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ABSTRACT Molecular motors of the kinesin-1 family move in a directed and processive fashion alongmicrotubules. It is gener-
ally accepted that steric hindrance of motors leads to crowding effects; however, little is known about the specific interactions
involved. We employ an agent-based lattice gas model to study the impact of interactions that enhance the detachment of
motors from crowded filaments on their collective dynamics. The predictions of our model quantitatively agree with the exper-
imentally observed concentration dependence of key motor characteristics including their run length, dwell time, velocity, and
landing rate. From the anomalous stepping statistics of individual motors that exhibit relatively long pauses, we infer that kine-
sin-1 motors sometimes lapse into an inactive state. Hereby, the formation of traffic jams amplifies the impact of single inactive
motors and leads to a crowding dependence of the frequencies and durations of the resulting periods of no or slow motion. We
interpret these findings and conclude that kinesin-1 spends a significant fraction of its stepping cycle in a weakly bound state in
which only one of its heads is bound to the microtubule.
INTRODUCTION
The collective motion of molecular motors on microtubules
(MTs) and their interactions with each other are highly
complex processes that underlie important intracellular
functions. For example, motors of the kinesin-8 family use
MTs as molecular tracks along which they perform directed
transport (1,2). Having arrived at the MT end, these motors
influence the depolymerization dynamics at this point and
thus have an effect on MT length (2–5) and spindle size
(6,7), properties whose tight regulation is crucial for the
normal operation of a cell (8).

Kinesin-1 was the first kinesin to be discovered (9), and it
is arguably the motor that has been studied in greatest detail.
Kinesin-1 is a versatile cargo transporter (10) that uses its
two heads (11) to processively walk toward the plus end
of an MT. In the crowded environment of a typical cell, mo-
lecular motors and MT-associated proteins (12) compete
for a limited number of binding sites on the MTs. As a
consequence, ‘‘traffic jams’’ consisting of molecular motors
may develop on (parts of) the MT (13,14).

A central question is how motors interact with each other
in crowded situations like this, and also how motors
affect each other’s ability to bind to and detach from MTs.
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Several studies have reported (apparently) conflicting re-
sults relating to these issues: thus, Vilfan et al. (15) observed
that kinesin motors primarily bind near other motors. Simi-
larly, Muto et al. (16) observed long-range cooperative bind-
ing, and Roos et al. (17) discovered that the dwell time of
motors increases when they are in the proximity of other
motors on the MT. In contrast, Leduc et al. (13) found a
reduction in the dwell time of kinesin-8 motors on crowded
filaments, in agreement with in vitro measurements of
kinesin-1 carried out by Telley et al. (18).

How can these findings be reconciled? Firstly, we note
that interactions may differ depending on whether motors
are mobile (13,18) or have been immobilized by genetic
engineering (15,17): it appears that an increased dwell
time of motors on the MT or cooperative attachment to
an MT is primarily found for immobile motors, whereas
mobile motors experience no or at least less attractive in-
teractions. A second differentiator of these studies was
pointed out by Telley et al. (18), who found that the label
used to visualize motors by fluorescence microscopy can
be crucial. In particular, when these authors failed to
reproduce their own earlier results (19) for the crowding
behavior of kinesin-1 using a different label, they
concluded that extensive labeling or the use of large labels
may lead to nonspecific interactions between motors.
Therefore, attractive potentials may develop that hold
motors on the MT.

mailto:frey@lmu.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2018.07.017&domain=pdf
https://doi.org/10.1016/j.bpj.2018.07.017
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Crowding and Pausing of Kinesin-1
To minimize these potential effects, Telley et al. removed
parts of kinesin’s tail (20) such that the motor could still
walk with wild-type characteristics (19) and attached a
green fluorescent protein (GFP) label to only a small propor-
tion of the motors, leaving the vast majority of kinesin mo-
tors unlabeled (18). As a consequence, when they varied the
abundance of kinesin, they found that this motor’s dwell
time was inversely related to its (volume) concentration.
In our understanding, the situation considered in this study
by Telley et al. (18) is closest to the behavior in an actual
cell. Hence, in our theoretical analysis, we will mainly
compare our results with their data.

The totally asymmetric simple exclusion process with
Langmuir kinetics (TASEP/LK) (21–23) is commonly em-
ployed to describe the collective dynamics of motors on
an MT. In this stochastic lattice gas model, motors are
described as particles on a one-dimensional lattice (a proto-
filament of an MT) and step stochastically toward the lattice
end. This approach has successfully predicted (22,23) the
existence of traffic jams and domain walls, which were
recently observed in experiments (13,14). Several variations
of this stochastic process have considered specific properties
of motors, such as their longitudinal (24) or lateral (25)
extension. Furthermore, additional interactions of motors
with each other have been examined (26–28). Among
them is so-called mutually interactive Langmuir kinetics
(29–31), in which binding and unbinding of monomeric
particles are directly influenced by the occupation of
the nearest-neighbor binding sites. Most of these studies
concentrated on the fundamental physical properties of the
dynamics of motors, such as the different phases of their col-
lective motion. Consequently, the impact of motor-motor in-
teractions on experimentally accessible quantities such as
the motor run length, dwell time, velocity, or their number
of landings (initial attachments) on the lattice per unit length
and time was usually not considered.

In this study, we examine theoretically a model that in-
cludes motor-motor interactions and a dimeric-driven lattice
gas. Our aim is to describe the collective motion of proces-
sive molecular motors such as kinesin-1 along an MT. We
find that a simple, motor-induced detachment mechanism
suffices to quantitatively account for the experimental mea-
surements reported by Telley et al. (18). By developing a
mean-field theory, we explore in detail the dependence of
motor dwell time, run length, velocity, and landing rate on
the volume concentration of kinesin. Furthermore, we find
that stochastic pausing of motors on the MT is significantly
enhanced by crowding and leads to short-lived traffic jams
on the MT, thus recovering the long and frequent periods
of interrupted motor motion observed in experiments (18).
By comparing the rates of spontaneous detachment and mo-
tor-induced detachment from the MT, we gain insight into
the stepping cycle of kinesin-1 and find that this motor
spends a significant fraction (�22%) of its stepping cycle
in a weakly bound state.
METHODS

Monte Carlo simulations

We simulate our stochastic lattice gas model with Gillespie’s algorithm

(32), which provides a way of exactly modeling stochastic processes. In

the first step, all possible events are collected and statistically weighed

with their rates, and an event is randomly chosen out of the resulting vector.

