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Abstract: Microcystins (MCs) are potent hepatotoxins, and their presence in water bodies poses
a threat to wildlife and human populations. Most of the available information refers to plankton,
and much less is known about microcystins in other habitats. To broaden our understanding
of the presence and environmental distribution of this group of toxins, we conducted extensive
sampling throughout Spain, under a range of conditions and in distinct aquatic and terrestrial
habitats. More than half of the tested strains were toxic; concentrations of the hepatotoxin were low
compared with planktic communities, and the number of toxic variants identified in each sample of
the Spanish strains ranged from 1–3. The presence of microcystins LF and LY (MC-LF and MC-LY)
in the tested samples was significant, and ranged from 21.4% to 100% of the total microcystins per
strain. These strains were only detected in cyanobacteria Oscillatoriales and Nostocales. We can
report, for the first time, seven new species of microcystin producers in high mountain rivers and
chasmoendolithic communities. This is the first report of these species in Geitlerinema and the
confirmation of Anatoxin-a in Phormidium uncinatum. Our findings show that microcystins are
widespread in all habitat types, including both aerophytic and endolithic peat bogs and that it is
necessary to identify all the variants of microcystins in aquatic bodies as the commonest toxins
sometimes represent a very low proportion of the total.

Keywords: Anatoxin-a; aquatic and aerophytic habitats; cyanobacteria; microcystins; MC-LF; MC-LR;
MC-LY; MC-RR; MC-YR; Spain

1. Introduction

Benthic cyanobacteria that produce microcystins (MCs) were first detected and characterised
in communities in alpine lakes [1]. Since then, their presence in benthic communities in Spain [2,3],
California [4], Egypt [5], Morocco [6,7], New Zealand [8], and other countries [9] has been reported.
More recently, the presence of benthic cyanobacteria has been demonstrated in 30% of fordable rivers
in California, and the number of potentially toxic genera has increased [10].

Foliaceus lichens of the genera Nephroma, Sticta, Lobaria, and Peltigera produce microcystins,
including some new variants [11,12]. All these lichens contain the cyanobacteria Nostoc as a
phycosymbiont. Some Nostocs found outside of lichens can also produce MCs [13], and their capacity
to do so has been connected to stress conditions. However, no toxins have been detected in Nostoc
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commune var. flagelliforme Bornet and Flahault, which is common in desert regions, and is frequently
consumed as food in countries such as China [14].

Van Apeldoorn et al. [15] reported a total of 40 toxic genera of benthic cyanobacteria, but the
number has increased since that report [16]. However, most efforts to study these bacteria have focused
on studying planktic communities, lakes, and reservoirs.

Aside from their toxicity to humans, the actual role of microcystins in the environment is
not completely understood, in either planktic or benthic algal communities [17]. There is a large
body of literature about the toxic effects of microcystins on angiosperms, fungi, bacteria, animals,
and algae, but much more has to be done in order to elucidate this complex issue. These compounds
interfere with biological processes that are necessary for the survival of organisms. They are
potent inhibitors of certain essential protein phosphatases (PP1 and PP2) for all eukaryotes [18,19],
and affect microalgae growth [20]. However, the promotion or suppression of photosynthesis has
also been observed in several types of benthic algae, including diatoms [21], which are the food
preferred by many herbivores. Microcystins may also inhibit the proteases employed in the digestion
of heterotrophs [22], and evidence suggests that their presence in water may cause histological
degeneration in macroinvertebrates, although the survival ratios are relatively high below 5 ppb of
MC-LR and MC-LW [23]. Toxins may also accumulate in fish tissue, and pathological effects have been
studied extensively [24,25].

In recent years, the frequency of what have, until now, been considered rare variants of
microcystins (Figure 1) has been confirmed in several countries, using a variety of methods [26–30].
Molecular tools have advanced considerably in the last few years, but quantitative methods are still
not adequate for detecting toxicity. In most cases, the relationship between gene expression and toxin
production is not yet sufficiently understood [31]. Most environmental agencies recommend using
different complementary methodologies to detect and quantify microcystins [18].
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Figure 1. Structure of microcystins (a) LF (MC-LF) and (b) LY (MC-LY).

