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Abstract

TOP2A and TOP2B are type II topoisomerase enzymes that have important but distinct roles in DNA replication

and RNA transcription. Recently, TOP2B has been implicated in the transcription of long genes in particular

that play crucial roles in neural development and are susceptible to mutations contributing to

neurodevelopmental conditions such as autism and schizophrenia. This study maps their expression in the early

foetal human telencephalon between 9 and 12 post-conceptional weeks. TOP2A immunoreactivity was

restricted to cell nuclei of the proliferative layers of the cortex and ganglionic eminences (GE), including the

ventricular zone and subventricular zone (SVZ) closely matching expression of the proliferation marker KI67.

Comparison with sections immunolabelled for NKX2.1, a medial GE (MGE) marker, and PAX6, a cortical

progenitor cell and lateral GE (LGE) marker, revealed that TOP2A-expressing cells were more abundant in MGE

than the LGE. In the cortex, TOP2B is expressed in cell nuclei in both proliferative (SVZ) and post-mitotic

compartments (intermediate zone and cortical plate) as revealed by comparison with immunostaining for PAX6

and the post-mitotic neuron marker TBR1. However, co-expression with KI67 was rare. In the GE, TOP2B was

also expressed by proliferative and post-mitotic compartments. In situ hybridisation studies confirmed these

patterns of expression, except that TOP2A mRNA is restricted to cells in the G2/M phase of division. Thus,

during early development, TOP2A is likely to have a role in cell proliferation, whereas TOP2B is expressed in

post-mitotic cells and may be important in controlling expression of long genes even at this early stage.

Key words: autism susceptibility genes; cortical development; DNA replication; ganglionic eminences; RNA

transcription.

Introduction

The helical structure and supercoiling of DNA is essential

for nuclear packaging; however, processes such as DNA

replication and transcription require complete separation

and partial separation of the strands, respectively. During

transcription, the partial separation of the DNA allows RNA

polymerase and transcription factors to access specific gene

regions, creating tension in the DNA. Topoisomerase

enzymes govern the topological state of DNA in both

prokaryotic and eukaryotic cells, allowing unwinding of the

DNA and relieving the torsional strain created by supercoil-

ing (Nitiss, 2009a). Cells have type I and II topoisomerase

enzymes. Type I topoisomerases (TOP1 and TOP3) are able

to break a single strand of DNA, allowing the intact strand

to pass through it before re-joining the broken strand,

whilst type II topoisomerases (TOP2) carry out ATP-

mediated strand breakage of one or both strands. Human

topoisomerases comprise distinct alpha and beta isoforms

(Austin & Marsh, 1998). Topoisomerase poisons are effective

anti-cancer drugs as they prevent cell replication and induce

apoptosis (Nitiss, 2009b).

In rodents, expression of Top2a and Top2b in the brain is

higher during early embryogenesis compared with the later

stages (Capranico et al. 1992). However, there is a surge of

Top2b expression in the brain of newborn mice that is not

observed for Top2a or the marker of cell proliferation

thymidylate synthase. Top2a expression is most apparent
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in proliferating tissues whereas Top2b expression is not

confined to regions of proliferation, suggesting a role for

rodent Top2b outside of DNA replication (Capranico et al.

1992; Tsutsui et al. 1993; Watanabe et al. 1994). Top2b is

the predominantly expressed topoisomerase enzyme in

mouse neurons (Tiwari et al. 2012), and has been shown to

play a role in the development and lamination of the neo-

cortex (Yang et al. 2000; Lyu & Wang, 2003). By E16.5,

Top2b protein is found in the proliferative regions of the

ventricular zone (VZ) and the subventricular zone (SVZ) of

the mouse neocortex as well as in the post-mitotic regions

of the cortical plate (CP), subplate (SP) and marginal zone

(MZ). Homozygous mutants exhibit abnormal cortical

organisation at E16.5 with the SP being absent and the VZ

appearing thickened compared with wild type (WT) (Lyu &

Wang, 2003). As these defects appear late in development

and expression is seen in areas containing differentiated

neurons, again this suggests a role for Top2b outside of

DNA replication. Table 1 provides a summary of what is

known about expression, localisation and function of type

2 isomerases in mouse and rat.

TOP2B has been implicated in transcriptional regulation

in human cell lines (Ju et al. 2006; Perillo et al. 2008; Haff-

ner et al. 2010; McNamara et al. 2010; Thakurela et al.