Another random number is drawn from an exponential distribution with the

total rate (i.e., the sum of the rates of all possible events) as the decay

parameter to obtain the update time. Subsequently, all rates are updated

and the algorithm starts over. To account for the long length of MTs

compared to the motors’ run length (on the order of 100 steps), periodic

boundary conditions were employed on a lattice with 2000 sites.
Fitting analytical results to experimental data

For the four sets of quantities measured experimentally (18), namely run

length, dwell time, velocity, and landing rate of kinesin motors, analytic

equations were obtained (see Eqs. 11, 12, 13, and 14). The parameters n

(hopping rate of motors) and uD (their detachment rate) were obtained

from the experimental data (18) at low concentrations, as well as the land-

ing rate l0 of normalized concentration of motors to the MT. To obtain the

remaining parameters uA and q, the analytic results were taken at the con-

centrations tested in experiments, and the deviations from experimental

data were weighed by the experimental standard error (18). Subsequently,

the sum of the squared weighed errors was taken and minimized with

Mathematica’s NMinimize function. In this way, the global fit values uD

and q are found (see Eq. 18).
RESULTS

Model description

Wewish to analyze the stochastic motion of kinesin-1 motor
molecules on MTs. Kinesin-1 is a dimer with two heads (11)
that can bind to distinct binding sites (33) on two neigh-
boring tubulin dimers (34). Powered by the hydrolysis of
ATP (35), it moves processively and unidirectionally (36)
toward the MT’s plus end (37) along a protofilament
(38,39). It walks hand over hand (34), which implies that
the rear (lagging) head steps over the front (leading) head
to the next binding site to complete a step.

To describe the collective dynamics of kinesin-1 motors
on protofilaments, we employ a one-dimensional lattice
gas model as illustrated in Fig. 1, in which the fluid sur-
rounding the MT can be considered as a homogeneous
and constant reservoir of motors with concentration c. The
corresponding mathematical model is based on the totally
asymmetric simple exclusion process with Langmuir ki-
netics (TASEP/LK) (22,23). Here, we extend it to include
the dimeric nature of kinesin-1 and consider an additional
interaction that accounts for the enhanced detachment of
neighboring motors. To accommodate the extended size of
kinesin and to allow us to adopt simple stepping rules,
each motor is described as a rigid particle that simulta-
neously occupies two sites of a one-dimensional lattice
(24). The directed motion of motors is modeled as a step-
wise stochastic hopping process with rate n (Poisson pro-
cess) toward the plus end (totally asymmetric); stepping is
Biophysical Journal 115, 1068–1081, September 18, 2018 1069



FIGURE 1 Lattice gas model for the collective dynamics of kinesin-1

motor proteins moving along a protofilament of a microtubule (MT). Mo-

tors are modeled as dimers that simultaneously occupy two neighboring lat-

tice sites and advance unidirectionally toward the plus end (right) of

a protofilament at a rate n (Poisson stepper) if no other motor occupies

the next binding site (exclusion process). Kinesin-1 is also assumed to

randomly bind to and detach from the protofilament at rates uA and uD,

respectively. Because of steric exclusion, binding is possible only if two

adjacent binding sites are empty. In addition to spontaneous detachment

with rate uD, we also account for facilitated detachment of motors that

are immediate neighbors. For specificity, we assume that the dissociation

rate of the rear motor, i.e., the motor closer to the minus end (left), is

enhanced by a rate q. To see this figure in color, go online.

a b
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possible only if the target site is not occupied by another
motor (exclusion). In the limit of low coverage of a protofi-
lament, each motor would then move at an average speed
V0 ¼ na, where a ¼ 8.4 nm (40) is the size of a tubulin het-
erodimer. Motors from the reservoir can attach to the proto-
filament lattice at rate uA at locations where two adjacent
lattice sites are empty. This rate depends on the volume con-
centration of motors as uA ¼ uac with a constant ua.

There are two pathways that may lead to the detachment
of motors from a protofilament. Firstly, motors may detach
spontaneously at a rate uD. Because this alone cannot
explain the decrease in motor dwell time on crowded fila-
ments (18), we secondly assume that motors interact with
each other via a process that enhances the detachment rate
of motors that are immediate neighbors. Specifically,
when two motors meet, we assume that the rear motor’s un-
binding rate is enhanced by an additional rate q; the trailing
motor therefore bounces off the leading motor, which is
consistent with experiments showing that when kinesin
runs into an obstacle on the MT, the motor (and not the
obstacle) is likely to detach (18,41). The opposite case, in
which the trailing motor kicks the leading motor off the fila-
ment, leads to the same phenomena. Alternative scenarios,
e.g., enhanced detachment of both motors, have been exam-
ined in (29).
FIGURE 2 Bulk motor density and current. Symbols show data obtained

from stochastic simulations, and the lines depict the results of the

mean-field analysis (cf. Eqs. 8 and 10 for parameters uA ¼ 0.01n and

uD ¼ uA/10). (a) The interaction-induced unbinding mechanism reduces

the motor density r. (b) In contrast, the motor current j reaches a maximum

for some finite value of the detachment rate q. To see this figure in color,

go online.
Motor currents and density profiles

Two central quantities that characterize the collective trans-
port of kinesin-1 along MTs are the motor density r and the
motor current j. In general, both quantities depend on the
position along the MT. At the minus end, the density is
expected to show an initial (approximately) linear increase
toward a Langmuir plateau due to an antenna effect
(13,22,23): this gradient arises from the combined effects
1070 Biophysical Journal 115, 1068–1081, September 18, 2018
of random motor attachment to and detachment from the
MT as well as driven transport along it; the slope of the
initial increase is proportional to the attachment rate uA.
Similarly, a density gradient can also be found at the
MT’s plus end, in particular for motors that remain bound
at this tip for an extended time. Molecular motors with
this property include kinesin-8 (13) and kinesin-4 (14); to
the best of our knowledge, no such behavior has been re-
ported for kinesin-1. Because of (potential) gradients at
the MT’s ends, it is generally difficult to determine the
full quantitative behavior of the motor density (24,29).
One particular property of kinesin-1, the motor in which
we are primarily interested in this study, allows for a signif-
icant simplification in this respect: its run length (on the or-
der of 1 mm (18)) is significantly less than the length of
typical MTs (usually several mm (42)). For this reason, the
extent of the gradient region is small relative to the MT
length, and the density profile is for the most part spatially
uniform on the MT for this motor. By assuming a very
long lattice and/or periodic boundary conditions, one can
dispense with the specification of the boundary processes.

Fig. 2, a and b show the bulk density r and current j,
respectively, as obtained from stochastic simulations using
Gillespie’s algorithm (32) (see Methods). We find that the
additional detachment of motors facilitated by the interac-
tion between neighboring motors leads to a monotonic
decrease in the bulk density (Fig. 2 a) with increasing
rate q; in the limit q ¼ 0, we recover previous results (24).
Interestingly, the motor current shows nonmonotonic
behavior as a function of q (Fig. 2 b). There is an optimal
value of q at which the current is maximal. This can be un-
derstood in terms of the ability of motor-induced detach-
ment to remove motors from very crowded MTs. Here,
the flow of motors is suboptimal due to the emergence of
traffic jams, as in the case of vehicular traffic (43). A
decrease in the motor density may therefore enhance the
numbers of motors transported along the MT per unit
time. Wewill see later that the existence of a maximal motor
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current follows naturally from the nonmonotonic current-
density relation (Eq. 10). As an aside, one may thus specu-
late that motor-induced detachment may serve to optimize
cargo transport along MTs by reducing crowding.