Benthic toxicity was initially related to Oscillatoriales and Anatoxin-a [32,33]. However, it seems
that these toxins are not as prevalent as originally thought, at least in some countries or geographical
areas [34]. Some species of cyanobacteria may produce both microcystins and Anatoxin-a at the same
time [35,36], although most studies focus on only one type of toxin at a time. Anatoxin-a (ANT-a) is
a neurotoxic alkaloid, which is an agonist at neuronal nicotinic acetylcholine receptors [37,38].

In this study, extensive sampling was performed throughout Spain, along an environmental
gradient that focused especially on benthic aquatic systems, including aerophytic and endolithic
habitats, in an attempt to broaden the perception of the environmental presence of cyanotoxins.

2. Results

Different habitats were sampled throughout Spain, from both Atlantic and Mediterranean regions.
These habitats were high mountain streams or creeks of the Pyrenees and Sierra Nevada mountains,
peat bogs from the Pyrenees, middle mountain streams from northeast and southeast Spain and the
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Canary Islands, saline and freshwater lagoons from northwest Spain, saline and freshwater springs
from Mediterranean marshes, and a cave and building located in the southeast (Figure 2, Table 1).

Most areas were granitic, but others were calcareous. Most of the samples contained freshwater,
but some had saline water. The range of altitudes varied from 5 m to 2500 m above sea level. Rainfall
ranged between <200 mm and 1843 mm. The mean air temperature was between 5 and 22.5 ◦C.
Conductivity varied between 61.6 and 2850 µScm−1, with pH between 7 and 8.5 (Figure 3).
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Figure 2. Map of the study area with sampled localities. Grey areas indicate mountain systems whose
altitude is higher than 1500 m above sea level (asl). The insert represents the Canary Islands. Scale bars
represent 100 km.

Table 1. List of the sampled localities, indicating habitat type, lithology, altitudes, geographic
coordinates, mean rainfall, and mean temperature.

Localities Habitat Lithology Altitude
(m) Coordinates Rainfall

(mm)
Mean Temperature

(◦C)

Prado Redondo,
Sierra Nevada, Granada Creek Granitic 2100 37◦05′23.0” N

3◦24′56.8” W 1322 7.8

San Juan, Sierra
Nevada, Granada Creek Granitic 2500 37◦05′16.7” N

3◦22′18.5” W 1322 7.8

Poqueira, Sierra
Nevada, Granada Creek Granitic 1540 36◦59′26.8” N

3◦21′00.2” W 935 11.6

Vall de Mulleres,
Vielha, Lleida Peat bog Granitic 1609 42◦37′40.6” N

0◦45′34.9” E 1843 8.5

Riu Escrita,
Lleida Stream Granitic 1700 42◦34′38” N

0◦56′52” E 1100 5.0

Fonts Lac S. Maurici,
Lleida Springs Granitic 1910 42◦32′28.9” N

9◦01′21.6” W 1100 5.0

Riu Llebreta,
Lleida Stream Granitic 1999 42◦34′38” N

0◦56′52” E 1100 5.0

Riu Ter,
Villalonga, Girona River Granitic 1067 42◦19′59” N

2◦18′47” E 933 9.8

Lagoa Carregal,
Corrubedo, A Coruña Lagoon Granitic 5 42◦33′002” N

9◦02′00” W 933 9.8

Lagoa Vixán,
Corrubedo, A Coruña Lagoon Granitic 5 42◦33′002”N

9◦02′00”W 1014 14.8

Guayadeque,
Gran Canaria Stream Volcanic 1273 27◦56′00.7” N

15◦28′57.7” W 175 22.5

Palacio Guevara,
Lorca, Murcia Building Marble 353 37◦40′29.82” N

1◦41′51.54” W 232 17.6

Río Alhárabe,
Moratalla, Murcia Stream Calcareous 900 38◦12′50” N

1◦57′46” W 522 15.7

Azud de Ojós,
Ojós, Murcia Reservoir Calcareous 132 38◦8′ 52” N

1◦20′32” W 306 17.4
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Table 1. Cont.

