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Abstract

Background: The natural product Emodin demonstrates a wide range of pharmacological
properties including anticancer, anti-inflammatory, antiproliferation, vasorelaxant and anti-H. pylori
activities. Although its H. pylori inhibition was discovered, no acting target information against
Emodin has been revealed to date.

Results: Here we reported that Emodin functioned as a competitive inhibitor against the
recombinant B-hydroxyacyl-ACP dehydratase from Helicobacter pylori (HpFabZ), and strongly
inhibited the growth of H. pylori strains SS| and ATCC 43504. Surface plasmon resonance (SPR)
and isothermal titration calorimetry (ITC) based assays have suggested the kinetic and
thermodynamic features of Emodin/HpFabZ interaction. Additionally, to inspect the binding
characters of Emodin against HpFabZ at atomic level, the crystal structure of HpFabZ-Emodin
complex was also examined. The results showed that Emodin inhibition against HpFabZ could be
implemented either through its occupying the entrance of the tunnel or embedding into the tunnel
to prevent the substrate from accessing the active site.

Conclusion: Our work is expected to provide useful information for illumination of Emodin
inhibition mechanism against HpFabZ, while Emodin itself could be used as a potential lead
compound for further anti-bacterial drug discovery.

Background

Helicobacter pylori (Hp) is one kind of rod- or curve-shaped
and microaerophilic gram-negative bacterium that is
located along the surface of the mucosal epithelium or in
the mucous layers [1]. It has been recognized as a major
causative factor for several gastrointestinal illnesses of

human, such as gastritis, peptic ulceration, and gastric
cancer [2]. H. pylori has become a severe threat against
human health, and probably chronically infected about
50% of the world's human population [3]. Currently, the
combination therapy is still regarded as the most effective
treatment against H. pylori infection [4]. However, the
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overuse and misuse of antibacterial agents have resulted
in the alarming rise of antibiotic-resistant strains [5].
Thus, novel antibacterial agents acting on new targets are
needed urgently. Fortunately, due to the major difference
between the enzymes involved in the type II fatty acid syn-
thetic pathway (FAS II) in bacteria and the counterparts in
mammals and yeast, the enzymes involved in FAS II has
been treated as potential antibacterial drug targets [6]. Of
the important enzymes for the elongation cycles of both
saturated and unsaturated fatty acids biosyntheses in FAS
II, B-hydroxyacyl-ACP (FabZ) has attracted close attention
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as an essential target for the discovery of effective anti-bac-
terial compounds against pathogenic microbes [6].
Recently, FabZ from H. pylori strain SS1 (HpFabZ) was
cloned and purified [7]. The further HpFabZ enzymatic
characterization and the crystal structures of HpFabZ and
its complexes with two inhibitors [7,8] have provided val-
uable information for HpFabZ targeted anti-H. pylori
agent discovery.

The natural product Emodin (3-methyl-1, 6, 8-trihydroxy-
anthraquinone, Fig. 1A) is originally isolated from the rhi-
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(A) Chemical structure of Emodin. The three rings are named and their positions are numbered according to the nomen-
clature. (B) Dose-response curves for enzyme inhibition (IC5, = 9.70 £ 1.0 uM). (C) Kinetic analysis of Emodin inhibition
against HpFabZ. The panel shows the representative double reciprocal plots of I/V vs |/[Substrate] at different inhibitor con-
centrations. The lines intercept on the |/V axis, indicating that Emodin is a competitive inhibitor for the substrate crotonoyl-
CoA. (D) Secondary plot of K. The inhibition constant K;is 1.9 + 0.3 pM.
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zomes of Rheum palmatum. It exists in the roots and bark
of numerous different traditional Chinese medicine
(TCM) formulations and Chinese medical herbs such as
Rheum officinale Baill (Polygonaceae), Rhamnus (Rham-
naceae), and Senna (Cassieae) [9]. Emodin demonstrates
a wide range of pharmacological properties such as anti-
cancer [10], anti-inflammatory [11], antiproliferation
[12], and vasorelaxant activities [13]. It has been reported
that Emodin has a regulatory effect on the proliferation of
human primary T lymphocyte [14] and immune
responses in human mesangial cells [15], inhibits the pro-
liferation of pancreatic cancer cell through apoptosis
induction-related mechanism, accelerates osteoblast dif-
ferentiation through phosphatidylinositol 3-kinase acti-
vation and bone morphogenetic protein-2 gene
expression [16]. It could also inhibit the growth of neur-
oectodermal cancer [17] and breast cancer by suppressing
HER-2/neu tyrosine kinase activity in HER-2/neu-overex-
pressing human breast and lung cancer cells [18-20],
inhibit tyrosine-kinase-mediated phosphorylation of vas-
cular endothelial growth factor (VEGF) receptors in colon
cancer cells [21], promote the repair of nucleiotide exci-
sion to the DNA damage of human cells caused by UV and
cislatin induction [22], and finally competitively block
the activity of casein kinase II [23]. In addition, Emodin
was previously reported to show inhibitory activity
against the growth of Helicobacter pylori by inducing dose-
dependent DNA damage [10]. However, no acting target
information for Emodin inhibition against H. pylori has
been revealed to date.