In this work, we are mainly interested in examining the
collective dynamics of kinesin-1 (9). In experiments such
as those in the study of Telley et al. (18), its collective mo-
tion has been characterized in terms of run length on the
MT l, dwell time t, velocity V, and the rate l (the number
of motor landings on the MT per unit time and length).
All of these quantities may also be extracted from simula-
tion data. However, not all of the model parameters
necessary for simulations can be directly measured in exper-
iments. We will therefore employ the following strategy:
first, we develop a theoretical analysis of our model and
extract model parameters from experimental data as far as
possible. With analytical expressions for all relevant quanti-
ties at hand, we then fit our model to the experimental mea-
surements. Eventually, we will show that, with the global fit
parameters obtained in this way, the theoretical predictions
and simulation data of our model are in excellent agreement
with experimental measurements.
Mean-field theory

The configuration of a lattice at any given instant in time
is described by a set of occupation numbers {ni}. A lattice
site i (a tubulin heterodimer on the protofilament) is either
empty (ni ¼ 0) or occupied by the front head (ni ¼ f) or
back head (ni ¼ b) of a motor dimer. For a statistical
description, we need the one-site and two-site probabilities,
defined as

pði;aÞ ¼ Probðni ¼ aÞ (1a)

and

pði;a; j; bÞ ¼ Prob
�
ni ¼ a^nj ¼ b

�
: (1b)

We denote the position of a motor by the position of its
front head and define the time-averaged dimer density as

ri ¼ pði; f Þ; (2)

which is then bounded to r˛½0;1=2�.
The rate of change of these probabilities can be described

in terms of a set of master equations (44). For instance, for
the time evolution of the probability that site i is occupied by
the front head of a motor, one obtains

vtpði; f Þ ¼ n½pði� 1; f ; i; 0Þ � pði; f ; iþ 1; 0Þ�
þuA pði; 0; i� 1; 0Þ � uD pði; f Þ � q pði; f ; iþ 1; bÞ : (3)

Here, the first term on the right-hand side represents a
transport current given by the difference between a gain
and a loss term. The gain term describes the probability
per unit time that a motor (front head of a dimer) located
at lattice site i � 1 moves forward onto an empty site i,
and the loss term describes the probability per unit time
that a motor hops from site i to the next (empty) site,
i þ 1. The remaining terms describe attachment and detach-
ment processes with the joint probabilities selecting the
allowed lattice configurations. Thus, attachment of a dimer
to the lattice is possible only if two neighboring empty sites
are available (ni ¼ 0 and ni � 1 ¼ 0). Although an interac-
tion-induced detachment process requires that two dimers
are immediate neighbors (ni ¼ f and ni þ 1 ¼ b), the rate
of spontaneous detachment is proportional to the single-
site probability p(i,f).

In general, the master equation (Eq. 3) is not closed, as it
links single-site to two-site joint probabilities. However,
progress can bemade by employing amean-field approxima-
tion that neglects all correlations between the positions of
motor dimers other than the steric constraint that dimers
are not allowed to overlap, i.e., the front and the back heads
of different motors cannot occupy the same lattice site.
Furthermore, for rigid dimers, ni ¼ b implies that site i þ 1
is occupied by the front head of the same motor, ni þ 1 ¼ f.

To show how the two-site joint probabilities can be
reduced to one-site probabilities, we will consider as an
example p(i,f; i þ 1,b). This probability, like any joint prob-
ability, can be expressed in terms of a conditional probabil-
ity: p(i,f; iþ 1,b)¼ p(iþ 1, bji,f)p(i,f). As we are neglecting
correlations in the position of different dimers, the probabil-
ity that site i þ 1 is occupied by the back head of a dimer is
independent of whether site i is occupied by the front head
of another dimer or empty: p(i þ 1,bji,f) ¼ p(i þ 1,bji,0).
Hence, in a mean-field approximation, we have p(i þ
1,bji,f) ¼ pðiþ 1; bjði; f Þnði; 0ÞÞ ¼ pðiþ 1; bj:ði; bÞÞ.
Using Bayes’ theorem, this can be rewritten in the form
pð:ði; bÞjiþ 1; bÞ � pðiþ 1; bÞ=pð:ði; bÞÞ. Here, the re-
maining conditional probability pð:ði; bÞjiþ 1; bÞ equals 1
because the states (i,b) and (i þ 1,b) are mutually exclusive.
Hence, we are left with the desired decomposition into
single-site occupation probabilities:

pði; f ; iþ 1; bÞ ¼ pðiþ 1; bÞ pði; f Þ
1� pði; bÞ ¼ pðiþ 1; bÞ pði; f Þ

pð:ði; bÞÞ :

(4)

Compared to a naive decomposition into single-site occu-
pation probabilities p(i þ 1,b)p(i,f), this equation includes a
factor 1� p(i,b) that corrects for dimers spanning sites i and
i þ 1, i.e., that takes into account those correlations that are
due to the dimeric nature of the motor molecules. In the
following, we refer to such a factor as the local correlation
factor. Using p(i,b) ¼ p(i þ 1,f), one may rewrite this result
solely in terms of the density ri as

pði; f ; iþ 1; bÞ ¼ riþ2 ri

1� riþ1

: (5)
Biophysical Journal 115, 1068–1081, September 18, 2018 1071
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In the same way (cf. (24)), we can also approximate the
other joint probabilities of Eq. 3. The ensuing mean-field
master equation reads

vtri ¼ n

�ð1� ri � riþ1Þri�1

1� ri
� ð1� riþ1 � riþ2Þri

1� riþ1

�

þuA

ð1� ri � riþ1Þð1� ri�1 � riÞ
1� ri

� uDri � q
riþ2 ri

1� riþ1

:

(6)

In the stationary state, in which vtri ¼ 0, this expression
recursively determines the occupation density of site i in
terms of the densities of the neighboring sites i5 1. In gen-
eral, the dynamics of such a system is very rich and entails
boundary-induced phase transitions (23,24,29,45–47).

As discussed above, kinesin-1 has a run length that is
short (18) compared to the typical length of MTs (42). We
also expect that attachment of motors to the MT occurs at
relatively high rates. Here, the focus of our interest lies in
the behavior in the bulk of MTs. Hence, we may assume
that the motor density is constant, ri ¼ r (we have verified
this assumption a posteriori with the parameters found in
Eqs. 15, 16, 17, and 18 by performing simulations (data
not shown). Our results indicate that already, at small motor
concentrations around 5 nM, boundary effects are restricted
to a layer of approximately 100 lattice sites at the MT ends,
much below their typical length), and arrive at the mean-
field equation

vtr ¼ uA

ð1� 2rÞ2
1� r

� uDr� q
r2

1� r
; (7)

which yields the motor density rs in the stationary state
(vtr ¼ 0) as

rs ¼ 2uA

4uA þ uD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4uAuD þ 4quA þ u2

D

p : (8)

Note that we could also have arrived at Eq. 8 by assuming
attachment-detachment balance

uA pði; 0; i� 1; 0Þ ¼ uD pði; f Þ þ q pði; f ; iþ 1; bÞ: (9)

As we are only interested in the behavior at steady state,
we will omit the index s in the following, i.e., r :¼ rs.

By employing the mean-field approximation we can also
derive an expression for the motor current j. This quantity is
defined as the number of motors that pass through a site
on the MT per unit time and is therefore given by ji ¼
np(i,f; i þ 1,0). By analogy with the derivations of the pre-
vious paragraph and (24) and in agreement with (45–47), the
motor current simplifies to

jðrÞzn
r ð1� 2rÞ

1� r
: (10)
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In this equation, we again identify the local correlation
factor 1/(1 � r). Its significance can be understood as fol-
lows: compared to the current-density relation for mono-
meric particles, j(r) ¼ r(1 � r), Eq. 10 is skewed, i.e.,
its maximum lies at a density exceeding half-occupation,
r ¼ 1=2ð2� ffiffiffi

2
p Þ z 0:29. This agrees remarkably well

with the intuitive value for the density 1=3, where on
average, every dimer is followed by a vacancy and is there-
fore free to jump.