2013; Isik et al. 2015), and topoisomerases are known to be

expressed in the developing and adult human brain (Zand-

vliet et al. 1996; Plaschkes et al. 2005). Evidence suggests

that topoisomerase mutations can potentially affect the

expression of susceptibility genes of neurodevelopmental

disorders, including autism spectrum disorder (ASD; King

et al. 2013) Fragile X syndrome (Xu et al. 2013) and mental

retardation (Tarsitano et al. 2014). It has been shown that

TOP2B may be required for efficient transcription of a sub-

set of long genes linked to ASD with roles in synapse forma-

tion and stabilisation (King et al. 2013). This raises the

possibility that topoisomerase proteins may have develop-

mental roles in establishing the neural circuitry essential for

the proper functioning of the human brain.

This study focusses on the expression of TOP2A and

TOP2B in the developing human brain as they are highly

expressed in neuronal cells. For the first time, the spatial

expression of TOP2A and TOP2B was looked at across the

developing human telencephalon from 9 to 12 post-concep-

tional weeks (PCW) using histochemical techniques. This

time period covers the end of embryogenesis and the onset

of the foetal stages, from the beginning of the formation

of the CP but before thalamic afferents have innervated the

cerebral cortex. In order to interpret these expression pat-

terns more easily, nearby sections were immunostained for

proteins that have been validated as markers for known

human cell types/compartments (Bayatti et al. 2008a; Pauly

et al. 2014), including PAX6 (radial glia), KI67 (dividing

cells), TBR1 (early post-mitotic cortical neurons) and NKX2.1

[progenitor cells of the medial ganglionic eminence (MGE)].

Table 1 Topoisomerase 2 nervous system expression, localisation and function in animal models.

Mouse Rat

Top2a Top2b Top2a Top2b

Development Mainly expressed in

proliferative tissues

(Capranico et al. 1992)

Expressed in both

proliferating and non-

proliferative tissues

(Capranico et al. 1992)

Transcripts highly expressed in

embryonic brain but

undetectable 4 weeks after

birth (Tsutsui et al. 1993)

Transcripts present

throughout embryonic

and postnatal stages

(Tsutsui et al. 1993)

An absence of Top2b

affects cerebral

stratification as well as

causing a lack of axon

innervation in skeletal

muscles and spinal cord

(Yang et al. 2000; Lyu &

Wang, 2003)

In the developing cerebellum,

Top2a expression is confined

to proliferative layer (Tsutsui

et al. 1993)

In the developing

cerebellum, Top2b

expression is seen

throughout cortical

region (Tsutsui et al.

1993)

There is a shift from Top2a

to Top2b expression

during neuronal

differentiation (Tiwari

et al. 2012)

Expressed in the VZ of

embryonic brains (E13–15)

(Watanabe et al. 1994)

Expressed throughout the

brain from E13 to P21

(Watanabe et al. 1994)

Maturity Low expression in adult

brain tissue relative to

other tissues (Capranico

et al. 1992)

High expression in adult

brain relative to other

tissues (Capranico et al.

1992)

VZ, ventricular zone.
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Materials and methods

Human tissue

Human embryonic and foetal brain sections between 8 and 12 PCW

were obtained from the MRC-Wellcome Trust Human Developmen-

tal Biology Resource (HDBR, http://www.hdbr.org). Brains were col-

lected from terminations of pregnancy with maternal consent with

the approval of local ethical committees. Age was determined by

the assessment of external morphology (O’Rahilly et al. 1987; Bullen

& Wilson, 1997) or by comparing foot and heel to knee length with

a standard growth chart (Hern, 1984).

Immunohistochemistry (IHC)

Brains were fixed in buffered 4% paraformaldehyde solution (PFA;

Sigma Aldrich, Dorset, UK) and embedded in paraffin wax before

sectioning. Deparaffinised coronal and sagittal sections collected on

slides were immersed in 1.5% hydrogen peroxide : methanol solu-

tion (Sigma Aldrich) to block activity of endogenous peroxidases.

Heat-mediated antigen retrieval was carried out by treatment of

sections in citrate buffer (pH 6.0) before incubating sections with

10% of the appropriate normal serum (Vector Laboratories, Peter-

borough, UK) in Tris-buffered saline (TBS) for 10 min. For

immunoperoxidase staining, sections were then incubated with a

primary antibody (Tables 2 and 3 for source of antibodies and

dilutions used) in TBS solution overnight at 4 °C. Sections were then

washed and incubated for 30 min with the appropriate biotinylated

secondary antibody (Vector Laboratories), washed then incubated

for 30 min with Vectastain Elite ABC kit (Vector Laboratories) and

developed using 3,30-diaminobenzidine (Vector Laboratories). Sec-

tions were dehydrated, cleared and coverslipped.