Localities Habitat Lithology Altitude
(m) Coordinates Rainfall

(mm)
Mean Temperature

(◦C)

Cueva de los Grajos,
Cieza, Murcia Cave Calcareous 250 38◦14′21” N

1◦25′08” W 307 17.2

Río Chícamo,
Abanilla, Murcia Stream Calcareous 290 38º24′97” N

1º00′18” W <200 10.0

Marjal Almenara,
Almenara, Castellón

Freshwater
Spring Calcareous 26 39◦44′54.1” N

0◦11′17.3” W 467 17.5

Marjal de Pego-Oliva,
Valencia

Saline
Spring Calcareous 5 38◦ 52′08.2” N

0◦02′57.92” W 637 17.8

Río Amadorio,
Vilajoyosa, Alicante Stream Calcareous 32 38◦30′19” N

0◦13′58” W 300 18.0

Río Algar,
Callosa, Alicante Stream Calcareous 247 38◦39′33.67” N

0◦5′45.58” W 519 16.9
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Toxic species were detected in all the sampled habitats, including both aerophytic and endolithic
species (Figure 4). The proportion of toxic strains varied between 28% and 100% of all the strains
studied. Table 2 below lists all the isolated and extracted species.
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Table 2. Isolated and extracted strains. Taxonomic order, locality and habitat are listed. Toxicity is
highlighted in bold (dark grey).

Taxa Order Habitat Locality

Hyella balani Lehman Chroococcales Euendolithic, spring Marjal Oliva-Pego, Valencia

Pseudocapsa dubia Ercegovic Chroococcales Chasmoendolithic Palacio Guevara, Lorca, Murcia

Gloeotrichia natans (Hedwig)
Rabenhorst ex Bornet et Flahault Nostocales Epiphytic, lagoon Lagoa Vixán, Corrubedo, A Coruña

Nostochopsis lobata
Wood ex Bornet & Flahault Nostocales Epiphytic, lagoon Lagoa Vixán, Corrubedo, A Coruña

Rivularia biasolettiana
(Meneghini ex Bornet & Flahault Nostocales Epilithic, stream Río Alhárabe, Moratalla, Murcia

Río Chícamo, Abanilla, Murcia

Scytonema drilosiphon
Elenkin & V. I. Polyansky Nostocales Epilithic, cave Cueva Grajos, Cieza, Murcia

Geitlerinema splendidum
(Greville ex Gomont) Anagnostidis Oscillatoriales Epilithic, spring Ullal Almenara, Castellón

Homoeothrix juliana
(Bornet & Flahault ex Gomont) Kirchner Oscillatoriales Epilithic, stream Río Amadorio, Alicante

Leptolyngbya subtilis
(West) Anagnostidis Oscillatoriales Epilithic, spring Ullal Almenara, Castellón

Leptolygnbya truncata (Lemmermann)
Anagnostidis & Komárek Oscillatoriales Epilithic, stream Río Amadorio, Alicante

Oscillatoria margaritifera
Kützing ex Gomont Oscillatoriales Epilithic, spring Ullal Almenara, Castellón

Oscillatoria sancta Kützing ex Gomont Oscillatoriales Epilithic, stream Río Ter, Vilallonga, Lérida

Geitlerinema carotinum
(Geitler) Anagnostidis Oscillatoriales Epipelic, reservoir Azud Ojós, Ojós, Murcia

Phormidium autumnale (Agardh)
Trevisan ex Gomont Oscillatoriales Epilithic, stream Río Alhárabe, Moratalla, Murcia