In the present work, we reported that Emodin functioned
as a competitive inhibitor against HpFabZ. In order to fur-
ther study the inhibitory mechanism, the kinetic and ther-
modynamic  characterization of Emodin/HpFabZ
interaction was investigated by surface plasmon reso-
nance (SPR) and isothermal titration calorimetry (ITC)
based assays. In addition, the crystal structure of HpFabZ-
Emodin complex was also determined to inspect Emodin/
HpFabZ binding at atomic level. Our work is expected to
have provided useful information for illumination of the
possible Emodin inhibition mechanism against HpFabZ,
while Emodin could be discovered as a potential drug lead
compound for further research.

Methods

Materials

Standard H. pylori strains SS1 and ATCC 43504 were
obtained from Shanghai Institute of Digestive Disease. E.
coli strain BL21 (DE3) was purchased from Stratagene. All
chemicals were of reagent grade or ultra-pure quality, and
commercially available.

http://www.biomedcentral.com/1471-2180/9/91

HpFabZ enzymatic inhibition assay

The expression, purification and enzymatic inhibition
assay of HpFabZ enzyme were performed according to the
previously published approach [7,8] with slight modifica-
tion. The compounds dissolved in 1% DMSO (Dimethyl
sulfoxide) were incubated with the enzyme for 2 hours
before the assay started. The ICs, value of Emodin was
estimated by fitting the inhibition data to a dose-depend-
ent curve using a logistic derivative equation. The inhibi-
tion type of Emodin against HpFabZ was determined in
the presence of varied inhibitor concentrations. After 2h-
incubation, the reaction was started by the addition of
crotonoyl-CoA. The K; value was obtained from
Lineweaver-Burk double-reciprocal plots and subsequent
secondary plots.

Surface Plasmon Resonance (SPR) technology based
binding assay

The binding of Emodin to HpFabZ was analyzed by SPR
technology based Biacore 3000 instrument (Biacore AB,
Uppsala, Sweden). All the experiments were carried out
using HBS-EP (10 mM HEPES pH 7.4, 150 mM NaCl, 3.4
mM EDTA and 0.005% surfactant P20) as running buffer
with a constant flow rate of 30 pul,/min at 25°C. HpFabZ
protein, which was diluted in 10 mM sodium acetate
buffer (pH 4.13) to a final concentration of 1.3 uM, was
covalently immobilized on the hydrophilic carboxymeth-
ylated dextran matrix of the CM5 sensor chip (BIAcore)
using standard primary amine coupling procedure. Emo-
din was dissolved in the running buffer with different con-
centrations ranging from 0.625 to 20 uM. All data were
analyzed by BIAevaluation software, and the sensorgrams
were processed by automatic correction for nonspecific
bulk refractive index effects. The kinetic analyses of the
Emodin/HpFabZ binding were performed based on the
1:1 Langmuir binding fit model according to the proce-
dures described in the software manual.