With the analytical expressions for the stationary motor
density r on the MT (Eq. 8) and their flux j(r) (Eq. 10),
we now have a description of the most central physical
quantities that characterize the collective motion of molec-
ular motors on a nMT. As Fig. 2, a and b show, these analyt-
ically calculated quantities agree very well with data from
stochastic simulations.

Unfortunately, with present-day experimental techniques,
it is difficult to measure collective quantities like the density
r and the current j. It is much easier to determine quantities
derived from the observation of single labeled motors. These
include the dwell time t ofmotors on theMT, their velocityV,
run length l, and the landing rate l. To define the link between
theory and experiment that we ultimately aim for, we must
therefore also find expressions for these quantities.

We first turn to the calculation of the dwell time t. A mo-
tor located at site i can detach either spontaneously at rate
uD or additionally at a rate q when another motor is located
right next to it at site i þ 2. The corresponding probability is
given by p(i þ 2,fji,f), which reduces to r/(1 � r) following
the same steps as before. Hence, the dwell time is given by
the inverse of the total detachment rate, comprising sponta-
neous and interaction-induced detachment:

tz

�
uD þ q

r

1� r

��1

: (11)

Similarly, to obtain the velocity of a motor, we need to
consider the probability that a particle located at site i finds
the next site empty, p(i þ 1,0ji,f). This gives for the motor
velocity, again using a mean-field approximation,

V ¼ V0 pðiþ 1; 0ji; f ÞzV0

1� 2r

1� r
(12)

With Eqs. 11 and 12, the run length of a motor is given by

l ¼ tVzV0

1� 2r

uDð1� rÞ þ qr
: (13)

Finally, we need to compute the landing rate of kinesin on
an MT. In experiments, this quantity is determined by label-
ing only a small fraction of kinesin, e.g., with GFP, whereas
the vast majority of motors remain unlabeled (18). The con-
centration of labeled motors is kept constant at a reference
concentration c0, and the unlabeled motors act as crowding
agents, which are added at varying concentrations. The
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landing rate is then obtained by counting how many labeled
motors land on the MT per unit length and time. In our
model, a motor can attach to a site i on the MT only if it
finds both site i and the adjacent lattice site i � 1 empty,
ni ¼ ni � 1¼ 0. With l0 being the landing rate of the normal-
ized amount (c0) of labeled kinesin on an otherwise empty
MT, the landing rate is l ¼ l0p(i,0;i � 1,0), which at the
mean-field level is approximated by

lzl0
ð1� 2rÞ2
1� r

: (14)

It is important to note that the normalized landing rate l0
may differ from uA(c0). This is because the size of a label
such as GFP is comparable to that of the motor. Hence,
the attachment rates of labeled and unlabeled motors to
the MT may be different.
Comparison with experimental data

The primary goal of this work is to compare the predictions
of our theoretical model with experimental data. Telley et al.
(18) have provided an extensive set of measurements for the
motor kinesin-1, which is shown in Fig. 3. Here, the volume
concentration of the motor is varied, and this process is
incorporated into our model by setting uA¼ uac. From their
data, we can directly extract several of our model parame-
ters. The hopping rate n is obtained from the velocity V0

of a motor in the limit of low motor density (Fig. 3 c),

n ¼ 0:66 mm s�1a�1 ¼ 79 s�1: (15)

The detachment rate uD follows from the dwell time at
small motor concentration (Fig. 3 b),

uD ¼ 1

1:9 s
¼ 0:53 s�1; (16)

and similarly, the landing rate of a normalized amount of
labeled kinesin can be directly read off from Fig. 3 d at cz 0,

l0 ¼ 1:8 � 10�2mm�1s�1: (17)
a b c

FIGURE 3 Comparison with experimental data. Orange circles show the meas

rate of kinesin motors as measured by Telley et al. (18). In blue, we show the fi

squares compare these calculations with simulations based on Gillespie’s algorith

switch to an inactive state (see the main text). To see this figure in color, go on
This leaves two parameters to be specified: the attach-
ment rate of unlabeled motors to the MT per concentration,
ua, and the rate q, specifying interaction-induced detach-
ment. As there are four independent sets of quantities
that have been measured (18) (run length, dwell time, ve-
locity, and landing rate), comparison of all four with our
theoretical results constitutes a stringent test of the validity
of the assumptions on which the model is based. We have
performed a global fit for the four independent quantities l,
t, V, and l by minimizing the squared sum of deviations
between experimental measurements and mean-field re-
sults, weighted by the experimental confidence interval
(see Methods). This gives the following values for the
rates:

ua ¼ 5:4 � 10�2 nM�1s�1 (18a)

and

q ¼ 2:4 s�1: (18b)

As can be seen in Fig. 3, using these global fit parameters,
we find excellent agreement between our theory and all
experimentally measured quantities.

Both these fit parameters are interesting in themselves.
The attachment rate ua specifies how quickly kinesin at-
taches to empty lattice sites. In this context, one must keep
in mind the fact that the physical quantity underlying the fit
is the total motor density r on the MT, whereas the data
from Telley et al. (18) are derived from observations of the
small minority of labeled motors. In our model, the rate ua

specifies the attachment rate of the unlabeled motors, which
act as crowding agents but are otherwise invisible experimen-
tally (18). How then does ua compare to the landing rate l0
for labeled motors? This rate was measured at a motor con-
centration of 5 pM and, assuming that motors in the TIRF
setup can walk on roughly half of the 13 protofilaments
(41), this can be converted into a per-site attachment rate of
approximately 5 � 10�3 nM�1 s�1. This value is 10 times
smaller than the attachment rate for unlabeled motors,
and it demonstrates that, although labeling with GFP
d

urements for the (a) run length, (b) dwell time, (c) velocity, and (d) landing

t of our model to this data. Lines are results of our mean field theory, and

m. Green diamonds show data for a model in which motors can temporarily

line.
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conserves many kinetic parameters of native kinesin
(19,48,49), the attachment rate of the labeled protein is
significantly lower.

Secondly, let us look more closely at the rate q, which
quantifies motor-induced detachment from the filament.
The value of q exceeds that of the spontaneous detachment
rate uD by fourfold. This is remarkable because it implies
that, under crowded conditions, motor-induced detachment
is the dominant mechanism by which motors leave the
MT. We will analyze this and other implications of these pa-
rameters in greater detail in the following section.
Analysis of crowding effects

One strength of our approach to the quantitative description
of the collective dynamics of molecular motors with a theo-
retical model is that it allows us to infer physical quantities
that are experimentally difficult to access. In particular, it is
interesting and instructive to study the behavior of the motor
density along the MT, r, which is the fundamental quantity
characterizing the degree of crowding on the MT. In
Fig. 4 a, r is plotted as a function of the volume concentra-
tion of motors c. At small concentrations, the density rises
steeply with c and becomes half maximal around 20 nM.
At this concentration, on average, every second binding
site on the MT is occupied by a motor head. As c is
increased further, the motor density rises only modestly.
This is because attachment of additional motors becomes
increasingly unlikely when many motors are already present
on the MT, and motor-induced detachment becomes more
prominent.