Pseudanabaena frigida (Fritsch)
Anagnostidis Oscillatoriales Epipelic, peat bog Vall de Molleres, Viella, Lérida

Schizothrix rivularianum Voronichin Oscillatoriales Epipelic, stream Río Alhárabe, Moratalla, Murcia

Phormidium uncinatum
Gomont ex Gomont Oscillatoriales Epipelic, stream Barranco Guayadeque, Gran Canaria

Eleven of the 24 analysed strains contained microcystin. The proportion of toxic strains to
non-toxic strains was similar for different taxonomic orders of cyanobacteria, and varied between 50%
and 70%: 50% in Chroococcales, 60% in Oscillatoriales and 67% in Nostocales (Figure 5).
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The number of microcystin variants detected per strain varied between one and three (Table 3).
MC-RR was the most common microcystin in all of the studied strains (39%), followed by MC-LY (28%)
and MC-LF (17%).The least common microcystins were MC-LR (11%) and MC-YR (5%) (Figure 6).

Table 3. Types of toxins present in the different isolated strains (nd = not detected).

Taxa Locality Microcystins Anatoxins

Gloeotrichia natans Corrubedo, Galicia MC-LF, MC-RR nd
Geitlerinema carotinum Ojós, Murcia MC-LY ANT-a

Geitlerinema splendidum Almenara, Valencia MC-LF, MC-RR ANT-a
Nostoc cf. commune Sierra Nevada, Granada MC-LF, MC-LY nd

Oscillatoria margaritifera Almenara, Valencia MC-LF, MC-LY, MC-RR nd
Phormidium autumnale Moratalla, Murcia MC-LR nd
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MC-LR reached the highest concentration per dry weight (1.87 µg/g), followed by MC-LY
(1.72 µg/g), while MC-RR (1.36 µg/g), MC-YR (0.78 µg/g), and MC-LF (0.37 µg/g) were less
concentrated. Anatoxin-a reached the highest concentration of all the toxins (2.63 µg/g), and was
present in three strains from Oscillatoriales (Table 3, Figure 7).
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3. Discussion

The ability to synthesise microcystins appeared very early in the evolution of cyanobacteria [39],
but has been lost in certain phylogenetic branches over time. Most toxin screening efforts have been
made in freshwater aquatic habitats, mainly lagoons and reservoirs. Running water, salt water,
high mountains, peat bogs and aerophytic habitats (except for lichens) have been very rarely
sampled [9,40].

In this work, microcystins were detected for the first time in seven species, found in high mountain
streams, caves and endolithic habitats: Pseudocapsa dubia, Gloeotrichia natans, Scytonema drilosiphon,
Geitlerinema carotinum, Oscillatoria margaritifera, Pseudanabaena frigida, and Schizothrix rivularianum
(Figure 8). Anatoxin-a production was confirmed in Phormidium uncinatum, and was detected for the
first time in Geitlerinema carotinum and G. splendidum.
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Figure 8. Images of the toxic strains that were isolated during this study: 1. Pseudocapsa dubia.
2. Scytonema drilosiphon. 3. Gloeotrichia natans. 4. Pseudanabaena frigida. 5. Phormidium uncinatum.
6. Oscillatoria margaritifera. 7. Phormidium sp. 8. Geitlerinema splendidum. 9. Phormidium favosum.
10. Geitlerinema carotinum. 11. Leptolyngbya rivularianum. The scale bar represents 20 µm.
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The focus on freshwater environments is justified by the potential human health risks that the
presence of microcystins may present for local populations [41]. However, since neither the factors that
trigger the synthesis of these compounds nor their ecological function are known, significant further
research must be conducted in all habitats and phylogenetic branches [17,42].

During the present study, we detected toxic strains in all of the studied habitats, which implies
the need for more extensive reviews of the data from both the taxonomic and ecologic points of view.
Our data showed that the frequency of microcystin producers was higher in Nostocales, although we
found a similar proportion in Chroococales and Oscillatoriales. These data are similar to those found
in other studies published elsewhere [15].