Isothermal titration calorimetry (ITC) technology based
assay

ITC experiments were performed on a VP-ITC Microcalo-
rimeter (Microcal, Northampton, MA, USA) at 25°C.
HpFabZ was dialysed extensively against 20 mM Tris (pH
8.0), 500 mM NaCl and 1 mM EDTA at 4°C. Appropriate
concentration of Emodin was prepared from a 50 mM
stock in DMSO, and corresponding amount of DMSO
(25%) was added to the protein solution to match the
buffer composition. The reference power was set to 15
pCal/sec and the cell contents were stirred continuously at
300 rpm throughout the titrations. After an initial injec-
tion of Emodin (3 pL, not used for data fitting), 29 injec-
tions (6 pL each) were performed with a 3 min-delay
between each injection, and then the heat changes were
monitored. Blank titrations of Emodin into buffer were
also performed to correct for the heats generated by dilu-
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tion and mixing. The binding isotherm was fit by the sin-
gle binding site model using a non-linear least squares
method based on Origin (Microcal Software, Northamp-
ton, MA, USA).

HpFabZ-Emodin complex crystallization and data
collection

HpFabZ crystallization was performed using hanging-
drop vapor-diffusion method similar to our reported
approach [8]. 1 ul of HpFabZ (~10 mg/ml) in crystalliza-
tion buffer (20 mM Tris-HCI, pH 8.0, 500 mM NaCl) was
mixed with an equal volume of reservoir solution contain-
ing 2 M sodium formate, 0.1 M sodium acetate trihydrate
atpH 3.6-5.6 and 2% w/v benzamidine-HCI. The mixture
was equilibrated against 500 pl of the reservoir solution at
277K. When the dimensions of HpFabZ crystals grew up
to 0.5 x 0.3 x 0.3 mm?3 after 7 days, Emodin was added
into the original drops to a final concentration of ~10 mM
and soaked for 24 hours. The crystal was then picked up
with a nylon loop and flash-cooled in liquid nitrogen.
Data collection was performed at 100K using the original
reservoir solution as cryoprotectant on an in-house R-Axis
IV++ image-plate detector equipped with a Rigaku rotat-
ing-anode generator operated at 100 kV and 100 mA (A =
1.5418 A). Diffraction images were recorded by a Rigaku
R-AXIS IV++ imaging-plate detector with an oscillation
step of 1°. The data sets were integrated with MOSFLM
[24] and scaled with programs of the CCP4 suite [25].
Analysis of the diffraction data indicated that the crystal
belongs to space group P2,2,2;.

Structure determination and refinement

HpFabZ-Emodin complex structure was solved by molec-
ular replacement (MR) with the programs in CCP4 using
the coordinate of native HpFabZ (PDB code is 2GLL) as
the search model. Structure refinement was carried out
using CNS standard protocols (energy minimization,
water picking and B-factor refinement) [26]. Electron den-
sity interpretation and model building were performed by
using the computer graphics program Coot [27]. The ster-
eochemical quality of the structure models during the
course of refinement and model building was evaluated
with the program PROCHECK [28]. The coordinates and
structure factor of the HpFabZ-Emodin complex structure
have been deposited in the RCSB Protein Data Bank (PDB
code is 3EDO).

Anti-H. pylori activity assay

The bacterial growth inhibition activity for Emodin was
evaluated by using Paper Discus Method. DMSO and
ampicillin paper were used as negative and positive con-
trol respectively. The minimum inhibitory concentrations
(MIC) values were determined by the standard agar dilu-
tion method using Columbia agar supplemented with
10% sheep blood containing two-fold serial dilutions of
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Emodin. The plates were inoculated with a bacterial sus-
pension (108 cfu/ml) in Brain Heart Infusion broth with a
multipoint inoculator. Compound-free Columbia agar
media were used as controls. Inoculated plates were incu-
bated at 37°C under microaerobic conditions (85% N,,
10% CO, and 5% O,) and examined after 3 days. The MIC
value was defined as the lowest concentration of Emodin
that completely inhibited visible bacterial growth.

