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Individual differences in vulnerability to addiction have been widely studied through

factor analysis (FA) in humans, a statistical method that identifies “latent” variables

(variables that are not measured directly) that reflect the common variance among a

larger number of observed measures. Despite its widespread application in behavioral

genetics, FA has not been used in preclinical opioid addiction research. The current

study used FA to examine the latent factor structure of four measures of i.v. morphine

self-administration (MSA) in rats (i.e., acquisition, demand elasticity, morphine/cue- and

stress/cue-induced reinstatement). All four MSA measures are generally assumed in the

preclinical literature to reflect “addiction vulnerability,” and individual differences in multiple

measures of abuse liability are best accounted for by a single latent factor in some human

studies. A one-factor model was therefore fitted to the data. Two different regularized

FAs indicated that a one-factor model fit our data well. Acquisition, elasticity of demand

and morphine/cue-induced reinstatement loaded significantly onto a single latent factor

while stress/cue-induced reinstatement did not. Consistent with findings from some

human studies, our results indicated a common drug “addiction” factor underlying several

measures of opioid SA. However, stress/cue-induced reinstatement loaded poorly onto

this factor, suggesting that unique mechanisms mediate individual differences in this vs.

other MSA measures. Further establishing FA approaches in drug SA and in preclinical

neuropsychopathology more broadly will provide more reliable, clinically relevant core

factors underlying disease vulnerability in animal models for further genetic analyses.

Keywords: opioid self-administration, factor analysis, individual differences, behavioral economics, multivariate

methods

INTRODUCTION

Individual differences in susceptibility to addiction in humans have been studied widely through
factor analysis (FA), a statistical method that identifies “latent” variables (variables that are not
measured directly) that reflect the common variance among a larger number of observed measures.
In contrast to “bottom-up” approaches evaluating a wide range of measures e.g. (1), FA is
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a theory-driven statistical method that uses well-defined
indicators from a common behavioral domain (2). These models
provide both insights into the relationship between different
facets of addiction- and dependence-related symptomatology (3),
and a relatively parsimonious account of disease comorbidity (4).
For example, FA approaches have revealed that liability to alcohol
abuse is associated both with a general drug abuse vulnerability
factor and with several factors that are specific to this form of
addiction (e.g., genetic variants in alcohol metabolizing enzymes)
(5–7).

Factor analytic approaches have been widely used in the
clinical literature to explore the factor structure underlying
various addiction measures. Such structures may have both
vertical and horizontal dimensions. The vertical dimension
essentially represents hierarchical relationships between concrete
traits or behaviors and higher-order, more abstract, or general
“latent” factors. The horizontal dimension represents the degree
of similarity between factors within a single level of the hierarchy
(8). Elaboration of such two-dimensional factor structure may
yield one or more robust endophenotypes that can be used to
identify genomic loci associated with core features of substance
use disorders (9, 10).

In animal addiction research, FA approaches could be useful in
identifying the underlying associations between, and uniqueness
of, different addiction-related behavioral measures, developing
more reliable measures of addiction, and uncovering their
underlying genomic and neurobiological substrates (11). Such
approaches have rarely been employed in this area, however,
despite the fact that the drug self-administration (SA) paradigm
models a variety of aspects of addiction (e.g., acquisition,
relapse, etc.) within individual subjects, thereby lending itself
to multivariate statistical analyses. In one previous study, an
exploratory FA revealed three addiction vulnerability measures—
(a) SA despite punishment, (b) progressive ratio (PR) breakpoint,
and (c) drug-seeking during no-drug periods—as loading onto
a single latent factor underlying cocaine SA in rats, whereas
extinction loaded onto a separate factor (12). However, despite
the dramatic impact of opioid addiction on public health (13), no
preclinical studies have applied FA to opioid SA.

The primary goal of this study was to use FA to examine
the latent factor structure between four measures of i.v. opioid
(morphine) SA in rats (i.e., acquisition, demand elasticity,
morphine/cue-induced reinstatement, stress/cue-induced
reinstatement), using data from a previously published study
(14). The four SA measures were selected due to their common
use in preclinical studies and to the relevance of each to different
aspects of addiction (15–18).

In animal research, there is frequently the implicit assumption
that a variety of different SA variables all have relevance
to addiction vulnerability. This is consistent with findings in
humans showing that individual differences in multiple measures
of abuse liability are best accounted for by a single latent factor
(19–21). Therefore, in the current study, a one-factor model was
fitted to the data, with the single latent factor conceptualized as
the “addiction” factor.