For immunofluorescent double-labelling, a novel procedure that

allows two polyclonal primary antibodies to be employed was

developed from the methods of Goto et al. (2015). Sections were

incubated with the first primary antibody as before, washed and

incubated with ImmPRESSTM HRP IgG (Peroxidase) Polymer Detec-

tion Kit, made in horse (IF; Vector Laboratories), washed then incu-

bated for 30 min with tyramide signal amplification (TSATM)

fluorescein plus system reagent (IF; Perkin Elmer, London, UK). After

washing but before application of a second primary antibody, heat-

mediated antigen retrieval was carried out by treatment of sections

in citrate buffer (pH 6.0). This removes the first set of primary and

secondary antibodies employed, but leaves fluorescent tyramide

covalently bound to the tissue section. The method above was

repeated for the detection of this second primary antibody, except

that tyramide signal amplification (TSATM) rhodamine plus was used

for detection. Sections were then washed, stained with 40,6-diami-

dino-2-phenylindole, dihydrochloride (DAPI; Thermo Fisher Scien-

tific), washed and coverslipped with Vectashield (Vector

Laboratories).

Manufacture of in situ hybridisation (ISH) probes

Polymerase chain reaction (PCR) using specific primers (Sigma

Aldrich; Table 4) amplified the required DNA fragment of the gene

of interest using human brain foetal DNA as a template, which was

run on a gel to confirm the correct size of the product. The band

was gel extracted (Qiagen, Crawley, UK), and the DNA was cloned

and transformed into competent cells using the pGEM�-T Easy kit

(Promega, Southampton, UK). Select colonies were grown in 5 mL

LB-Broth (Invitrogen, Paisley, UK) with ampicillin (overnight). Plas-

mids were prepared using the Miniprep kit (Qiagen) and the HiS-

peed plasmid Maxiprep kit (Qiagen) before restriction digest using

the Qiagen PCR purification kit. Digoxigenin-UTP was incorporated

into riboprobes during in vitro transcription using the DIG RNA

Labelling Kit (SP6/T7; Roche, Indianapolis, USA) according to the

manufacturer’s instructions. Antisense and sense probes were gen-

erated using T7 and SP6 polymerase, respectively. Probe concentra-

tion was measured (Nanodrop; Thermo Scientific, Waltham, USA).

Table 2 Primary and secondary antibodies used in this study.

Primary

antibody Species Dilution Supplier

KI67 Mouse 1/150 Dako, Cambridgeshire,

UK, clone MIB1

NKX2.1 Mouse 1/150 Dako, Cambridgeshire,

UK

PAX6 Rabbit polyclonal 1/1500 Covance, Cambridge

Bioscience, UK

TBR1 Rabbit polyclonal 1/1500 Abcam, Cambridge, UK

TOP2A Rabbit polyclonal 1/800 Prof. Caroline Austin*

TOP2B Rabbit polyclonal 1/800 Prof. Caroline Austin*

*From research funded by Leukaemia and Lymphoma Research.

Table 3 Immunogen sequences detected by polyclonal rabbit antibodies raised against TOP2A and TOP2B.

Gene Immunogen sequence Length/aa

TOP2A EGSPQEDGVELEGLKQRLEKKQKREPGTKTKKQTTLAFKPIKKGKKRNPWSDSESDRSSDESNFDVP

PRETEPRRAATKTKFTMDLDSDEDFSDFDEKTDDEDFVPSDASPPKTKTSPKLSNKELKPQKSVVSD

LEADDVKGSVPLSSSPPATHFPDETEITNPVPKKNVTVKKTAAKSQSSTSTTGAKKRAAPKGTKRDP

ALNSGVSQKPDPAKTKNRRKRKPSTSDDSDSNFEKIVSKAVTSKKSKGESDDFHMDFDSAVAPRAK

SVRAKKPIKYLEESDEDDLF

287

TOP2B LDTAAVKVEFDEEFSGAPVEGAGEEALTPSVPINKGPKPKREKKEPGTRVRKTPTSSGKPSAKKVKKR

NPWSDDESKSESDLEETEPVVIPRDSLLRRAAAERPKYTFDFSEEEDDDADDDDDDNNDLEELKVK

ASPITNDGEDEFVPSDGLDKDEYTFSPGKSKATPEKSLHDKKSQDFGNLFSFPSYSQKSEDDSAKFDS

NEEDSASVFSPSFGLKQTDKVPSKTVAAKKGKPSSDTVPKPKRAPKQKKVVEAVNSDSDSEFGIPKK

TTTPKGKGRGAKKRKASGSENEGDYNPGRKTSKTTSKKPKKTSFDQDSDVDIFPSDFPTEPPSLPRT

GRARKEVKYFAESDEEEDDVDF

358
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Tissue in situ hybridisation (TISH)