Results

Inhibition of Emodin against HpFabZ

The recombinant HpFabZ enzyme was prepared accord-
ing to our previously published report [7]. The spectro-
photomeric enzyme inhibition assay approach [7,8,29]
was used for randomly screening HpFabZ inhibitor
against our lab in-house natural product library. In addi-
tion, to optimize the screening efficiency and creditability,
the pH profile of HpFabZ and the potential effects of
DMSO on enzymatic activity were investigated [see Addi-
tional files 1, 2 and 3]. As shown in Additional file 2: Fig.
S1, the pH optimum of HpFabZ was 8.0 and 1% DMSO
for dissolving the tested compound had no obvious effect
on the enzymatic activity (Additional file 3: Fig. S2.)

Emodin was discovered as the inhibitor of HpFabZ by
IC5, value of 9.7 + 1.0 uM (Fig. 1B and Table 1) and fur-
ther inhibition mode characterization suggested that it
functioned as a competitive HpFabZ inhibitor with K;
value of 1.9 + 0.3 uM (Figs. 1C, D and Table 1). Similar to
the other reported HpFabZ inhibitors [8,30], Emodin
inhibited the enzyme activity by competing with the sub-
strate crotonoyl-CoA.

Kinetic analysis of Emodin/lHpFabZ binding by SPR
technology

SPR technology based Biacore 3000 instrument was used
to investigate the kinetic feature of Emodin binding to
HpFabZ. In the assay, immobilization of HpFabZ on the
Biacore biosensor chip resulted in a resonance signal of
6650 resonance units (RUs). The results in Fig. 2A indi-
cated the dose-dependent biosensor RUs for Emodin, sug-

Table I: Inhibition summary of Emodin against HpFabZ and H.
pylori strains

HpFabZ enzyme inhibition

1Cso (M) 97+1.0
Inhibition type Competitive
K; (uM) 1.9+0.3
H. pylori stain inhibition (MIC in pg/ml)
H. pylori SS|1 5
H. pylori ATCC 10
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(A) Sensorgrams of Emodin binding to HpFabZ measured by SPR technology based Biacore 3000 instrument.
Representative sensorgrams are obtained by injection of Emodin in varied concentrations of 0, 0.625, 1.25, 2.5, 5, 10, and 20
1M over HpFabZ that is immobilized on CM5 sensor chip. (B) ITC analysis of HpFabZ/Emodin interaction. Shown in Table 2

are the relevant thermodynamic parameters.

Table 2: Kinetic and thermodynamic data of Emodin binding to
HpFabZ

Kinetic Data*

Rnex (RU) 423 % 1.51

k, (per M per s) 4.21 x 10+ 0.273
kq (per s) 0.193 + 0.0061
Kp (1M) 4.59

Chi2 1.64
Thermodynamic Data™*

N 1.07 £ 0.035
Kp' (uM) 0.45

AH (keal/mol) 777 £ 111
TAS (kcal/mol) -9.12

* R a0 Maximum analyte binding capacity; K,, association rate
constant; K, dissociation rate constant; K, equilibrium dissociation
constant determined by SPR; Chi?, statistical value in BlAevaluation; **
N, stoichiometry of Emodin-HpFabZ complex; Kpy', equilibrium
dissociation constant determined by ITC.

gesting that this natural product could bind to HpFabZ in
vitro.

The 1:1 Langmuir binding model was used to fit the
kinetic parameters regarding the Emodin/HpFabZ bind-
ing process, in which the association rate constant (k,)
and dissociation rate constant (k,;) were fitted simultane-
ously by rate Equation 1,

d—R=ka><Cx(R

0 (1)

-R)-k;xR

max

Where, R represents the response unit, C is the concentra-
tion of the Emodin, R,,,, stands for the maximal response.
The equilibrium dissociation constant (K,) was deter-
mined by Equation 2.

Kp=ky/k, (2)
The accuracy of the obtained results was evaluated by

Chi2. The fitted kinetic parameters listed in Table 2 thus
demonstrated a strong binding affinity of Emodin against
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HpFabZ by K}, value of 4.59 uM, which is consistent with
K; value.