Fig. 4 b shows the fraction of motor detachments induced
by the presence of another motor, plotted as a function of c.
With Eq. 7, we find that the contributions of spontaneous
and motor-induced detachment are already comparable at
a motor concentration around 7 nM, significantly below
the concentration required for half occupation (Fig. 4 a).
The reason for this is that the rate q exceeds uD by several-
fold such that motor-induced detachment plays the central
role even on filaments with relatively little crowding. The
a b

FIGURE 4 Characterization of crowding effects. The plot depicts important p

Fig. 3. (a) The density of motors on the MT is shown. Because kinesin-1 is a dim

fraction of detachment events that are due specifically to motor-induced detach

ciation is as prominent as spontaneous detachment. (c) The motor current on th

shown. (d) The landing rate of motors on the MT (orange: experimental data (18

the landing of a motor, is shown. The agreement is worse than for the original
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steep increase in the contribution of motor-induced detach-
ment to all dissociation events at low motor concentrations
also explains the rapid decrease of quantities such as the
motors’ run length l (Fig. 3 a) and dwell time t (Fig. 3 b)
at these concentrations.

The motor current j may also be examined directly with
our model and the parameters extracted from experimental
measurements (Fig. 4 c). Once more, we find a steep in-
crease at low concentrations. The current becomes maximal
at around c � 20 nM, i.e., the concentration at which the
density is half maximal, and for higher concentrations, the
motor current remains almost constant.

Finally, the good agreement of our model with experi-
mental data allows us to study the impact of model varia-
tions. For example, it has been suggested (51) that
kinesin-1 first binds via a single head to the MT on landing
and subsequently attaches its other head. We have directly
tested how a different attachment mechanism might affect
the landing rate by assuming that a single binding site is suf-
ficient for the motor to attach to the MT. As a result, the
attachment term in Eq. 7 reduces to uA(1� r). Fig. 4 d com-
pares the landing rate obtained in this way with experi-
mental data. Clearly, neither with the fit parameters for the
original model nor with parameters fitted to the modified
model do we obtain satisfactory agreement between theoret-
ical results and experimental data. Therefore, our data sug-
gest that kinesin can land on the MT only where two
adjacent binding sites are empty.
Crowding alone does not lead to periods of no or
slow motion of motors

As shown in the previous sections, our mathematical model
explains the kinetic data for the run length, dwell time, ve-
locity, and landing rate of kinesin-1 motors on MTs with
high accuracy. These quantities are averaged over a large
number of motors and characterize their collective transport
alongMTs very well. However, with our model, as well as in
experiments, quantities other than averages are also acces-
sible, such as the statistics of individual steps of motors.
c d

hysical quantities available from our model for the same parameters as in

er, r ¼ 1=2 implies that the lattice is fully decorated with motors. (b) The

ment is shown. Even at low concentrations around 7 nM, facilitated disso-

e MT, i.e., the number of motors passing over a lattice site per unit time, is

), blue: mean-field results), assuming that a single lattice site is sufficient for

model (Fig. 3 d). To see this figure in color, go online.
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Such quantities are instructive, as they afford insight into the
stochastic motion of kinesin at a deeper level. A particularly
interesting finding made by Telley et al. (18) in this respect
was that kinesin-1 motors, which normally move at speeds
as high as 79 steps/s along the MT under uncrowded condi-
tions, sometimes show periods in which they rest on the MT
or their motion is at least considerably slowed down. These
periods lasted for several tenths of a second, during which a
motor would typically proceed by dozens of steps. It was
found that the frequency of these periods increased with
the volume concentration of kinesin and hence with the de-
gree of crowding on the MT (18).

However, the authors of that study were only able to image
the motors every 0.1 s such that the localization accuracy of
kinesin-1 was of the same order of magnitude as the typical
distance traversed between twomeasurements. Furthermore,
because kinesin’s stepping mechanism includes chemical re-
actions as well as diffusive motion, this motor is a stochastic
stepper. Consequently, Telley et al. (18) were faced with the
problem of robustly distinguishing periods of no (or very
slow) motion (note that Telley et al. (18) use the term pause
for periods in which no or little motion was detected, and
they further distinguish betweenwait and stop for such events
in which kinesin continued its run subsequent to the pause or
detached from the MT. In this work, we distinguish between
the phenomenon observed in experiments, which wewill call
periods of no or slow motion, and the cause of these periods,
which we term pause in the following), in which motors are
assumed to hardly move at all, from stochastically slow mo-
tion that simply reflects the stochasticity of kinesin’s steps
but is otherwise normal.

To overcome these problems, Telley et al. (18) developed
a detection scheme for the periods of no or slow motion as
follows: the location of the motors was measured every
0.1 s. If a motor failed to advance a critical distance dc be-
tween two time frames or its motion was directed off axis or
backward (exceeding a critical angle ac), this displacement
was considered as a candidate for the onset of a period of no
or slow motion. However, to mark the start of such a period,
three successive small displacements were required. To ac-
count for the effect of experimental noise, single advances
exceeding dc were allowed during a period of no or slow
motion so that the period was only considered as terminated
when the displacement was greater than dc twice in a row.

The key parameters that determine the sensitivity of the
detection of periods of no or slow motion are ac and (in
particular) dc. On the one hand, these quantities should be
chosen to be so large that fluctuations due to experimental
noise are unlikely to prematurely terminate such periods.
On the other hand, the critical distance must be kept so small
that these periods can be robustly distinguished from normal
motion, which is slow because of the stochasticity of kine-
sin’s steps. With the parameters dc ¼ 40 nm and ac ¼
60�, Telley et al. (18) found that approximately every second
kinesin motor showed a period of no or slow motion at some
point while it progressed along the MT. During the periods
of no or slow motion, motors proceeded on average 10 lat-
tice sites. This value seems large, but it is much less than the
expected �30 lattice sites that a motor would traverse under
uncrowded conditions during the minimal time necessary
for detection of these periods (0.3 s).

To compare the predictions of our model with the exper-
imental data of Telley et al. (18), we adapted and applied
their experimental detection scheme for periods of no or
slow motion to our system. Note, however, that the motion
of motors is restricted to a single dimension in our model,
whereas occasional side steps as well as off-axis fluctuations
are possible in experiments. Consequently, the two parame-
ters dc and ac used for the experimental detection have to be
reduced to a single parameter dc for our purposes. Moreover,
because a finite progression dc between two frames was al-
lowed primarily to account for experimental inaccuracies
that are absent in simulations, dc has to be critically evalu-
ated and the role of noise must be simulated. To this end,
we first chose the same threshold distance (dc ¼ 40 nm)
as in (18), corresponding to five lattice sites. With this value,
we found that the progression of a motor between the begin-
ning and the end of a thus-defined period of no or slow
motion was almost 30 lattice sites (Fig. 5 a). This is signif-
icantly larger than the experimentally measured length of 10
lattice sites and therefore indicates that most of the detected
events in fact do not showbehavior that is physically different
from normal motion. Thus, most of the periods of no or slow
motion detectedwith this choice of dc result from the stochas-
tic motion of kinesin. Even for a threshold distance of three
lattice sites, the progression exceeded experimental data so
that we had to reduce the value of dc to two lattice sites to
find agreementwith experimental results (Fig. 5 a). However,
the agreement found with this parameter choice deteriorated
when Gaussian noisewas added to the simulation data (to ac-
count for experimental fluctuations) before applying the pro-
tocol (s ¼ 20 nm in Fig. 5 a).

