AS showed a biconcave disc

shape, whereas RBCs in PBS exhibited a spherical shape. Furthermore, although the volumes

of individual RBCs in 1.05%, 0.9%, 0.75%, 0.6%, and 0.45% sodium chloride solutions varied,

their shapes remained spherical (S2 Fig).

Comparison of the morphological parameters of RBCs in the conventional

solutions

After analysis of the morphological characteristics of RBCs, the parametric data obtained were

compared according to the solution used, as shown in Fig 2. We observed that the diameters of

the long and short axes were significantly smaller in RBCs in PBS (long axis: 6.44 ± 0.65 μm;

short axis: 5.74 ± 0.57 μm; p < 0.001) compared with that in RBCs in plasma or AS. However,

significant differences in the aspect ratio were not observed among the three groups. In the

case of the mean cell volume, the values were 88.06 ± 8.43 fL and 89.27 ± 9.48 fL for RBCs in

plasma and AS, respectively; no significant differences were observed between the two groups.

However, RBCs in PBS were found to exhibit a significantly smaller mean cell volume of

81.77 ± 8.51 fL (p< 0.001) compared with RBCs in plasma or AS. We also found that the sur-

face area of RBCs was the smallest in PBS (128.11 ± 12.94 μm2), whereas it was the highest in

AS (166.10 ± 13.57 μm2). The sphericity of RBCs was estimated to be the highest in PBS

(0.71 ± 0.05), whereas it was the lowest in AS (0.58 ± 0.05). Conclusively, we observed that

both the surface area and sphericity significantly differed among the three groups (p< 0.01).
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Morphology of RBCs in sodium chloride and glucose solutions

To analyze the effect of sodium and glucose on the shape of RBCs, we quantitatively investigated

the shape of RBCs under different concentrations of sodium chloride and glucose at various osmo-

lality levels. Fig 3 illustrates the changes in the biconcave shape of a RBC for one healthy subject

under the above-mentioned conditions. As shown in S3 Fig, we did not observe any significant

difference in the sphericity of RBCs between blood and solutions with 300–320 mOsm/kgH2O

osmolality, 0.3% sodium chloride concentration, and 3.56–3.92 g/dL glucose concentration. To

visualize the distribution of the sphericity according to the concentrations of sodium chloride and

glucose, related-graphs were generated (S4 Fig). The dark, sky blue colored-data points indicate

the aforementioned specific region highlighting concentrations of solutes resulting in the bicon-

cave shape. The point indicating the sphericity of RBCs in AS was close to this specific region.

Fig 1. 2D images presenting the morphology of RBCs in the conventional solutions. RBC, red blood cell; PBS,

phosphate-buffered saline; AS, Alsever’s solution.

https://doi.org/10.1371/journal.pone.0262106.g001
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Morphology of RBCs in sodium chloride and mannitol solutions

To analyze the effect of solutes other than glucose on the shape of RBCs, we quantitatively

investigated the shape of RBCs under different concentrations of sodium chloride and manni-

tol at various osmolality levels. Fig 4 illustrates the changes in the biconcave shape of a RBC for

one healthy subject under the above-mentioned conditions. We found that the range of con-

centrations that helped retain the biconcave shape of RBCs was greater for the sodium chloride

and mannitol solution than that observed in the case of sodium chloride and glucose solution.

As shown in S5 Fig, we did not detect any significant difference in the sphericity of RBCs

between blood and solutions with an osmolality of 260 or 270 mOsm/kgH2O, a sodium chlo-

ride concentration of 0.3%, and a mannitol concentration of 2.88 or 3.06%. Although we did

observe the biconcave shape of RBCs in solutions with sodium chloride concentrations rang-

ing from 0.45% to 0.75%, their sphericities were significantly lower than that of RBCs in

plasma. The sphericity distribution according to the concentrations of sodium chloride and

mannitol is illustrated using related-graphs (S6 Fig).