It has been proposed that the minimum sample size required
for FA ranges between N = 50–250 (22–26). Conducting small

sample-size FA may result in many issues that are otherwise
uncommon in large sample-size analyses, such as Heywood
cases denoting negative estimated variances (22, 27). Preclinical
addiction studies have typically employed relatively small sample
sizes, which pose a challenge to the use of FA. Therefore,
the secondary goal of this study was to test the utility of a
novel approach to conducting FA on preclinical data that allows
for smaller sample sizes to be used. Several proposed (28–30)
“regularization methods” can effectively address the challenges
of conducting small sample FA by reducing the number of
estimated model parameters. In this study, we utilized two robust
regularization methods in conjunction with a method to obtain
a robust correlation matrix from our data (31) to demonstrate
the feasibility of conducting FA in a small preclinical dataset.
By applying these iterative statistical procedures to our data,
we aimed to understand the core dimensions underlying the
morphine SA (MSA) model.

MATERIALS AND METHODS

Overview of Experimental Protocol
Data from a recent study (14) were used for the current analyses.
The goal of that study was to evaluate whether withdrawal-
induced anhedonia as measured using elevated intracranial self-
stimulation (ICSS) thresholds predicted individual differences
in subsequent MSA. Figure 1 shows an overview of the
experimental protocol, which is described in detail in Swain
et al. (14). Briefly, male Sprague-Dawley rats that were trained
in an ICSS paradigm underwent naloxone (NX)-precipitated
and/or spontaneous withdrawal from acute morphine (MOR)
injections or received control (saline, SAL) injections. This
resulted in four experimental groups: MOR + NX (n = 29),
MOR + SAL, SAL + NX, SAL + SAL (n = 10–11 each).
During the subsequent MSA protocol, all rats acquired MSA
(0.2 mg/kg/infusion) under a fixed ratio (FR) 1 schedule of
reinforcement for at least 10 daily sessions and until MSA was
stable. Rats then underwent demand testing in which the FR
response requirement was progressively increased every 3–4
sessions as follows: FR 2, 3, 6, 12, 24, and doubled thereafter
until infusion rates were reduced by >90% compared to FR
1. Rats then re-acquired MSA under an FR 1 schedule for
at least 5 sessions and until infusions/session were stable and
subsequently underwent extinction of MSA in the absence of the
cue light previously paired withmorphine infusions for at least 10
sessions and until active lever pressing was stable. Rats were then
tested for drug-induced reinstatement (with morphine injection
prior to the SA session) and finally, stress-induced reinstatement
(with injection of the pharmacological stressor yohimbine prior
to the SA session), both in the presence and absence of the
visual cue paired with morphine, and with appropriate within-
subject control conditions (1 session per experimental/control
condition) [see (14) for more details on animals, apparatus and
experimental protocol]. Since a history of MOR and/or NX
injections during ICSS testing did not have a significant effect on
subsequent MSA, rats from all groups that completed all phases
of the study were included in the data analyses (N = 43). These
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FIGURE 1 | Overview of experimental protocol. On each day, rats were injected with morphine (0 or 5.6, mg., s.c.), followed 1 h 50min later by naloxone (0 or 1.0

mg/kg), and then tested for ICSS 10min later. After precipitated withdrawal, rats were injected with morphine (0 or 5.6 mg/kg) and tested for ICSS at multiple time

points (2–170 h) after injection. After completion of spontaneous withdrawal testing, all animals were tested using various measures of MSA (e.g., acquisition, demand,

reinstatement) in daily 2 h sessions (phase 2). [See text and (14) for further details]. The current FA study used data from MSA (phase 2). Because MSA was not

influenced by treatment during ICSS testing (14), all animals that completed the MSA protocol were included in this analysis (N = 43). Portion of figure reprinted by

permission from Springer Nature (14), copyright 2020.

experiments conformed to appropriate NIH and institutional
ethical / biosafety standards see (14).

