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Phenotype of BTK-lacking myeloid cells during prolonged
COVID-19 and upon convalescent plasma
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Abstract

XLA patient with 7-month course of COVID-19 with persistent plasma SARS-CoV-2

load revealed a sustained non-inflammatory profile of myeloid cells in association

with contained severity of disease, arguing in favor of the use of BTK inhibitors in

SARS-COV-2 infection.
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Patients with X-linked agammaglobulinemia (XLA) may feature a

severe course of SARS-CoV-2 infection that has been mainly attrib-

uted to the lack of B cells, supporting the use of plasma from conva-

lescent individuals to replace the missing humoral response.1

XLA is caused by mutations in the Bruton tyrosine kinase (BTK),

which in addition to its essential role in B-cell development, impacts

in many pathways in monocytes, namely TLR signaling, cytokine pro-

duction, and modulation of M1-like pro-inflammatory profile and

M2-like immuno-regulatory phenotype.2

Monocyte/macrophages are key determinants of the evolution of

SARS-CoV-2 infection, contributing to the lung disruption associated

with pneumonia, as well as to the systemic pro-inflammatory state

and the cytokine storm associated with worst prognosis.3 On the

other hand, we found an M2-like shift of circulating monocytes

during the recovery of severe COVID-19 that may be linked to tissue

repair.3

Notably, BTK has been emerging as a possible therapeutic target,

based on the positive association found between BTK activity and

severity of SARS-CoV-2 infection, and the observed decrease in

inflammatory markers and improved clinical outcomes in COVID-19

patients under treatment with BTK inhibitors in the context of other

concomitant diseases.4

These findings prompted us to investigate the myeloid phenotype

in a 35-year-old XLA patient that featured an extremely prolonged

disease course with persistent SARS-CoV-2 viral load for more than

7 months (Table 1), documented both in nasopharyngeal swabs,
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assessed by RT-PCR, and in the plasma, quantified by ddPCR.3 Data

were compared with 20 COVID-19 patients evaluated at hospital

admission and 13 healthy subjects recruited in parallel, that have been

included in recently published studies,3,5 and whose clinical and epide-

miological data are summarized in Table 1. As expected, the hospital-

ized Covid-19 patients were older than the XLA patient, but were

used as illustrative of the immunological alterations associated with

severe COVID-19. All samples were processed immediately after col-

lection, and the staining performed in whole blood allowed the analy-

sis of a large number of cells by flow cytometry using both

unsupervised and manual approaches, as previously described.3,5

The XLA patient features a c.1559G>A mutation in the exon

15 of the BTK gene. Intravenous IgG (IVIG) replacement therapy was

started at the age of 4 after septic hip and recurrent respiratory infec-

tions, maintaining IgG serum level above 800 mg/dl, without major

infections besides occasional sinusitis. At the age of 31, he was diag-

nosed with type 1 diabetes, with difficult metabolic control due to

poor compliance with diet (overweigh since adolescence, BMI 29 kg/

m2) and treatment (glycosylated hemoglobin A1c around 11%).

SARS-CoV-2 infection manifestations were fever with cough and

dyspnea. Chest CT scan performed on the 8th day of disease revealed

multifocal lung ground glass opacities that slowly progressed over

more than 7 months leading to involvement of up to 70% of both

lungs, with a radiological pattern of organizing pneumonia (Figure 1A),

despite steroid therapy started after day 35 of disease (mean

0.4 mg/kg). The imaging alterations could not be ascribed to other

infections, given the lack of microbial isolation and the absence of

response to broad-spectrum antibiotics. Peripheral O2 saturation was

never below 85% and therefore there was only need for low-flow

nasal cannula oxygen and no need for any form of non-invasive/

invasive ventilation or ICU admission.

It is therefore likely that the BTK defect contributed to this smol-

dering relatively protected course despite the presence of co-

morbidities associated with an adverse prognosis. Although the loss

of function of BTK may impact the biology of many cell populations,

monocytes are probable main culprits given their role in COVID-19.2,3

We evaluated longitudinally the myeloid compartment by flow cyto-

metry, as illustrated in Figure S1A, and found lower expression of sev-

eral activation markers like HLA-DR, PD-L1, CD86, and CD80 as

compared with patients with moderate to severe COVID-19 and

healthy individuals, in both the unsupervised approach to total mono-

cytes (Figure 1B), and the manual analysis of monocyte subsets

(Figure 1C). Additionally, there was marked reduction in Slan+ non-

classical monocytes (Figure 1C), a sub-population involved in inflam-

matory conditions but shown to be reduced in COVID-19.3,5 The

levels of HLA-DR were also reduced in plasmacytoid dendritic cells

TABLE 1 Clinical and epidemiological data from patients and healthy controls

Patient with X-linked agammaglobulinemia (study timepoints)

COVID-19 Cohorta Healthy controls1 2 3 4

Number (male) 1 (1) 20 (17) 11 (9)

Age (years) 35 55.5 (39–65) 58 (39–65)