Paraffin sections were dewaxed in two changes of histoclear and

gradually hydrated in decreasing ethanol concentrations. Sections

were washed twice in PBS fixed for 20 min in PFA. Sections were

washed twice in PBS and then incubated with proteinase K (20

lL mL�1; Sigma Aldrich) for 8 min and post-fixed in 4% PFA : PBS

(Sigma) at room temperature for 5 min. After two washes in PBS,

sections were treated with 0.1 M tetraethylammonium/0.25% acetic

anhydride for 10 min, washed again twice in PBS. Dehydrated and

air-dried slides were covered with 300 ng DIG-labelled riboprobe,

hybridisation mix (50% formamide, 0.3 M NaCl, 20 mM Tris pH 8.5, 5

mM EDTA pH 8.0, 19 Denharts solution, 10% dextran sulphate),

tRNA (0.5 mg mL�1) and RNAse inhibitor (1 lL mL�1), coverslipped

and the mixture was incubated overnight at 65 °C to allow hybridis-

ation of probes to the tissue mRNA. Post-hybridisation washes were

performed [29 standard sodium citrate (SSC), 65 °C; 0.29 SSC,

65 °C; 29 formamide wash (350 mL formamide, 70 mL 209 SSC,

280 mL dH2O)], and slides were incubated for 1 h in 150 mM NaCl

and 100 mM Tris–HCl, pH 7.5, containing 10% foetal calf serum

followed by incubation with anti-DIG : alkaline phosphatase and

expression was visualised using NBT/BCIP (Roche), sections mounted

using Vectamount (Vector Laboratories).

Imaging

Images were taken using an Axioimager Z2 microscope equipped

with an Axiocam and Axioimager Z2 4.8.1 software or scanned

using the Leica SCN400 Slide Scanner. Final images for publication

were produced using Adobe Photoshop CS6 software.

Results

TOP2A is expressed in regions of cell division

TOP2A protein localisation was determined using antibod-

ies that recognise the C-terminal domain of the protein

(Fig. 1A), residues 1244–1531 (Table 2). The transcription

factor PAX6 is involved in cortico-neurogenesis and

Table 4 Primers used to manufacture probes used in the detection of TOP2A, TOP2B and TBR1 mRNA sequences.

Gene Forward primer 50–30 sequence Reverse primer 50–30 sequence Product size/bp

TBR1 TAAGTTAATACGACTCACTATAGGGCGA AATACGATTTAGGTGACACTA TAGAATAC 426

TOP2A GCCCAAGACTGGTTTTAAAGTT TGGAGATTTCCCAAAATGAATC 800

TOP2B TTGGTCAGATGATGAATCCAAG AAGACGGTTTTCCCTTTTTAGC 500

Fig. 1 Schematic of TOP2A and B protein

and mRNA showing the regions detected/

amplified by IHC and ISH techniques.

Polyclonal antibodies designed to recognise

the C-terminal domain of the TOP2A and

TOP2B proteins were designed (A). Probes

were manufactured to identify the 30 UTR of

TOP2A within exon 34 and a region spanning

exons 30–34 near the end of the coding

sequence for TOP2B (B). Control probes were

designed for the same regions to identify any

antisense transcripts or non-specific staining.
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expressed in the radial glial progenitor cells found in the VZ

and SVZ of the developing human cerebral cortex (Bayatti

et al. 2008a,b; Lui et al. 2011; Fig. 2). TOP2A immunoreac-

tivity was detected in these proliferative regions at 9, 11

and 12 PCW (Fig. 2), although fewer cells were TOP2A-posi-

tive than PAX6-positive, suggesting that TOP2A protein is

not found in all radial glial progenitor cells. Instead, the

staining was more comparable to that of the marker of cell

division KI67 (Scholzen & Gerdes, 2000; Fig. 2). TOP2A and

KI67 both appeared very strongly at the apical surface of

the VZ (Fig. 2), where cells are in the G2/M phase of division

(Scholzen & Gerdes, 2000). Both markers also densely

labelled cells in the inner subventricular zone (ISVZ; Fig. 2),

where TBR2-expressing intermediate progenitor cells are

located (Bayatti et al. 2008a; Lui et al. 2011). A few cells of

the intermediate zone (IZ) also stained positively for TOP2A

at 9 PCW; however, as the IZ expands and becomes a more

prominent feature of the cerebral cortex, fewer TOP2A-

immunopositive cells could be found (Fig. 2). The prolifera-

tive VZ and SVZ decreased in relative size as the cortex aged

from 9 to 12 PCW due to the expansion of the post-mitotic

layers.