Discussion

RBCs are known to change shapes under various external conditions, especially with changes

in the sodium chloride concentration and osmolality [1]. A 0.9% sodium chloride solution is

considered isotonic and is one of the most commonly used fluids in hematology and transfu-

sion medicine. This solution is also used for performing intravenous infusion with blood, con-

ducting washing steps, salvaging RBCs, or subjecting platelets to washing procedures.

However, recent studies have reported that NS does not match the human physiological

Fig 2. Comparison of the morphological parameters of RBCs in the conventional solutions. Asterisks correspond to the following p-

values: � p< 0.05, �� p< 0.01, ��� p< 0.001. RBC, red blood cell; PBS, phosphate-buffered saline; AS, Alsever’s solution.

https://doi.org/10.1371/journal.pone.0262106.g002
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conditions and may be toxic [32, 33]. Kirkley et al. reported that NS causes greater hemolysis

during conduction of washing steps and short-term storage (24 h or less) of RBCs compared

with other solutions [34]. Masalunga et al. reported that subjecting erythrocytes to washing

steps with saline causes increased hemolysis in neonatal extracorporeal membrane oxygen-

ation recipients compared with those receiving unwashed erythrocytes [35]. Additionally,

Yang et al. reported that conduction of intraoperative salvage with pre-infusion washing, using

a buffered solution containing mannitol, adenine, and phosphate, reduces the dysfunction of

RBCs and hemolysis compared with NS [36]. Although PBS, which is similar to 0.9% sodium

chloride solution, and AS, which has a composition similar to 0.45% sodium chloride solution,

have been used in several biological studies, to the best of our knowledge, there are currently

no reports discussing the morphology of RBCs in these solutions. Owing to the current sce-

nario of increasing concerns regarding the use of NS, this study aimed to investigate the mor-

phology of RBCs in PBS and AS.

Morphological analysis of RBCs using cDOT revealed that RBCs in AS showed a biconcave

disc shape similar to those of RBCs in plasma. When comparing the morphological parameters

of RBCs in different solutions, we observed that both the mean cell size and volume were

Fig 3. 2D images presenting the morphology of RBCs for one healthy subject in sodium chloride and glucose solutions. The level of sodium chloride was fixed at 0%,

0.15%, 0.3%, 0.45%, 0.6%, and 0.75%, and glucose was mixed according to the respective osmolality. The value in each panel represents the concentration of glucose.

https://doi.org/10.1371/journal.pone.0262106.g003
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relatively low for RBCs in PBS, and were not significantly different between RBCs in plasma

and AS. The surface area of RBCs was demonstrated to be the highest in AS, whereas it was the

lowest in PBS. Consequently, we detected that the sphericity of RBCs in PBS was close to 1,

indicating a relatively spherical shape. The surface area and sphericity of RBCs in AS were also

shown to be close to the values observed for RBCs in plasma, but significant differences were

observed between RBCs in plasma and AS. This finding may be attributed to the presence of

various proteins, mainly albumin, contributing to the membrane stabilization, which may

affect the shape and volume of RBCs [37, 38].

After confirming that RBCs exhibited a spherical shape in PBS and solutions of various con-

centrations of sodium chloride, we further investigated the shape of RBCs under conditions of

different concentrations of sodium and glucose at various osmolalities. We accordingly found

that the shape of RBCs was biconcave in solutions with 0.3–0.45% sodium chloride and 2.63–

3.92 g/dL glucose. Citrate-phosphate-dextrose (CPD) and CPD solution with adenine

(CPD-A), which are used as anticoagulant preservative solutions, contain 2.55 g/dL and 3.19

g/dL of glucose, respectively, close to the concentration of glucose in RBCs showing a

Fig 4. 2D images presenting the morphology of RBCs for one healthy subject in sodium chloride and mannitol solutions. The level of sodium chloride was fixed at