Moreover, the statistics of the durations of periods of no
or slow motion detected from our simulation data differed
from experimental results. Although Telley and co-workers
(18) report an exponential distribution, our results indicate a
nonexponential distribution with peaks around 0.4–0.5 s
(see Fig. 5 b). Also, the addition of Gaussian noise or vari-
ation of the detection threshold dc did not qualitatively
change this distribution.

We therefore conclude that the detection protocol of Telley
et al. (18) is inappropriate for the analysis of the data obtained
from stochastic simulations of our originalmodel for two rea-
sons. Firstly, it fails to distinguish reliably between periods of
no or slow motion and stochastically slow but normal motion
of kinesin, as the progression of motors between the begin-
ning and end of the detected periods clearly exceeds exper-
imental results. Secondly, the distribution of the durations
of periods of no or slow motion in simulations differs funda-
mentally from the experimental findings of Telley et al. (18).
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FIGURE 5 Periods in which kinesin-1 motors show no or only very slow motion. The model parameters are the same as in Fig. 3. Experimental measure-

ments from Telley et al. (18) are shown in orange. For the detection of these periods, the protocol of Telley et al. (18) was used (see the main text). (a and b)

Our model cannot explain the frequent periods of no or slow motion of motors observed experimentally. (a) The distance traveled by a motor between the

beginning and end of such a period is shown. A threshold value of dc ¼ 5 sites (red line) is too large for reliable detection of these periods: motors traverse for

almost 30 lattice sites between the beginning and end of such a period, which is three times the experimental result (orange line). This implies that most of the

detected events actually reflect stochastically slow motion that is otherwise normal, and hence the scheme detects these events inaccurately with this choice of

dc. Reduction of the threshold to dc ¼ 3 sites (green) or dc ¼ 2 sites (blue) leads to results that are in closer agreement with experimental data. However, this

correspondence deteriorates on addition of Gaussian noise (s ¼ 20 nm) to the simulation data before applying the detection protocol (dashed lines).

(b) Duration of the thus-detected periods of no or slow motion for c ¼ 20 nM and a detection threshold dc ¼ 2 sites is shown. In contrast to the experimental

findings, in which an exponential distribution was observed, the duration peaks around 0.4 s. This result does not change qualitatively when dc is varied or

Gaussian noise is added at various strengths. (c and d) Qualitative agreement with experiments is found when motors can spontaneously switch between an

active and inactive mode at rates extracted from experimental data (18). (c) The duration of periods of no or slow motion detected from simulations of this

model variant (red squares) is similar to those measured in experiments (18). The duration was computed by extrapolating the (now) approximately expo-

nential distribution of the detected periods below the cutoff time of 0.3 s (see (18) and the main text for details). (d) The per-step probability that a motor is

found in a period of no or slow motion is shown. The direct yield from the detection algorithm (red asterisks) is below experimentally observed (18) values.

When their frequency is corrected for the time cutoff (red squares) similar to the procedure used in experiments (18), good qualitative agreement is found, in

particular at low motor concentrations. Violet triangles show the frequencies obtained with a different algorithm that counts motors that are inactive or caught

up in a traffic jam behind an inactive motor but not motors that move slowly because of their stochastic motion. The good agreement between these results and

the original detection protocol (red squares) reveals that spontaneously inactivated motors are the dominant contribution for periods of no or slow motion.

Solid and dashed lines show heuristic estimates of the probability of entering such a period, assuming that motors in a traffic jam require two or only one

binding site on the lattice. For details, see the main text. To see this figure in color, go online.
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Consequently, to understand the full dynamic behavior ofmo-
tors on the MT, additional stochastic processes that are not
captured by our original model must be taken into account.
This will be the focus of the next section.
Spontaneous pausing of motors leads to
crowding-dependent frequencies of periods of no
or slow motion

To examine model variations that could possibly explain the
experimental findings of Telley et al. (18) on periods in which
themotors didnotmove or onlymovedvery slowly,we looked
at the data they obtained at lowmotor concentrations. Interest-
ingly, even though motors proceed along the MT (almost) in
the absence of other motors at these concentrations, periods
of no or slowmotionwere observed occasionally. This promp-
ted us to study a variant of our model in whichmotors can sto-
chastically pause on theMT, i.e., theymay temporarily switch
to an inactive state in which they cannot move. From the
experimental data at low concentrations, we read off a per-
step chance of lapsing into inactivity of pinactivation ¼ 0.4%
and a pausing time with average duration T ¼ 0.12 s, after
which motors are reactivated again. We therefore introduced
rates rinactivation ¼ 0.004n ¼ 0.32 s�1 and ractivation ¼ 1/
0.12 s�1 ¼ 8.3 s�1 at which motors switch to an inactive or
active state, respectively. At the molecular level, a motor
might become inactive, for instance, when a motor is trapped
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in an unfavorable chemical state due to imperfect synchroni-
zation of its heads (51); however, the particular molecular
mechanism involved is not important for the argument below.

Spontaneous pausing of driven particles has in the past
been studied in the context of RNA transcription (51–54;
note that Telley et al. (18) use the term pause for periods
in which no or little motion was detected, and they further
distinguish between wait and stop for such events in which
kinesin continued its run subsequent to the pause, or de-
tached from the MT. In this work, we distinguish between
the phenomenon observed in experiments, which we will
call periods of no or slow motion, and the cause of these
periods, which we term pause in the following) as well
as the motion of myosin motors (53,54). However, these
studies focused mostly on collective properties of the sys-
tems as opposed to the statistics of individual steps of kine-
sin-1 (18) that we aim to describe here. On this level, if
motors are allowed to switch into an inactive mode, we
expect crowding to enhance the measured probability of
undergoing a period of no or slow motion because other
motors will tend to form a traffic jam behind inactive mo-
tors. Although the motors caught up in the traffic jam are
not intrinsically inactive, they are unable to progress until
the inactive motor has become active again. Therefore,
crowding should amplify the impact of stochastic pausing
and consequently lead to frequent periods in which kinesin
motors show no or only slow motion along the MT.
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We tested these expectations directly by performing
Monte Carlo simulations of this variant model. Because
the two additional stochastic processes, namely spontaneous
inactivation and activation of motors, are rare events, we
found that they have only a small impact on motor run
lengths, dwell time, velocity, and landing rate (green
diamonds in Fig. 3). In contrast, motor behavior changed
considerably at the level of individual steps: unlike the
case in our original model, Fig. 1, the durations of periods
of no or slow motion were (approximately) exponentially
distributed in the variant model, in accordance with experi-
mental findings ((18); as reactivation from an inactive state
is a one-step process, the distribution of the duration of pe-
riods of no or slow motion should be exactly exponentially
distributed in the absence of crowding and noise; this agrees
with simulation data analyzed with the detection algorithm
of Telley et al. (18). As the degree of crowding increased
due to additional motors on the MT and as noise was added
to the simulation data, the distribution gradually changed
and was nonexponential for high crowding and noise level,
albeit with an exponential tail for durations >0.5 s. To
comply with the procedure of Telley et al. (18), we used
the distribution’s tail to fit an exponential function to the
simulation data, as we extrapolated the distribution below
the cutoff value of 0.3 s to obtain, e.g., the mean duration).
Following Telley et al. (18), it is essential to extrapolate
this exponential distribution below the cutoff time of 0.3 s
to obtain the corrected frequency and mean duration of the
periods of no or slow motion. The reason for this is that the
cutoff of 0.3 s is a technical choice, but there is no physical
reason why motors would not also experience periods of no
or slow motion that are shorter than that. As a result, periods
of no or slow motion comprise the detected periods (those
lasting 0.3 s and longer) as well as the undetected periods
(those of shorter duration). The mean duration of the periods
of no or slow motion is therefore given by the parameter
of the exponential decay of the distribution. Fig. 5 c shows
the concentration dependence of the mean duration of pe-
riods of no or slowmotion, as theywere extracted from simu-
lation data in this way, and they reproduce the experimental
findings (18) well. Moreover, these values were almost inde-
pendent of the parameter dc used for the detection algorithm,
which ensures that periods of no or slowmotion of our model
variant are now detected robustly and accurately.