To explore the extent of co-localisation more precisely,

double-label immunofluorescence was attempted with a

novel method that allowed the use of two primary antibod-

ies from the same species and gave more sensitivity with

paraffin sections than using conventional fluorescently con-

jugated secondary antibodies. It was possible to demon-

strate that TOP2A was indeed co-expressed with Ki-67

(Fig. 3A), whereas not all PAX6-positive radial glial cells

were TOP2A-positive (Fig. 3C), only those found at locations

where KI67 was expressed, principally the apical surface of

the VZ, and the ISVZ. As predicted, cells that express the

post-mitotic marker TBR1 did not express TOP2A (Fig. 3E).

TBR1 expression was restricted to the CP, IZ and some cells

of the SVZ. TBR1 was not expressed in the VZ and cells that

expressed TBR1 in the SVZ did not co-express TOP2A.

TOP2B is expressed in both proliferative and post-

mitotic regions of the cortex

TOP2B protein localisation was determined using antibodies

that recognise the C-terminal domain of the protein

(Fig. 1A), residues 1263–1621 (Table 1). TOP2B, in contrast

to TOP2A, was observed throughout the cortex in layers

occupied by both PAX6-positive proliferative radial glia and

TBR1-positive post-mitotic neurons (Englund et al. 2005;

Bedogni et al. 2010; Fig. 2). At 9 PCW, TOP2B immunostain-

ing was stronger in the SVZ and the CP than in the VZ, as

was the case for TBR1 immunoreactivity (Fig. 2). At 9 PCW,

the ventricular surface was immunopositive for TOP2B

(Fig. 2) as it was for TOP2A, suggesting again that cells in

the G2/M phase of cell division might express TOP2B as well

as TOP2A. This is as expected as both TOP2B and TOP2A are

expressed in undifferentiated cells (Thakurela et al. 2013).

By 11 PCW (Fig. 2), staining was uniform throughout the VZ

and was no longer stronger at the ventricular surface. Dou-

ble-labelling at 11 PCW showed that cells expressing KI67

did not express TOP2B (Fig. 3B). TOP2B was expressed in

cells throughout the VZ and SVZ; however, these cells were

not KI67-positive. In comparison to this, some of the cells at

the apical VZ and inner SVZ did express both TOP2A and

TOP2B (Fig. 3D). This showed that not all of the cells

expressing KI67 were immunopositive for TOP2A. Instead,

there was a small proportion of TOP2A cells that may have

ceased to express KI67 and have begun to co-express TOP2A

and TOP2B.

TBR1 expression was restricted to the CP, IZ and some

cells of the SVZ. TBR1 was not expressed in the VZ and

cells that express TBR1 in the SVZ did not co-express

TOP2A (Fig. 3E). Although devoid of TOP2A expression,

the post-mitotic CP was immunopositive for TOP2B from

9 to 12 PCW. Cells in this region have ceased division

and have begun to differentiate into neurons. Fluores-

cent double-labelling using TBR1 and TOP2B (Fig. 3F)

confirmed that cells of the CP and IZ co-expressed these

markers. A closer look at the cells of the CP reveals that

cells that co-express both TBR1 and TOP2B were concen-

trated in the outer layers of the CP where younger cells

have just finished radial migration from the proliferative

zones (Rakic, 2009), whereas layers that contain the most

mature neurons, the inner layer of the CP, as well as the

SP and MZ, contained many cells that were only TBR1-

positive (Fig. 3F). Only a limited number of cells in this

region were both TBR1 and TOP2B immunofluorescent.

The majority of cells in the IZ expressed both TBR1 and

TOP2B, and these may be radially migrating neuroblasts

(Fig. 3F). A proportion of cells in the CP only expressed

TOP2B, and these may be interneurons that do not

express TBR1 as they are born in the GE (Hansen et al.

2013) but do express TOP2B (see below) and migrate

tangentially to the CP (Hansen et al. 2013). There were a

limited number of cells within the IZ and SVZ that

expressed only TOP2B as is the case in the cells of the

VZ (Fig. 3G). The presence of TOP2B and not TOP2A in

the CP suggests a separate role for TOP2B in the post-

mitotic cortical cells of the developing cerebral cortex;

however, TOP2B appears to be downregulated as the

neurons mature.