Thermodynamic analysis of Emodin/HpFabZ binding by
isothermal titration calorimetry (ITC)

To inspect the kinetic and thermodynamic characters
regarding the inhibition of Emodin against HpFabZ
enzyme, ITC technology based assay was performed. Fig.
2B showed the raw data with subtraction of the blank
titration. The ITC titration data in Table 2 has clearly
established a 1:1 stoichiometry for HpFabZ-Emodin com-
plex formation. Based on the obtained thermodynamic
data (AH =-17.77 + 1.11 kcal/mol, TAS =-9.12 kcal/mol,
AG = -8.65 kcal/mol), it was easily concluded that the
enthalpy contributed favorably to the binding free energy
in Emodin/HpFabZ interaction, indicating a significant
enthalpy driven binding of Emodin to HpFabZ.

As shown in Table 2, Emodin exhibits a strong binding
affinity against HpFabZ with K’ value of 0.45 pM fitted
from ITC data.

It is noticed that the almost 10-fold difference between
the KD values fitted from SPR and ITC based assays could
be tentatively ascribed to the different states for HpFabZ.
In SPR assay, HpFabZ was immobilized on CM5 chip,
which might cause some conformation limitation for the
enzyme. While in ITC assay, HpFabZ exists freely without
any conformation restriction.

Anti-H. pylori activity of Emodin

The inhibition activities of Emodin against H. pylori
strains SS1 and ATCC 43504 were assayed according to
the standard agar dilution method [31]. The MIC (mini-
mum inhibitory concentration) value was defined as the
lowest concentration of antimicrobial agent that com-
pletely inhibited visible bacterial growth. The results thus
suggested that Emodin could inhibit the growth of H.
pylori strains SS1 and ATCC 43504 with MIC values of 5
pg/ml and 10 pg/ml, respectively (Table 1).

Crystal structure of HpFabZ-Emodin complex

The crystal structure of HpFabZ in complex with Emodin
was determined to inspect the binding details of Emodin
against HpFabZ at atomic level. HpFabZ-Emodin crystal-
lization was performed using hanging-drop vapor-diffu-
sion method and the crystallographic statistics are
summarized in Table 3.

In the complex structure, HpFabZ hexamer displayed a
classical "trimer of dimers" organization similar to the
native HpFabZ structure (PDB code 2GLL). Six monomers
of the hexamer arranged a ring-like contact topology (A-B-
F-E-C-D-A), and every two monomers (A/B, C/D and E/F)
formed dimer each other through hydrophobic interac-
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Table 3: Summary of diffraction data and structure refinement
statistics

HpFabZ-Emodin

Data collection

Space group P2,2,2,
Cell dimensions
a, b, c(A) 74.2036, 100.3975, 186.4314
o, By (°) 90.00, 90.00, 90.00
Wavelength (A) 1.5418
Resolution (A)! 20-2.30 (2.42-2.30)
Rierge (%) 12.4 (55.5)
Ilsl 18.8 (2.6)
Completeness (%) 99.6 (98.3)
Redundancy 8.9 (6.1)
Refinement

Resolution (A) 20-2.30 (2.42-2.30)

No. reflections 54135
Rwork/Rfree 0.199/0.233
No. atoms
Protein 7274
Ligand/ion 69
Compound 40
Water 468
B-factors
Protein 24.081
Ligand/ion 38819
Water 29.006
Compound 42.133
R.m.s deviations
Bond lengths (A) 0.008
Bond angles (°) 1.4

'Numbers in parentheses represent statistics in highest resolution
shell

tions. Two L-shaped substrate-binding tunnels with the
entrance protected by a door residue Tyr100 were located
in the interface of a dimer and ~20 A away from each
other. Tyr100 adopted two different conformations. The
open conformation, in which the side chain of Tyr100
pointed towards Ile64' (the prime indicated the residue
from the other subunit in the dimer), allowed the chains
of substrates to enter the tunnel. While the closed confor-
mation, in which the side chain of Tyr100 flopped ~120°
around the C,-Cg; bond and pointed towards residue
Pro112', blocked the entrance of the tunnel and stopped
the substrate chain from reaching the catalytic site. The
catalytic site in the tunnel was formed by two highly con-
served residues, His58 and Glu72' that were located in the
middle kink of the tunnel.