Time from symptom start (days) 75 145 212 217b 8.5 (5–11) NA

CRP (mg/dl) 0.7 8.9 6.1 1.6 8.8 (4.85–25.5) ND

PCT (ng/ml) 0.03 0.03 0.05 <0.02 0.16 (0.11–0.38) ND

Ferritin (ng/ml) 1827 1600 1430 1539 939 (402–1906) ND

Interleukin-6 (pg/ml) 6.3 ND 33.5 1.8 18 (4.5–36) 0.85 (0.24–1.6)

Total serum IgG (mg/dl) 744 655 735 1518

Lymphocytes/μl 2556 1113 1697 2165 920

(845–1662)
1940

(1423–2200)

CD4+ T cells/μl 1140 402 304 854 247 (133–392) 768 (544–998)

CD8+ T cells/μl 1007 306 853 894 145 (81.2–262) 414 (158–577)

CD4/CD8 ratio 1.13 1.11 0.36 0.95 1.78 (0.93–2.50) 1.95 (1.53–4.17)

Neutrophils/μl 2916 7186 14 515 3339 4251

(2413–6917)
3228

(2521–6390)

Lymphocytes/neutrophils ratio 0.88 0.15 0.12 0.65 0.23 (0.15–0.50) 0.51 (0.47–0.61)

Monocytes/μl 480 356 487 348 349 (223–537) 398 (275–733)

Basophils/μl 12 10 17 12 20 (10–35) 32 (16–63)

Eosinophils/μl 36 17 50 35 13 (7–56) 115 (96–297)

SARS-CoV-2 plasma viral load

(RNA cps/ml)

23 201 116 ULoD 112 (24–498)c NA

Note: Values expressed as medians (interquartile range) unless otherwise specified.

Abbreviations: CRP, C reactive protein; NA, not applicable; ND, not done; PCT, procalcitonin; ULoD, under limit of detection.
aCOVID-19 associated co-morbidities: arterial hypertension 9 (45%); Diabetes type II 6 (30%); Obesity 6 (30%); Lung emphysema 2 (10%).
bConvalescent plasma was administered at Days 213 and 214 after starting of symptoms.
cQuantified in the 13 (65%) COVID-19 patients with detectable plasma viremia.
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(DCs), as well as in CD141+ and CD1c+ DCs (Figure S1B). These

findings contrasted with the progressive increase observed in serum

IL-6 levels and CRP (Table 1), as well as the increase in neutrophils

and decline in lymphocyte counts, which have been associated with

adverse prognosis of COVID-19.3,5 Regarding T cells, the flow cyto-

metry analysis revealed the expected expansion of memory-effector

CD4 and CD8 T-cell subsets (Figure S2). Therefore, our data support

a contribution of the reduced myeloid activation to the slow disease

F IGURE 1 Longitudinal lung imaging
and monocyte profile in SARS-CoV-
2-infected XLA patient treated with
convalescent plasma. (A) Chest
CT. (B) Unsupervised analysis, UMAP of
CD45+LineageNeg cells, marker expression,
and manual annotation; relative subset
distribution in patient timepoints and
representative COVID-19 and healthy

individuals. (C) Monocyte manual analysis
showing CD16/CD14 within
CD45+LineageNeg cells (top); HLA-DR/PD-
L1 in classical (middle); and Slan/CD163 in
non-classical (bottom) monocytes.
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progression throughout the 7-month course of the SARS-CoV-2

infection.

Remdesivir (Day 64, 5-day course) had no impact. A clear reduction

in inflammatory markers was only observed upon treatment with conva-

lescent plasma (Days 213 and 214, Table 1). The plasma viral load was

undetectable after 3 days (Table 1), although SARS-Cov-2 was found in

a control bronchoalveolar lavage performed at Day 221 (643 382

RNA cps/ml by ddPCR) and the nasopharyngeal swabs remained

positive for 60 days more. The impact of convalescent plasma on the

myeloid profile was more evident on the recovery of intermediate and

non-classical monocyte populations and DCs (Figure 1). There was a

progressive clinical/laboratorial improvement, allowing steroid tapering

(stopped on Day 292) and gradual resolution of chest CT lung opacities

(Figure 1A). Functional recovery also supports a potential contribution

of the BTK defect for the prevention of lung fibrosis.

There are limited data on the phenotype of myeloid cells in patients

with germline loss-of-function mutations in BTK.2 Our detailed immuno-

logical study provides evidence of a non-inflammatory profile of myeloid

cells in XLA that was sustained upon persistent SARS-CoV-2 infection,

providing a possible explanation for the protracted course of our case

and others previously reported.1 Patients with inborn errors of immunity

offer unique opportunities to better understand the host-pathogen

interactions, despite the limitations imposed by their rarity. The ability

to limit the disease severity in this patient with acknowledged risk fac-

tors, adds evidence in favor of early use of BTK inhibitors to treat

COVID-19, as a strategy to ameliorate the hyper-inflammatory

response, improve survival and limit inflammatory complications.
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