We are now in a position to compare simulation data for
the frequencies of periods of no or slow motion with those of
the experiments of Telley et al. (18), as shown in Fig. 5 d.
Although the uncorrected probabilities (asterisks) remain
below experimental values, as expected, the frequencies
corrected for the cutoff (squares) are comparable to those
found experimentally (18) for low concentrations. However,
as the concentration is increased, we found that the fre-
quencies measured in our simulations exceed experimental
values. This points to the need for further modifications of
our model.
In principle, any additional interactions can be included
into our model and data obtained from stochastic simula-
tions. However, a more instructive approach for our pur-
poses is to analyze the physical principles leading to
periods of no or slow motion and explore how exactly the
inactivation of a single motor results in the formation of
traffic jams that amplify the effect of pausing. To study
this, we employed a different algorithm to detect periods
of no or slow motion: here, we only counted motors that
were 1) inactive themselves or 2) trapped in a traffic jam
behind an inactive motor. In contrast, events in which mo-
tors moved slowly because they were caught up in a stochas-
tically assembled traffic jam (in which no motor is inactive)
were not taken into account. The frequencies of periods of
no or slow motion obtained with this alternative algorithm
(triangles in Fig. 5 d) agree well with those calculated
with the original algorithm (squares in the same figure).
This implies that although stochastically arising traffic
jams (in which no motor is inactive) slow down the collec-
tive motion of motors (13,23), they do not increase the inci-
dence of periods of no or slow motion. In contrast, these
periods are predominantly due to the spontaneous (and tran-
sient) inactivation of motors and the associated formation of
traffic jams behind these motors.

Given that the dominant cause of periods of no or slow
motion is the formation of traffic jams behind inactive mo-
tors, further insight can be gained by estimating theoreti-
cally the length of these traffic jams. Imagine that a motor
pauses at some lattice site. Then the n-th motor behind
this inactive motor is on average n/r sites away from it.
Because each motor requires two binding sites on the MT,
the n-th motor therefore typically has to travel n/r� 2n sites
to reach the end of the traffic jam. Hence, the time needed
for the n-th motor to reach the end of the traffic jam may
be estimated as t(n) ¼ (n/r � 2n)/V. As a consequence, dur-
ing the time T required for reactivation of an inactive motor,
a traffic jam containing N1 ¼ n(T) ¼ TV/(r�1 � 2) motors
will form. After the inactive motor has resumed its run, all
the motors stuck in the traffic jam can start moving again
one after another so that it will typically take a time
N1n

�1 before the original traffic jam has completely dis-
solved. During this time, another N2 ¼ n(N1n

�1) motors
will have reached the end of the traffic jam, and more
time will be needed until this additional traffic jam is
dispersed, and so on. Taking the sum over the number of
motors caught in traffic jams found in this way, the number
of motors N ¼ N1 þ N2 þ ... that are ultimately affected
by a single spontaneously pausing motor is consequently
obtained from a geometric series, yielding

N ¼ Tv

r�1 � 2� Vn�1
: (19)

This equation suggests that the effect of spontaneous
pausing is considerably amplified by crowding. Although
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the cause of traffic jams is the inactivation of a single motor,
the phenomenon detected with the scheme of Telley et al.
(18) is also visible for N other motors that are effectively
caught in a traffic jam; consequently, pper. no/slow mot. ¼
pinactivation(1 þ N). Fig. 5 d shows the probability per step
obtained in this way. Given the level of the heuristic argu-
ments, the agreement with simulation data is satisfactory.

Having a theoretical estimate for the density dependence,
Eq. 8 leads to the concentration dependence of the fre-
quencies of periods of no or slow motion at hand, further
model variations can now be tested in a relatively simple
way. For example, it seems plausible that motors align in
a traffic jam very compactly such that each motor requires
a single lattice site on the MT only. This would be in accor-
dance with studies in which the decoration of MT sheets
with immobilized dimeric kinesin was investigated and it
was found that kinesin binds to the MT via a single head
only under certain conditions (15,55). For this model, the
n-th motor behind an inactive motor would then have to
travel further compared to the original (i.e., spaced) jam-
ming model, namely n/r � n sites. In consequence, the
term r�1 � 2 in Eq. 19 would be modified to r�1 � 1,
and the amplification of spontaneous pausing changes
accordingly. As shown in dashed lines in Fig. 5 d, the result-
ing per-step probability of entering a period of no or slow
motion reproduces the experimental concentration depen-
dence (18) better than the original model in which motors
align spaciously in a traffic jam.

In conclusion, we have shown that spontaneous and tran-
sient inactivation of motors is the key to an understanding
of the occurrence of periods of no or slow motion. The fre-
quency of these periods is determined by the formation of
traffic jams, in which motors (which are not intrinsically
inactive themselves) cannot or only slowly progress. How-
ever, we are at present unable to uniquely determine the
precise mechanisms of jamming and predict quantitatively
how exactly they amplify the frequencies of periods of no
or slow motion of molecular motors. A central problem
seems to be that periods of no or slow motion are relatively
short-lived compared to the threshold time required to
detect such an event. This implies that large numbers of
these events remain undetected and can only be resolved
by extrapolating the duration distribution, as explained
above. As a consequence, we expect that the estimates of
the frequencies of periods in which kinesin motors move
only very slowly or come to a complete halt on the MT
are subject to relatively large errors. It will, in the future,
therefore be important to further investigate the origin of
these periods; in particular, algorithms have to be devel-
oped that allow a more direct detection of short pauses,
e.g., by increasing the frame rate of experiments. Further-
more, direct visualization of the inactive state would be
highly informative. In summary, crowding is most probably
not the underlying reason for periods of no or slow motion
of motors but acts as an amplifier to increase their fre-
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quency, although their ultimate cause is related to inactive
states of kinesin motors.
The step cycle of kinesin has at least two slow
transitions

Our findings concerning the motor-induced detachment of
kinesin motors provide insight into their stepping cycle.
We would like to emphasize first that none of the results pre-
sented in the previous sections depend on whether disen-
gagement of the front or rear motor from the MT is
enhanced by the presence of another motor. Consequently,
bouncing off (the rear motor detaches) and kicking off
(the front motor detaches) interactions lead to identical re-
sults (data not shown). In fact, there are experimental indi-
cations that it is the trailing motor that bounces off when it
encounters another motor on the MT. This was suggested by,
among others, Telley et al. (18), who used nonmotile rigor
mutants in addition to wild-type kinesin-1. Here, the tightly
bound mutant motors act as obstacles on the MT, and the
wild-type motors detach at an enhanced rate on encoun-
tering such an obstacle. This would also suggest that when
two wild-type kinesin motors come into contact on the
MT, it is the trailing motor that is more likely to detach.