Emodin inhibited HpFabZ activity by either binding to
Tyr100 or embedding into the middle of the tunnel C
appropriately with favorable shape of complementary,
thus preventing the substrate from accessing the active
site. It bound to tunnels B and C of HpFabZ hexamer with
two distinct interaction models, similar to the binding
feature of HpFabZ-compound 1 complex (PDB code:
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Figure 3

Stereo view of the omit electron density map contoured at 1.0 around Emodin. Monomers A/B, C/D and Emodin
are colored yellow/magenta, blue/orange and wheat, respectively. Residues interacted with Emodin are shown as sticks.

2GLP) [8] (Fig. 3). The two binding models were shown
in Fig. 4. In one model (designated hereinafter as model
A in Fig. 4A), Emodin bound to the entrance of tunnel B
linearly (Tyr100 of the tunnel came from monomer B).
Different from the open and close conformations, the
phenol ring of door residue Tyr100 flopped ~120° to a
third conformation and paralleled the pyrrolidine ring of
Pro112'. Ring A of Emodin was then stacked between the
phenol ring and pyrrolidine ring forming a sandwich
structure, while 3'-methyl of ring A also interacted with
residues Arg110 and Ile111 via hydrophobic interactions.
Apart from the interactions between ring A and residues

near the tunnel entrance, ring C of Emodin also formed
Vander Waals interactions with residues Phe59' and 1198,
and was stabilized in the right place by the hydrogen bond
interaction between 6'-hydroxyl of ring C and water mol-
ecule 466 which formed H-bond to O¢2 of Glu159 (Fig.
4B). In the other binding model (designated hereinafter
as model B in Fig. 4C), Emodin entered into the middle of
the tunnel C near the catalytic site, and located in the
hydrophobic pocket consisting of residues 11e20, Leu21,
Pro22, His23, Gly79, Phe83, 11e98, Val99 and Phel01.
Ring A extended to the bottom of the tunnel and was
stacked between residues Pro22 and Ile98, ring B inter-
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Schematic diagram of Emodin binding models against HpFabZ. The electrostatic surface of the active tunnel is ren-
dered by a color ramp from red to blue. Emodin and surrounding critical residues are shown as sticks; water molecules that
interact with Emodin are shown as red sphere. Hydrogen bonds are shown as yellow dashes. Emodin is colored wheat, and
residues are colored in yellow, magenta, blue and orange for monomers A, B, C and D, respectively. The diagram was pro-
duced by the program Pymol. (A) Binding model A of Emodin around the entrance of tunnel B. Emodin binds to the entrance
of tunnel B linearly through hydrophobic interactions, and is stacked between residues Tyr100 and Prol12". (B) The interac-
tions between Emodin and residues nearby (as well as some water molecules) in model A are indicated. Ring A of Emodin is
stacked between Tyr100 and Prol 12' forming a sandwich structure. 3'-methyl of ring A and C forms hydrophobic interactions
with residues near the tunnel entrance. In addition, 6'-hydroxyl of ring C interacts with water molecule W466 through hydro-
gen bond. (C) Binding model B of Emodin near the catalytic site of tunnel C. Emodin extents to the bottom of the tunnel and is
located in the hydrophobic pocket. (D) The interactions between Emodin and residues nearby (as well as some water mole-
cules) in model B are indicated. The whole molecule of Emodin hydrophobic interacts with residues near by as well as hydro-
gen bonded interacts with waters W12 and W402 through its 6'-hydroxyl of ring C.
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acted with residue Val99, while ring C bound to residues
His23 and Phel01 through hydrophobic interactions.
Additional hydrophobic interactions between 3'-methyl
of ring A and residues 1le20 and Phe83, and hydrogen
bond interactions between 6'-hydroxyl of ring C and
water molecules of W12 and W402 which formed H-
bonds to Oel and Oeg2 of Glu72 respectively stabilized
Emodin in the right place (Fig. 4D).