In most strains, more than one microcystin congener was detected. Interestingly, some of the
most abundant congeners were those not considered to be particularly common. In particular, MC-LF
and MC-LY were detected fairly frequently, and at relatively high concentrations. Even though
these supposedly rare variants have probably always been present, they have only recently been
widely reported [10,27] perhaps due to improved extraction and detection methods. These cogeners
should be included in monitoring programmes, especially taking into account that the toxic capacity
of the more hydrophobic variants such as MC-LF and MC-LY is sometimes much higher than
MC-LR [22], which is typically used for risks assessments. The use of solid-phase extraction (SPE),
coupled with immunoaffinity columns (IACs), improves the efficiency of extraction and clean-up of
microcystins, especially in complex matrices [15]. The effects of exposure to MC-LF and MC-LW on
the degradation, growth and proliferation of human cells is much higher than on the cells exposed
to MC-LR, but phosphatase inhibition is much lower [22]. The toxicity of microcystin variants is
strongly associated with the hydrophobicity of their structural amino acids. MC-LF and MC-LW
therefore induce more pronounced cytotoxic effects on Caco-2 cells compared with MC-LR, and are
taken up much more rapidly, or with a higher affinity, by human embryonic kidney cells and human
primary hepatocytes [43,44].

Interest in algae as a food supplement has considerably increased of late. A new market has
opened up for these products, which has the potential for vast economic benefits. Aquaculture has also
undergone similar or even stronger growth, with the global yearly production of thousands of tons of
fish and shellfish. However, no clear regulation or legislation exists for these products in most countries.
Several authors have reported the presence of microcystins in food supplement products [45], as well as
in fishponds and fish [26], but very little information and very few studied effects on consumer health
are known. Increasing efforts to improve research in this field are needed by companies that prepare
these products, not to mention by environmental agencies, countries, and governments, in order to
create international regulations for blue-green algae supplements (BGAS), given their strong potential
impact on populations’ health. Above all, international regulation is necessary, because BGAS is now
available and easily sold on the internet, which increases possible risks worldwide.

Different types of quantification and detection kits are available, but the effectiveness for these
“rare” variants is very low in some cases [38]. The use of several complementary identification
or quantification methods should be compulsory, and the utilisation of biological tests based on
phosphatase inhibition as the first step should be emphasised. These functional toxicity assays permit
the detection of toxicants that may escape standard analytical detection [46–48]. Ward et al. [18]
have already suggested that most strains usually produce more than one variant, and that the
concentrations of some variants might drop below the level of detection for chemical methods,
and could thus escape analytical control. Puddick et al. [49] provides an assessment of the microcystin
congener diversity produced amongst cyanobacterial strains.

Climate warming will probably increase problems with cyanotoxins [42,43]. Thus, much work
has to be done, in order to know how to prevent toxic events, how to avoid the conditions that promote
their synthesis, and how to control cyanobacteria populations [50]. This is particularly important,
as more hydrophobic variants will increase their predominance, given the current and future predicted
atmospheric and environmental conditions [50–52].
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Our data show that microcystins are widespread, in a variety of continental habitats, including
high mountain streams, peat bogs, and aerophytic and endolithic communities. The results from our
study demonstrate how important it is that screening for variants be intensified and globally managed,
in order to prevent sanitary and environmental problems. Cyanotoxin-monitoring programmes
worldwide should be revised to include a wider range of toxin variants (as has been done in
some countries), or to initially test toxins according to “in vitro” toxicity assays, such as protein
phosphatase inhibition.

4. Materials and Methods

4.1. Study Area

Extensive sampling was performed throughout Spain (including the Canary Islands), from high
mountain streams, such as those in the Pyrenees and Sierra Nevada mountains, medium and low
mountain streams in the southeast, freshwater and saltwater springs from Mediterranean marshes,
lagoons within Atlantic marshes, caves, and buildings. Most strains lived epilithically, but some were
epipelic, and others were endolithic (chasmo or euendolithic) (Table 1).