At the molecular level, these indications enable us to
associate the motor-induced unbinding process with a spe-
cific state in the mechanochemical cycle of kinesin. This
cycle comprises transitions between several states in which
one or both kinesin heads are bound to the MT and the two
heads contain different bound nucleotides. During the step-
ping cycle, kinesin passes through a state in which only a
single head is bound to the MT. This weakly bound state
is reached after the back (i.e., the tethered) head is released
from the MT, and the head that remains bound to the MT
binds and hydrolyses ATP. It is likely that this one-head-
bound (1HB) state, in which the head attached to the MT
is associated either with ADP or ADP,Pi, is the state from
which motors usually detach into the cytosol at finishing
their run (56,57). If the lifetime of this state is increased,
kinesin should therefore also unbind at an enhanced
probability.

We hypothesize that the increase in the detachment rate
seen when two motors occupy directly adjacent binding
sites on the MT is directly related to this weakly bound state.
Our idea is related to that of Klumpp et al. (58), who found
that molecular motors with a two-step mechanochemical cy-
cle show crowding-dependent unbinding when detachment
happens at different rates from both states. More specif-
ically, we suspect when the rear motor’s tethered head at-
tempts to step to the next binding site but finds this site
occupied by another motor, the rear motor can leave its
1HB state only by stepping back (which is rare (59)) or by
waiting until the next site is vacated. In this case, the back
motor is trapped in a weakly bound state, and the detach-
ment rate is enhanced accordingly. We, therefore, interpret
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q as the dissociation rate of kinesin from the 1HBADP (,Pi)
state. This interpretation is also supported by measurements
of the dissociation rate of single-headed kinesin motors that
are artificially held in the ADP and ADP,Pi state, in which
rates of 3.7 and 3.8 s�1 were found, respectively (56); these
measurements are remarkably similar to the value of q ob-
tained from Eq. 18b. Following these arguments, the time
fraction f that a motor spends in the 1HB state during a
normal step may be determined from uD ¼ fq. By direct
comparison, we obtain f ¼ 0.22, which implies that kine-
sin-1 remains in the 1HB ADP (,Pi) state for �22% of the
time needed to complete a stepping cycle.

In summary, our findings suggest that the kinesin-1 step
cycle comprises (at least) two transitions that are of similar
duration as opposed to a single rate-limiting step. This is in
agreement with a recent interpretation of the kinesin step cy-
cle (60). We believe that our study will also help to reconcile
conflicting results on the number and type of rate-limiting
steps obtained from optical trapping experiments (59,61)
and dark-field (62) and interferometric scattering (50)
microscopy experiments as well as from measurements of
the statistics of single-motor runs (63). Although the
methods employed in most of these experiments give rise
to much shorter length and timescales, labeling of the heads
of motors or applying force to them using an optical trap
risks interfering with the step cycle. The advantage of our
analysis is that interference effects are minimized. There-
fore, crowding experiments (18) provide unique insight
into a microscopic process in a minimally invasive way.
DISCUSSION

In this work, we have theoretically studied the impact of
interactions between kinesin-1 motors on their motility and
transport properties along microtubules. Based on experi-
mental observations, we have generalized a lattice gas model
(22,23) that has previously proven successful in explaining
collective phenomena such as the existence of traffic jams,
which have recently been observed experimentally for kine-
sin-8 (13), and kinesin-4 (14). The generalized model in-
cludes the additional process of motor-induced detachment
from the microtubule when one motor is directly adjacent
to another as well as the stochastic inactivation (pausing) of
motors. With only two fit parameters—namely, the rate of
motor-induced detachment q and the attachment rate of mo-
tors to empty lattice sitesuA—ourmodel can account for four
independent sets of measurements from in vitro experiments
(18) with kinesin-1 (Fig. 3).

The level of agreement of our model with experimental
data allows us to explore the origin of the relatively long pe-
riods that have been observed in experiments during which
motors hardly move along the MT at all (18). We find that
crowding alone cannot explain the high frequency of these
periods (Fig. 5). We therefore hypothesize that motors
may stochastically switch into an inactive mode. Conse-
quently, crowding leads to the formation of traffic jams
behind inactive motors; these traffic jams significantly
amplify the number of motors which pause on the filament,
Eq. 19. Our findings suggest that motors might actually be
aligned very densely in a traffic jam (Fig. 5) such that every
motor occupies only a single tubulin dimer, in accordance
with (15). By comparing the rates of motor-induced detach-
ment and spontaneous unbinding, we find that kinesin-1 mo-
tors spend approximately 22% of their stepping cycle in a
weakly bound state. Most probably, motor-induced detach-
ment occurs when the rear motor is held in this state for a
prolonged time when two motors are directly adjacent and
that its unbinding is therefore increasingly likely.

Our approach to quantitatively model the dynamics of
molecular motors enables us to investigate collective prop-
erties of kinesin-1 motors in a real-life situation. Firstly, in
the experiments of Telley and co-workers (18), on which
our model is based, only a small fraction of motors were
labeled. Secondly, insight into the interactions of motors
with each other has been gained in our study without per-
turbing motor behavior by applying forces, etc. Our results
enable us, for example, to compare the landing rates of
labeled and unlabeled motors, and we have found that in
fact, labeled motors attach to the MT more slowly than un-
labeled motors. This illustrates that the choice of a large la-
bel can have a crucial impact on certain quantities and thus
great care should be taken in interpreting experimental data.
Most importantly, our model and the experiments of Telley
et al. (18) provide unique insight into the stepping cycle
of kinesin, which allows us to estimate the lifetime of a
specific, weakly bound state. The major drawback of our
method is at once its greatest strength: our approach is
very indirect. The application of forces to kinesin motors,
e.g., by using optical traps (57,61) as well as the attachment
of large labels such as gold particles to kinesin heads (50,62)
might have crucial influence on motor dynamics (64).
Therefore, indirect methods (63–65) such as the approach
employed in this work are essential to confirm and improve
experimental results found by direct observation.

Future studies, both theoretical and experimental, will
have to examine more closely the formation and dissolution
of traffic jams induced by the spontaneous inactivity of a
motor, for example. In the same way, the spatial arrange-
ment and conformation of motors in a traffic jam requires
closer attention. Such studies are essential to further
improve our understanding of the role of interaction be-
tween molecular motors for the dynamics along cytoskeletal
filaments. This might have important implications for the
biological function of such processes in the crowded envi-
ronments within cells.
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