Discussion

It is known that Emodin shows a wide range of pharma-
cological properties including anticancer, anti-inflamma-
tory, antiproliferation, vasorelaxant and anti-H. pylori
activities. However, to date no targeting information has
been revealed regarding Emodin's anti-H. pylori activity.
FabZ is an important enzyme responsible for elongation
cycle of both saturated and unsaturated fatty acid biosyn-
thesis in FAS II pathway that is essential for membrane
formation in bacteria, and it has been recognized as an
attractive target for antibacterial drug discovery [6].
Recently, the enzymatic characterization has been investi-
gated for FabZ enzymes from several different strains
including Enterococcus faecalis (EfFabZ) [32,33], Pseu-
domonas aeruginosa (PaFabZ) [34], Plasmodium falciparum
(PfFabZ) [29,35], and H. pylori (HpFabZ) [7]. The crystal
structural analyses have been determined for PaFabZ and
PfFabZ [6,29,34], while some inhibitors against PaFabZ
and HpFabZ were also discovered [8,29,30,36,37].

In the current work, the crystal structure of HpFabZ/Emo-
din complex was determined, and two different binding
models (models A and B) were put forwarded. In the
models, the hydrophobic interactions between Emodin
and the nearby residues of HpFabZ contributed to the
major interaction forces. In model A, the interaction
between ring A of Emodin and residues Tyr100 and
Pro112' in sandwich manner is the main hydrophobic
interaction force, resulting in better electron density map
around ring A, while ring C at the other end of Emodin
had only weak interactions with residues nearby. In
model B, the whole molecule of Emodin dove deeply into
the active tunnel forming intense hydrophobic interac-
tions with the residues nearby, thus the electron density
map around Emodin was continuous, completive and
much better than the map in model A (Fig. 3). Addition-
ally, this interaction has also made the average B factor of
Emodin in model B better than in model A (The average
B factor of Emodin was 45.03 in model A, while 39.24 in
model B).

In comparison with our recent published crystal structure
of HpFabZ in complex with compound 1 (PDB code
2GLP) [8], there are some differences concerning their
binding features due to the longer molecule of compound
1 than Emodin. In model A, the pyridine ring of com-
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pound 1 was sandwiched between residues Tyr100 and
Pro112' linearly as ring A of Emodin, while the 2,4-dihy-
droxy-3,5-dibromo phenyl ring at the other end of com-
pound 1 stretched into another pocket formed by Arg158,
Glu159, Phe59', Lys62' through hydrophobic interac-
tions, which can not be found in the binding model A of
Emodin (Fig. 5A). In model B, compound 1 entered into
the middle of the tunnel. Its pyridine ring accessed the
end of the tunnel where the ring C of Emodin located in
the model B, and stayed in the right place via hydrophobic
interactions. However, the 2,4-dihydroxy-3,5-dibromo
phenyl ring of compound 1 was too large to dive into the
tunnel. Thus it had to adopt a crescent shaped conforma-
tion and stretched the 2,4-dihydroxy-3,5-dibromo phenyl
ring out of the tunnel forming a sandwich conformation
with residues 11e98 and Phe59' via n-r interactions. Based
on these additional interactions, compound 1 should
have a better inhibition activity against HpFabZ than
Emodin. However, due to the poor solubility, compound
1 actually displayed higher B factor and lower IC;, value
than Emodin.

The structural analysis indicated that the inhibitors specif-
ically bound to tunnels B and C rather than the other four
active tunnels of HpFabZ hexamer. As mentioned in our
previous work [8], the crystal packing caused displace-
ments of B3 and B6 strands in monomers B and C which
made the hydrophobic active tunnel exposed to the bulk
solvent. The hydrophobic surroundings then promoted
the binding of the inhibitors.