TOP2A is more prominent in the MGE than in the

lateral ganglionic eminence (LGE)

The cells of the GE can be split into distinct populations

known as the LGE, MGE and caudal ganglionic eminence

regions, all of which contain a high proportion of prolifera-

tive cells (Del Bigio, 2011). The location of the MGE was

revealed by NKX2.1 immunoreactivity (Fig. 4A), whilst PAX6

immunoreactivity extended from the proliferative zones of

the ventral pallium of the cortex into the LGE (Fig. 4B) but

© 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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Fig. 2 Immunoperoxidase staining for TOP2A and TOP2B in the human cerebral cortex. PAX6 transcription factor immunoreactivity identified the

ventricular zone (VZ) and subventricular zone (SVZ) of the human cerebral cortex from 9 to 12 PCW. TOP2A immunoreactivity was confined to the

proliferative ventricular and subventricular regions at 9, 11 and 12 PCW (A–C), and was similar in distribution to immunoreactivity for the cell divi-

sion marker, KI67. Both were more prevalent in the inner than outer subventricular zone (ISVZ and OSVZ) that emerge by 11 PCW, unlike PAX6,

which is unformly expressed throughout the SVZ. From 9 to 12 PCW, TOP2B immunoreactivity was present in the VZ and SVZ, as well as the inter-

mediate zone (IZ), subplate (SP), post-mitotic cortical plate (CP) and cell sparse marginal zone (MZ), all of which were also immunopositive for the

transcription factor TBR1 (A–C). Scale bar: 250 lm.
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decreased in expression in a lateral to medial gradient. Both

KI67 (Fig. 4C) and TOP2A (Fig. 4D) immunoreactivity were

observed in the MGE and LGE; however, the immunoreac-

tivity was less dense at the LGE : MGE boundary (arrow-

head) compared with the density of cells shown by the H&E

stain (Fig. 5). TOP2B immunoreactivity was observed

throughout the MGE and LGE with no boundary apparent

(Fig. 4E). TOP2A immunopositivity appeared to be stronger

in the MGE (Fig. 4D) in comparison to TOP2B, which

appeared to be stronger in the LGE (Fig. 4E). The emerging

caudate nucleus, which contains post-mitotic cells migrating

away from the proliferative zones of the GE, showed high

levels of TOP2B expression, but not TOP2A expression

(Fig. 4D,E).

TOP2A and TOP2B mRNA expressed at the apical

surface of the VZ, and TOP2B expressed throughout

the cortex

At 12 PCW, TBR1 mRNA was located in the post-mitotic

cells of the CP (Fig. 6A). This corresponded with TBR1 pro-

tein localisation (Figs 2 and 3). TOP2A mRNA was

restricted to the apical surface of the VZ as well as a

small number of cells scattered throughout the VZ

(Fig. 6C). This differed slightly from TOP2A protein locali-

sation as the protein was found throughout the VZ and

SVZ (Fig. 2). This suggests that TOP2A mRNA has a much

shorter half-life than the protein and that its expression is

tightly controlled. TOP2B mRNA was detected throughout

A B C D

E F G

Fig. 3 Immunofluorescent double-labelling for TOP2A,TOP2B and other markers in the human cerebral cortex. (A–E) Taken from an 11 PCW foe-

tus, (F, G) from 12 PCW. (A) Extensive co-expression (pale green, yellow and orange cells) of TOP2A (red) and KI67 (green) immunofluorescence,

whereas (B) demonstrates that there was very little co-expression of TOP2B and KI67 as red and green cells predominate. (C) Not all PAX6-expres-

sing cells co-expressed TOP2A, but those that did clustered close to the apical surface of the ventricular zone (VZ) and the border of the ventricular

and subventricular zones (white arrows). Cells co-expressing TOP2A and TOP2B also preferred these locations (D). (E) TOP2A and TBR1 show sepa-

ration of expression although with a mingling of cells in the SVZ. On the other hand, (F) shows that TBR1 was co-expressed with TOP2B in many

cells in the cortical plate (CP), intermediate zone (IZ) and subventricular zone (SVZ; G), although cells expressing only TOP2A were observed

throughout the CP and cells expressing TBR1 only were frequently seen in the deeper layers of the CP, marginal zone (MZ) and subplate (SP). Scale

bars: 100 lm (in A for A–D, E, and in F for F and G).

© 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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the cortex at 12 PCW in both proliferative and post-mito-

tic regions (Fig. 6E). This matched the protein expression

of TOP2B (Fig. 2).