4.2. Culturing

All the collected samples were isolated in different culture media (Bold’s Basal Medium with soil
extract, BG-11 for freshwater or aerophytic strains, and SWES for saltwater species) and maintained
as monoclonal cultures in the Algology Laboratory at Murcia University. Strains were transferred to
500-mL flasks, and were maintained with BG-11 in aeration at 20 ◦C and 65–70 µM m−2 s−1 (PAR),
in a 16:8 light-dark photoperiod, until enough biomass was obtained for the later analyses (25–1000 mg).
The incubation period varied from 2 weeks to 2 months, depending on growth rates. Biomass was
collected by filtration and was lyophilised, weighed, and kept frozen (−20 ◦C) until analysed [26].
The analysis was done 1 week after collection.

4.3. Taxonomic Identification

The monoclonal cultures were identified taxonomically by standard algological techniques under
an OLYMPUS BX60 light microscope (OLYMPUS IBERIA S.A.U., Barcelona, Spain), equipped with
a digital camera (OLYMPUS IBERIA S.A.U., Barcelona, Spain), following [53–55]. Comparisons were
made with the preserved field material whenever necessary.

4.4. Microcystin Extraction and Quantification

Freeze-dried and weighed biomass was ground with ground-glass homogenizers. Microcystins
were extracted by sonicating for 30 min with 75% methanol, following the protocols of [36,37,48,52,56].
Cycles were repeated three times. Extracts were kept frozen (−20 ◦C), and were then concentrated in
a Büchi Vac® V-500 vacuum dryer (BÜCHI Labortechnik AG, Postfach, Switzerland) and re-suspended
in methanol for three cycles. Dried extracts were re-suspended in 1 mL of HPLC grade methanol,
transferred to a 1.5-mL vial, and centrifuged in a Spectrafuge 24D microcentrifuge by Labnet
International Inc. (Edison, New York, NY, USA) at 16 g for 5 min [26]. The resultant extracts were
filtered through a regenerated 0.45 µm cellulose filter (Filter-Lab®, Eaton Filtration LLC, Tinton Falls,
NJ, USA) and kept frozen until analysed [26]. Extracts were collected with a 4 3

4 inch-long hypodermic
needle (B/Braun Sterican®, B Braun España, Barcelona, Spain) attached to a 1-mL polypropylene
syringe (BD PlastipakTM, BD, Madrid, Spain) and placed inside 1.8 amber phials (Scharlab S.L.,
Barcelona, Spain).

The identification and quantification of microcystins were performed by HPLC in
a high-resolution photodiode array detection analysis, using a HPLC-VWR Hitachi equipped with an
L-2130 Diode Array model L-2455, following the recommendations of [27,45,46,48]. Analytes were
separated in a reverse-phase Agilent silicon Zorbax column C18 (4.6 × 250 mm × 5µm). The gradient
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mobile phase was composed of water and acetonitrile (ACN), and was acidified with trifluoroacetic
acid (TFA) (0.5 µL L−1). The flow rate was 1 mL min−1 and the injection volume was 20 µL. The results
were confirmed by HPLC/MS TOF (Agilent 6220, Agilent Technologies Spain S.L, Madrid, Spain).

The Anatoxin-a was extracted following the recommendations of [35,36], and was identified and
quantified by HPLC photodiode array detection (Hitachi, Barcelona, Spain) and HPLC/MS (Agilent
Technologies Spain S.L, Madrid, Spain).

4.5. Chemicals

All the reagents were HPLC-grade and purchased from Sigma-Aldrich (St. Louis, MO, USA).
The ultrapure grade water (Milli-Q water) came from the Millipore Corporate (Bedford, MA, USA).
The standards of microcystins (MC-LF, MC-LR, MC-LY, MC-RR, MC-YR) and Anatoxin-a were obtained
from Enzo Life Sciences (Farmingdale, NY, USA).
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