As reported [38], ITC technology based analysis can pro-
vide valuable information regarding the partition
between enthalpy and entropy thus for lead compound
optimization reference. Usually, it is proposed that
entropy-driven ligand, characterized by a huge and favo-
rable entropic contribution is prone to drug resistance,
while the enthalpy-driven one might be the preferred
starting point for lead optimization. As far as the Emodin/
HpFabZ interaction is concerned, the enthalpy contrib-
uted favorably to the binding free energy (Table 2),
thereby implying that Emodin might be propitious to the
further structure modification as a lead compound. Of
note, ITC result has suggested that Emodin binds to
HpFabZ by a relative molar ratio of 1:1 in solution (Fig.
2), which seems to be a little paradoxical to the Emodin
binding state in Emodin/HpFabZ complex crystal struc-
ture, where Emodin specifically bound to tunnels B and C
of HpFabZ hexamer by a 1:3 stoichiometric binding mode
(Emodin/HpFabZ). We tentatively ascribe such a discrep-
ancy to the complex crystal formation that is different
from the solution state. In the complex crystal through
Emodin soaking method, the displacements of 3 and 36
strands in monomers B and C might promote the binding
of Emodin, while the active tunnels of the rest four mon-
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Figure 5

The structure superposition diagram of Emodin and compound | in models A and B. The electrostatic surface of
the active tunnel is rendered by a color ramp from red to blue. Emodin, compound | and surrounding critical residues are
shown as sticks and colored wheat, cyan, yellow (for monomer A), magenta (for monomer B), blue (for monomer C) and
orange (for monomer D), respectively. Bromine on the compound | is colored green. (A) Emodin are located near the

entrance of the active tunnel and stacked between Tyr100 and Prol 12" in model A. The pyridine ring of compound | is also
sandwiched as Emodin, while the 2,4-dihydroxy-3,5-dibromo phenyl ring at the other end of compound | stretches into
another pocket formed by Argl58, Glul59, Phe59', Lys62' through hydrophobic interactions. (B) Emodin and compound | are
located near the catalytic site of the active tunnel in model B. Emodin extents to the bottom of the tunnel and is located in the
hydrophobic pocket. The pyridine ring of compound | adopts a similar conformation with Emodin. While the 2,4-dihydroxy-
3,5-dibromo phenyl ring at the other end of compound | stretches out of the tunnel forming a sandwich conformation with

residues 11€98 and Phe59' via nt-w interactions.

omers with no displacement in B3 strand were completely
blocked by the surface, thus interfering with the Emodin
entry into the active tunnel to form co-crystal. But in solu-
tion, six monomers were highly symmetric and the 3
strands might exhibit much more flexible conformation
to allow Emodin to enter into the active tunnels of all the
six monomers, resulting in a 1:1 stoichiometry for
HpFabZ/Emodin complex formation.

In addition, we also confirmed that Emodin could inhibit
the growth of H. pylori strains SS1 (MIC: 5 ng/ml) and
ATCC 43504 (MIC: 10 pg/ml). We could thereby suppose
that the inhibition against HpFabZ might be one of the
key factors for its H. plori strain inhibition, although there
are maybe other undiscovered acting targets for Emodin.

Recently, apart from Emodin, some other HpFabZ inhibi-
tors have been discovered to inhibit the growth of H.
pylori. For example, Juglone, a natural product, was
reported to inhibit the growth of H. pylori strains SS1 with
MIC value of 5 pg/ml [36]. Three flavonoids (Quercetin,
Apigenin and (S)-Sakuranetin) inhibited H. pylori strains
ATCC 43504 at MIC values of 100, 25, 25 pg/ml, respec-
tively [37]. All these inhibitors shared the same competi-
tive inhibition mechanism against HpFabZ and bound to
the same residues of the binding site from HpFabZ.

Conclusion

Summarily, Emodin was firstly discovered as a competi-
tive inhibitor against HpFabZ. The kinetic and thermody-
namic characterization of Emodin/HpFabZ interaction
has been completely performed by SPR and ITC based
assays. The analyzed HpFabZ/Emodin complex crystal
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structure has clearly suggested that the inhibition of Emo-
din against HpFabZ could be carried out either by its occu-
pying the entrance of the tunnel or plugging the tunnel to
prevent the substrate from accessing the active site. Our
work is expected to shed light on the potential inhibitory
mechanism of Emodin against HpFabZ, while Emodin
has been suggested to be a potential lead compound for
further anti-bacterial drug discovery.
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