Overview of Factor Model
We tested a one-factor model with one latent variable (the
“addiction” factor) and four observed variables from the MSA
model: acquisition, elasticity of demand (α), and morphine/cue-
and stress/cue-induced reinstatement with visual cue light
present. These measures were chosen due to the distinct aspects
of addiction-like behavior they are often thought to capture and
their common application in drug SA research. Acquisition was
defined as the average number of infusions across the first 10
days of MSA. An exponential demand function was fitted to
data from the FR escalation protocol to obtain the α statistic,
as described in previous studies (14, 16). α refers to the rate of
change in consumption with increases in unit price (elasticity of
demand), with higher α values indicating lower reinforcement
efficacy. Reinstatement was measured as the difference between
the number of active and inactive lever presses over each of the
2-h reinstatement test sessions after the challenge (i.e., morphine
or yohimbine) drug injection, with cue light present. The use of
difference scores to measure reinstatement controls for potential
non-specific (e.g., motoric) effects of treatments (14, 32–34).
These reinstatement conditions were analyzed because they
produced more robust reinstatement than either the challenge
drug (morphine or yohimbine) alone or the cue alone (see
Results). A higher number of infusions during acquisition, lower
elasticity of demand (α), and higher reinstatement scores reflect
greater abuse liability for each of these measures.

Statistical Analyses
All statistical analyses were performed in GraphPad Prism
(GraphPad Software, San Diego, California USA) and R ver. 4.0.4
(35). A one-factor model was hypothesized to show good model-
fit with each of the SA measures showing high factor loadings,

indicating a common “addiction” factor underlying all tested
SA measures.

Three distinct methods were used for extracting factor
loadings. Given the small sample size of our data set and several
outlying values (to be discussed later), we used two distinct
factor extraction algorithms that are known to yield robust factor
loadings in small sets of non-normal data. The first method
involves computing Mahalanobis distances for all data points
and then identifying the number of multivariate outliers via
a series of chi-squared tests (α = 0.1). Next, we used the
minimum covariance determinant [MCD: MASS package (31,
36)] method to produce a robust estimator of multivariate scatter
and center to remove the multivariate outliers and generate a
robust correlation matrix. This robust correlation matrix was
factor analyzed with a regularized least squares estimator [fareg
function; (37)]. Robust least squares estimation does not assume
data multinormality and aims to minimize residuals between the
observed and reproduced correlations under the proposed factor
model (38). Model fit was tested via the correlation root mean
square residual (CRMR) statistic:

CRMR =

√

√

√

√

1

t − p

∑

i<j

(ρij − ρ0
ij)

2

,

with t denoting the number of non-redundant population
variances and co-variances among the p observed variables,
ρij denoting the correlation between variables i and j, and ρ0

ij

denoting the model-implied population correlation under the
theoretical model (39). CRMR is commonly used in FA and
structural equation modeling (SEM) as a model fit statistic, with
smaller numbers indicating better model fit. Finally, effect size of
overall model misfit was determined by theŴ1 statistic, defined as

Ŵ1 =
p

tr(660
−1)

2
,
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where 6 denotes a population covariance matrix, 60 denotes the
population covariance under the null hypothesis, and tr denotes
the trace operator (the trace of a square matrix equals the sum
of its diagonal elements). Parametric bootstrap standard errors
(SE) were computed for the factor loadings using 5,000 bootstrap
samples (40).

The second robust method for analyzing the data used
regularized FA as described by Jung et al. [(29, 30); implemented
in the fareg function; (37)]. Both least squares (LS) andmaximum
likelihood (MLE) regularized FA were used to estimate robust
factor loadings for testing the 1-factor model. Previous work
suggests that these methods work well in small samples of non-
normally distributed data (27, 29, 30) and thus were well-suited
for the current study.

To further demonstrate the advantages of the robust
correlation and robust factor analytic methods, a third analysis
was implemented using principal axis factoring, a traditional
factor extraction method, with the complete data set of 43 rats
[using the faMain function in the R fungible library (37)]. This
method was not expected to perform well given the small sample
size of our data set and the existence of several multivariate
outliers. To allow comparison with the other analyses, we also
computed the CRMR index for this analysis.

RESULTS

MSA
Detailed behavioral results from the MSA protocol are reported
in Swain et al. (14). Briefly, rats reliably acquired MSA,
exhibiting a clear preference for the active over inactive response
lever (Figure 2A). Increases in FR requirement resulted in a
progressive reduction in morphine consumption that was well-
described by an exponential demand function (R2 = 0.84)
(Figure 2B). After MSA reacquisition and extinction in the
absence of the morphine-associated cue light, rats reliably
reinstated active lever responding following a priming dose
of morphine in the absence of the cue light (MOR + NO
CUE; Figure 2C), response-contingent presentation of the cue
light (VEH + CUE), or combined exposure to morphine and
the cue light (MOR + CUE). Similar findings were observed
when reinstatement was induced by the pharmacological stressor
yohimbine (Figure 2D).