0%, 0.15%, 0.3%, 0.45%, 0.6%, and 0.75%, and mannitol was mixed according to the respective osmolality. The value in each panel represents the concentration of

mannitol.

https://doi.org/10.1371/journal.pone.0262106.g004
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biconcave shape, as illustrated in Fig 3. In 1915, Rous and Turner reported that glucose decel-

erates the hemolysis of RBCs in saline, and by adding citrate, it is possible to store blood for up

to 4 weeks with minimal haemolysis [39]. Anticoagulant preservative solutions, such as CPD

and CPD-A, are developed based on this observation. In general, substances such as glucose

and adenine are added to the storage solution for ATP production [40]. Similar to CPD and

CPD-A, AS contains glucose, unlike PBS; thus, it may increase the storage period of blood.

Disbro et al. reported that hemolysis is less frequent and stable when the blood of patients

using daratumumab is stored in AS [11]. Furthermore, based on the results of the present

study, it may be inferred that glucose plays an important role in maintaining the biconcave

shape of RBCs, and acts as a substrate for ATP production. In fact, glucose is an essential factor

in determining osmolality, along with sodium chloride [41]. Viskupicova et al. reported that

hemolysis, eryptosis, and calcium accumulation are decreased when erythrocytes are exposed

to glucose [42].

Additionally, we confirmed that mannitol, which can also induce changes in the osmotic

pressure, led to the formation of a biconcave shape in RBCs. A number of additive solutions

have been developed to extend the storage period of RBCs up to 6 weeks [43], after separation

of blood into RBCs and plasma in clinical settings. Importantly, most of these additive solutions

contain mannitol for the prevention of hemolysis and protection of the cell membrane [40].

Nonetheless, this study had some limitations. First, we did not analyze the effect of osmolal-

ity on the shape of RBCs under the various conditions tested because of the small sample size,

and experiments were performed only on healthy subjects. In addition, we investigated the

limited number of RBCs comparing to that usually investigated using an automated blood ana-

lyzer. Second, additional research is warranted on the effects of adenine and phosphate on the

shape of RBCs. Lastly, few studies have reported that when RBCs are continuously exposed to

glucose, lipid peroxidation increases, whereas the enzymatic activity of erythrocytes decreases

[42, 44]. Therefore, further research is necessary to determine whether glucose is beneficial or

harmful during the storage of RBCs.

In conclusion, this study confirmed that the presence of sodium chloride alone could not

elicit the biconcave shape of RBCs, and the biconcave shape could be maintained only in the

presence of an osmotic pressure-maintaining substance, such as glucose or mannitol. While

the debate on the use of NS with blood continues, future clinical studies will be necessary to

evaluate the effect of glucose and mannitol on the shape of RBCs.
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S1 Fig. Reconstructed 3D images of red blood cells in the conventional solutions. RBC, red
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S2 Fig. 2D images of red blood cells in the sodium chloride solutions. RBC, red blood cell.
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S3 Fig. Comparison of sphericity according to the solutions (Sodium chloride & Glucose).

The p-value was obtained from the Student’s t-test performed for sphericity of red blood cells

in plasma (reference, on the left) and in the respective solution. Asterisks correspond to the fol-

lowing p-values: � p-value < 0.05, �� p-value < 0.01, ��� p-value < 0.001. RBC, red blood cell.
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S4 Fig. Sphericity according to the solutions (Sodium chloride & Glucose). PBS, phosphate-

buffered saline; AS, Alsever’s solution.
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S5 Fig. Comparison of sphericity according to the solutions (Sodium chloride & Mannitol).

The p-value was obtained from the Student’s t-test performed for sphericity of red blood cells

in plasma (reference, on the left) and in the respective solution. Asterisks correspond to the fol-

lowing p-values: � p-value < 0.05, �� p-value < 0.01, ��� p-value < 0.001. RBC, red blood cell.
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S6 Fig. Sphericity according to the solutions (Sodium chloride & Mannitol).
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