Discussion

It was found that TOP2A and TOP2B mRNA and protein are

expressed in the VZ and SVZ of both the pallium and sub-

pallium of the human telencephalon between 9 and 12

PCW. In addition, TOP2B was also expressed in post-mitotic

cells of the telencephalon, suggesting it may have a role in

transcription in immature human neurons.

Expression in the proliferative zones of the pallium

The precise localisation of TOP2A expression and the differ-

ences between protein and mRNA give clues to the nature

of cell proliferation in human pallial proliferative zones. Far

fewer cells expressed TOP2A than PAX6, the marker for

radial glial progenitors, which is the major population of

progenitor cells at this stage of primate cortical develop-

ment (Lui et al. 2011; Betizeau et al. 2013). However, the

majority of cells that express TOP2A also express KI67,

the cell division marker that is expressed throughout all

the phases of the cell cycle (Scholzen & Gerdes, 2000).

A

D E

B C

Fig. 4 TOP2A and TOP2B immunoreactivity in the ganglionic eminences (GE). NKX2.1 immunopositivity (A) was predominantly observed in the

medial ganglionic eminence (MGE), whilst PAX6 immunoreactivity (B) marked the lateral ganglionic eminence (LGE). The dividing cells in both the

MGE and LGE were immunopositive for KI67 (C), TOP2A (D) and TOP2B (E). The medial part of the LGE showed a reduction in KI67, PAX6 and

TOP2A immunoreactivity. TOP2B immunopositivity was also observed in the caudate and putamen (E), whereas TOP2A was absent from these

post-mitotic regions (D). (D and E) contain high-magnification views of the transition between proliferative and post-mitotic cell layers. Scale

bar: 1 mm in low-magnification images; 75 lm in high-magnification insets.
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TOP2A mRNA was, however, more restricted in expres-

sion, suggesting that its half-life is much less than the pro-

tein and is restricted to the G2/M phase, as it is seen

predominantly in cells near to the apical surface of the VZ.

During asymmetric division of apical radial glial cells, the

nucleus undergoes interkinetic nuclear migration, shuttling

between the basal boundary of the VZ and the apical (ven-

tricular) surface in phase with the cell cycle, and is critical

for self-renewal of neural progenitor cells (Kosodo et al.

2004; Taverna & Huttner, 2010). TOP2A expression is known

to increase throughout the S phase and peak during the

G2/M phase, before being rapidly degraded during G1

(Heck et al. 1988; Woessner et al. 1991; Negri et al. 1992).

Interestingly, although TOP2A and KI67 immunoreactiv-

ity were observed in the SVZ, and likely to be localised to

dividing basal radial glia and intermediate progenitor cells

(Lui et al. 2011; Betizeau et al. 2013), very little TOP2A

mRNA expression was seen in this compartment. Perhaps cell

division occurs less frequently in the SVZ or, alternatively,

this reflects a difference in the dynamics of cell division once

progenitors lose their apical process and cease to undergo

interkinetic nuclear migration (Taverna & Huttner, 2010).

Cells of the VZ and SVZ showed either KI67 or TOP2B

expression, suggesting that TOP2B is not involved in cell

division. TOP2B also appears to be redundant during this

process in human cell lines (Grue et al. 1998) and neurogen-

esis is normal in Top2b knockout mice (Yang et al. 2000).

There are, however, cells that co-express TOP2A and TOP2B

in these proliferative regions suggesting that, as cells begin

to differentiate, there is an overlap in type II topoisomerase

Fig. 5 Haematoxylin and eosin (H&E) staining of a coronal section through the human telencephalon at 12 PCW. The ventricular zone (VZ) and

subventricular zone (SVZ) of the cerebral cortex and the lateral and medial ganglionic eminences (LGE and MGE) contain proliferative cells. In the

cortex, cells migrate from the VZ and SVZ, through the intermediate zone (IZ), to reach the post-mitotic cortical plate (CP). The caudate, putamen

and globus pallidus are regions containing post-mitotic cells derived from the ganglionic eminences (GE). Scale bar: 1 mm in low-magnification

image; 200 lm in high-magnification insert.