FA
All variables were standardized to keep their scales consistent.
The factor loadings from each analysis are shown in Table 1.

For the two regularized FA analyses, 5 multivariate outliers
(α = 0.1) were identified from the chi-squared test using
Mahalanobis distance. Subsequently, these 5 multivariate outliers
were excluded from the robust correlation matrix computation
using MCD (N = 38) (31). Using the robust correlation
matrix with LS estimation, the first regularized FA revealed
that acquisition, elasticity of demand and morphine/cue-
induced reinstatement showed high factor loadings (all |loadings|
≥0.58) on a single common factor, whereas stress/cue-induced
reinstatement showed low factor loading on this dimension

(loading = 0.27) (Table 1). Bootstrap SEs for factor loadings
of acquisition, elasticity of demand and morphine/cue-induced
reinstatement were also lower (SE= 0.14 for all three) compared
to SE of the factor loading for stress/cue-induced reinstatement
(SE = 0.22). The second regularized FA using MLE factoring
(on the same robust correlation matrix) produced similar results.
Acquisition, elasticity of demand and morphine/cue-induced
reinstatement showed high factor loadings on a single dimension
(all |loadings| ≥0.59), and stress/cue-induced reinstatement
again showed a low factor loading (loading = 0.28) (Table 1).
Similar SEs were also observed, where acquisition, elasticity
of demand and morphine/cue-induced reinstatement showed
lower SEs (all SEs ≤ 0.14) compared to stress/cue-induced
reinstatement (SE = 0.23). Overall, based on the CRMR and
Ŵ1 values, the one-factor model showed excellent model fit
(CRMR= 0.03, Ŵ1 = 1 for both analyses).

As expected, the results from the principal axis factoring
(N = 43) were less robust. Although acquisition, morphine/cue-
induced reinstatement and stress/cue-induced reinstatement
showed positive factor loading values (all |loadings| ≥ 0.27), the
loading for elasticity of demand was outside of theoretical bounds
with a |loading| = 1.03 (Table 1). Since factor loadings in the
standardized 1-factor model can be interpreted as correlations,
values outside of the −1 to 1 interval are indicative of a
Heywood case. As noted earlier, this mathematically illogical
result can occur when common factor extraction methods are
applied to small sample data sets. The fact that the principal
axis method produced a Heywood case in our data provides
further justification for our choice to use robust methods for
factor extraction. Therefore, it was not surprising that the one-
factor principal axis solution did not fit the data well as indicated
by CRMR= 0.07.

DISCUSSION

Our data demonstrated that a single latent addiction factor fits
four distinct MSA measures. This indicates that acquisition,
elasticity of demand, morphine/cue-induced reinstatement, and
stress/cue-induced reinstatement all in some way measure a
common construct, akin to a general factor of addiction
vulnerability. These findings support the implicit assumption in
the preclinical literature that these different SA measures are
related to abuse liability. This one-factor model is also consistent
with the clinical literature that often posits a single latent factor
to underlie multiple measures of addiction (19–21).

In terms of individual factor loadings, results from both
regularized FAs implicated elasticity of demand as the variable
most reliably strongly associated with the addiction factor, with a
stable, high factor loading across both analyses. Previous studies
have demonstrated the value of behavioral economics in studying
individual differences in vulnerability to addiction to opioids and
other drugs in both humans and animals (14, 16, 41–43). For
example, elasticity of demand predicts a variety of other measures
of cocaine and opioid SA in rats (41, 42). The high factor loading
for α in the current study complements these findings and further
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FIGURE 2 | Active and inactive lever pressing during acquisition (n = 43), (A); exponential demand curve for morphine intake during demand testing (n = 43) (B);

difference scores between active and inactive lever pressing during morphine-induced (n = 43) (C) and yohimbine-induced (n = 43) (D) reinstatement. These data are

derived from Swain et al. (14), but are here pooled across groups irrespective of treatment prior to MSA. MOR, Morphine; YOH, Yohimbine; VEH, Vehicle. Data points

represent mean ± SEM. *Significant difference compared to inactive lever pressing or VEH+NO CUE responding, p < 0.05; **p < 0.01.

TABLE 1 | Estimates for factor loadings from 3 analyses, with bootstrapped standard errors for the factor loadings from the two robust methods in parenthesis.

Factor loadings

SA measures Robust LS Robust MLE Principal axis

Acquisition 0.58 (0.14) 0.59 (0.08) 0.48

Demand −0.63 (0.14) −0.64 (0.13) −1.03

Morphine/cue-induced reinstatement 0.62 (0.14) 0.63 (0.14) 0.32

Stress/cue-induced reinstatement 0.27 (0.22) 0.28 (0.23) 0.27

Robust LS, regularized FA using least squares estimates with MCD robust correlation matrix excluding 5 multivariate outliers; Robust MLE, regularized FA using maximum likelihood

estimates with robust correlation matrix excluding 5 multivariate outliers; Principal Axis, traditional principal axis factor extraction.

demonstrates the utility of this demand function for studying
drug addiction.

In contrast, stress/cue-induced reinstatement did not load
onto the addiction factor. Stress-induced reinstatement differed
from the other three measures in that it (1) involved stress,
which can induce relapse via partially distinct biological
mechanisms (44), and (2) was tested in the absence of
morphine. To evaluate whether either of these features could
account for our findings, we tested an additional model
(see Supplemental Materials), in which we added cue-induced
reinstatement, and replaced elasticity of demand (α) with

intensity of demand (Qo), an alternative behavioral economic
measure that reflects the maximum level of consumption at
zero price. Neither cue-induced reinstatement or Qo involve
acute stress, while Qo is derived from data collected in the
presence of morphine. Neither of these measures showed high
factor loading, suggesting that neither the presence of stress,
nor the absence of morphine, can alone account for the poor
loading of stress-induced reinstatement onto the addiction
factor. Further research using more complex models is needed
to elaborate the factor-analytic structure of MSA. This could
include evaluation of whether stress/cue-induced reinstatement,
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cue-induced reinstatement, and Qo load onto a single, additional
latent factor or are each associated with different sources
of variance.

Utilizing different regularized FA methods with robust
correlations in direct comparison with a traditional principal axis
factoring method, we have demonstrated the feasibility of these
statistical tools in analyzing sample sizes that are realistic targets
for preclinical studies where traditional FA methods might fail.
These methods help address some major statistical challenges in
small sample size factor analyses such as Heywood cases, which
was observed using the traditional factor extraction method (45,
46). Moreover, the regularization methods used in the current
study have been shown to provide good recovery of underlying
factor structures in simulation data, increasing confidence in the
interpretation of our results (29, 30).

Though statistical methods such as regularization enable
complex multivariate analyses of small sample sizes, there are
inherent limitations of such analyses, such as sampling bias,
that could not be fully addressed in this study. Future studies
could include a larger preclinical sample for analyses where
cross-validation is warranted, such as regularized factor analytic
methods using least absolute shrinkage and selection operator
(LASSO) penalization (28, 47). Additionally, with a larger
preclinical sample, a higher count of observed variables could be
included in themodel, allowing for examination ofmore complex
multi-factor models.

A further limitation of this study is that some rats had prior
morphine and/or naloxone experience, and all rats underwent
ICSS surgery and training. However, no significant difference was
found on any SA measure between rats with morphine and/or
naloxone experience compared to saline controls. Furthermore,
despite their history of ICSS testing, rats from the current study
showed similar acquisition and demand compared to rats from
a previous study that did not have a history of ICSS testing
(14, 16). The fixed order of assessment of the MSA outcomes
also represents a potential limitation. While some measures (e.g.,
acquisition) inevitably precede others in a SA model, when
possible future studies should counterbalance the phases (e.g.,
stress-induced and morphine-induced reinstatement) to control
for any potential order effects.

Notwithstanding these limitations, the current study
represents a first step in using robust FA to understand the factor
structure of opioid SA. As such, our study identifies a single factor
that contributes to four common opioid SA measures, revealing
the common and unique information each of the measures
could contribute to preclinical addiction literature. Elasticity

of demand most reliably represents the common “addiction”
factor. Therefore, future studies examining individual differences
in opioid SA may be rendered most informative by selectively
examining this variable. More generally, exploring relationships
beyond prevailing bivariate correlations in preclinical behavioral
studies may further our understanding of addiction vulnerability
and its neurobiological basis and lead to better prevention
and treatment.
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