Fig. 6 TOP2A and TOP2B mRNA expression in the cortex at 12 PCW. TBR1 mRNA was detected in the cortical plate (CP) of the cerebral cortex at

12 PCW, and was absent from the intermediate zone (IZ) and ventricular zone (VZ) (A). TOP2A mRNA was detected at the apical surface of the VZ

(C) and in a small proportion of cells scattered throughout the VZ (C). TOP2B mRNA was detected throughout the cortex in both the proliferative

VZ and subventricular zone (SVZ), the IZ and the post-mitotic CP (E). Control experiments with sense transcripts to TBR1 (B), TOP2A (D) and TOP2B

(F) showed no staining of the cortex at 12 PCW. Scale bar: 250 lm.
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expression during the transition from DNA replication to

RNA transcription. Top2b is expressed by post-mitotic neu-

rons (Capranico et al. 1992; Tsutsui et al. 1993; Tiwari et al.

2012). Co-expression of TOP2B with the post-mitotic marker

TBR1 in the human SVZ has been demonstrated. It is known

that many cells in the human SVZ express several post-

mitotic neuronal markers, such as TBR1, MAP2 and CTIP2

(Bayatti et al. 2008a; Ip et al. 2011), and therefore the

increased expression of TOP2B in the SVZ may reflect this.

Expression in the subpallium

A complicated pattern of expression of TOP2A was

observed across the subpallial compartments, but this most

likely matches the extent to which cell division is taking

place at each location, as it matches the pattern of KI67

expression. Reduced TOP2A expression at the medial

boundary of the LGE coincides with a reduced density of

dividing cells and PAX6-positive radial glia. However, this

does not prove a requirement for PAX6-expressing radial

glia in order to observe dividing cells as TOP2A expression is

high in the MGE in the absence of PAX6. The MGE is the

developmental source of pallidal projection neurons, stri-

atal interneurons and about 50% of cortical inhibitory

interneurons in the human (Marin et al. 2000; Xu et al.

2008; Hernandez-Miranda et al. 2010; Hansen et al. 2013;

Wang et al. 2013). Neural stem cells (VZ) and intermediate

progenitors (SVZ) of the MGE instead express NKX2.1, and

the SVZ of the MGE is expanded in size and complexity in

primate compared with the rodent, presumably to provide

increased numbers of interneurons to populate the relative

larger cerebral cortex of primate species (Hansen et al.

2013). The high levels of TOP2A expression in this compart-

ment may reflect this increased level of cortical interneuron

progenitor activity.

TOP2B expression in post-mitotic neurons

As in rodents, TOP2B mRNA and protein is found in the

post-mitotic CP where no DNA synthesis is taking place, con-

sistent with the suggestion that it regulates gene expression

concerned with cell differentiation and survival (Thakurela

et al. 2013). Cells that co-express TOP2B and TBR1 are more

apparent in the superficial layers of the CP, which are

formed from the cells that have most recently migrated

here from the proliferative regions, past the deep layer neu-

rons (Rakic, 2009). This suggests that cells may lose TOP2B

expression as they mature. At later stages of mouse devel-

opment, both TOP2A and TOP2B expression in the brain

decreases (Capranico et al. 1992).

Top2b knockdown is known to disrupt target finding of

axons (Yang et al. 2000), and produce shorter neurite

lengths and growth cone degeneration (Nur-E-Kamal et al.

2007). Top2b has been proposed as the main regulator of

ganglion cell axon path-finding during zebrafish retinal

development (Nevin et al. 2011). Mouse retina-specific

Top2b knockout alters expression of a number of genes

concerned with both cell survival and differentiation, and

results in aberrant lamination of the retina as well as loss of

synaptic connections in the inner and outer plexiform lay-

ers, and the degeneration of neurofilaments. Interestingly,

neurexin genes 1 and 3, which code for cell adhesion mole-

cules implicated in synapse formation and stabilisation, are

significantly downregulated (Li et al. 2014). These genes

have been identified as risk alleles for ASDs in human (Feng

et al. 2006; Szatmari et al. 2007; Yan et al. 2008; Vaags

et al. 2012; Dachtler et al. 2014). Inhibition or knockdown

of Top2b in cultured murine neurons decreased the expres-

sion of a very similar set of genes greater than 67 kb in size

many of which, in humans, are susceptibility genes for ASD

and involved in synaptic adhesion and synapse formation,

including NRXNs 1 and 3 (King et al. 2013). These NRXNS,

along with other susceptibility genes such as CNTNAP2 and

RELN included in the gene set, are known from microarray,

qPCR, RNAseq and histological studies to be expressed in

post-mitotic compartments of the early human foetal cortex

(Meyer et al. 2000; Abrahams et al. 2007; Ip et al. 2010;

Kang et al. 2011; Konopka et al. 2012), suggesting ASD sus-

ceptibility genes may have roles in early developmental

events such as cell migration and axon outgrowth, as well

as late events such as synapse formation and stabilisation.
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