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A B S T R A C T   

Objective: The Coronavirus Disease 2019 (COVID-19) pandemic has overwhelmed the capacity of healthcare 
resources and posed a challenge for worldwide hospitals. The ability to distinguish potentially deteriorating 
patients from the rest helps facilitate reasonable allocation of medical resources, such as ventilators, hospital 
beds, and human resources. The real-time accurate prediction of a patient’s risk scores could also help physicians 
to provide earlier respiratory support for the patient and reduce the risk of mortality. 
Methods: We propose a robust real-time prediction model for the in-hospital COVID-19 patients’ probability of 
requiring mechanical ventilation (MV). The end-to-end neural network model incorporates the Multi-task 
Gaussian Process to handle the irregular sampling rate in observational data together with a self-attention 
neural network for the prediction task. 
Results: We evaluate our model on a large database with 9,532 nationwide in-hospital patients with COVID-19. 
The model demonstrates significant robustness and consistency improvements compared to conventional ma
chine learning models. The proposed prediction model also shows performance improvements in terms of area 
under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) 
compared to various deep learning models, especially at early times after a patient’s hospital admission. 
Conclusion: The availability of large and real-time clinical data calls for new methods to make the best use of 
them for real-time patient risk prediction. It is not ideal for simplifying the data for traditional methods or for 
making unrealistic assumptions that deviate from observation’s true dynamics. We demonstrate a pilot effort to 
harmonize cross-sectional and longitudinal information for mechanical ventilation needing prediction.   

1. Introduction 

The novel coronavirus disease (COVID-19) is caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of October 
2021, over two hundred million people have been infected with the 
virus, which has directly caused more than four million deaths world
wide. Among the patients with COVID-19, people’s situations could 
develop into critical illness and would require respiratory support in 
their disease course, especially for the elderly patients and the patients 
who have comorbid health conditions [1,2]. Mechanical ventilation 
(MV) is a crucial medical procedure for a patient with respiratory failure 
that helps the body maintain healthy oxygen and CO2 level. Therefore, it 
is usually considered a timely intervention to mitigate a patient’s con
dition deterioration. However, since the beginning of the COVID-19 
pandemic, many countries have experienced a critical situation where 

the demand for ventilators and other intensive treatments far outstrips 
the supply. This situation also happens when more contagious variants 
appear and surge across the world, such as the recent Delta (B.1.617.2) 
variant [3]. Clinicians and researchers have developed different work
arounds, such as exploring the possibility of sharing ventilators among 
multiple patients [4,5]. To solve this problem fundamentally, a method 
for accurate and early recognition of those at-risk patients who will need 
mechanical ventilators in the future is in critical need. Such methodol
ogy is not only critical for hospitals to allocate strategically the scarce 
medical resources during the pandemic outbreak, but also beneficial to 
these patients with a higher risk of being critically ill, as clinicians could 
intervene early and apply aggressive treatments to increase the patient’s 
survival rate. This is a difficult task because multiple clinical factors 
usually intervene in a complicated manner that may directly or indi
rectly lead to the situation that a patient would require a mechanical 
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ventilator. Therefore, predicting patients’ need for mechanical ventila
tors several days ahead remains an unrealistic task even for experienced 
clinicians. 

To solve this task, Khandelwal et al. proposed a scoring system 
named “COVID-19 Score” for predicting the likelihood that patients will 
require tracheal intubation [6]. Burdick et al. use the XGBoost classifier 
to fit boosted decision trees on the patient’s two-hour data after hospital 
admission to predict respiratory decompensation in patients with 
COVID-19 within the next 24 h [7]. Several risk factors were identified 
to be associated with intubation and prolonged intubation in hospital
ized patients with COVID-19 [8]. They studied time-to-extubating for in- 
hospitalized patients using multivariable logistic regression analysis. 
Roca et al. used the ROX index (defined as the ratio of oxygen saturation, 
measured by pulse oximetry/FiO2) to predict high-flow nasal cannula 
(HFNC) outcome, i.e., need or not for intubation [9]. An unsupervised 
symptom time series clustering model was proposed to predict disease 
severity or the need for dedicated medical support for COVID-19 posi
tive patients [10]. Su et al. used the patient’s post-intubation trajectory 
of the sequential organ failure assessment (SOFA) score to identify and 
characterize distinct sub-phenotypes of COVID-19 critical illness and 
classified them into mild, intermediate, and severe groups [11]. Liang 
et al. used a deep-learning-based survival model to predict the risk of 
patients with COVID-19 developing critical illness. The model used ten 
clinical characteristics at admission selected by the least absolute 
shrinkage and selection operator (LASSO) method [12]. The variables 
considered in their study include X-ray abnormalities, age, dyspnea, 
chronic obstructive pulmonary disease (COPD), number of comorbid
ities, cancer history, neutrophil/lymphocytes ratio, lactate dehydroge
nase, direct bilirubin, and creatine kinase. 

These models successfully achieve the prediction goal but with 
certain limitations. The majority of the models cannot provide consis
tent real-time risk predictions over time due to the lack of a temporal 
attention mechanism and only optimize the model’s performance at 
each time point individually. Some models use temporal features; 
however, these features are overly simplistic and do not take full 
advantage of all available patient information. For example, the SOFA 
score is defined only on six features: partial pressure of oxygen (PaO2), 
fraction of inspired oxygen (FiO2), platelets, bilirubin, mean arterial 
pressure, creatinine, and the ROX score is defined on only three factors: 
PaO2, FiO2, respiratory rate. The feature-selection-based models (such 
as LASSO) may induce information loss, especially when the covariates 
are correlated, which leads to lower accuracy results. 

This paper explores the possibility of using data-driven approaches to 
solve this problem utilizing the high dimensional physiological longi
tudinal data that is generally available from in-hospital patients nowa
days. A challenge we face when leveraging longitudinal electronic 
health record (EHR) data for neural-network-based models is that the 
data is often collected irregularly – lab tests are rarely collected on a 
fixed routine, and vital sign observations are missing due to the patient 
leaving, etc., which cause patient records as unstructured. 

We propose a model that leverages the Multi-task Gaussian Process 
(MGP) to impute the missing values in the multivariate longitudinal 
EHR data combined with an improved self-attention neural network for 
predicting the real-time need for mechanical ventilation. The proposed 
MGP self-attention neural network demonstrates significant improve
ments in the prediction accuracy, robustness, and consistency of the risk 
trajectories compared to other neural networks and machine learning 
models. The Gaussian process is built into the self-attention network 
serving as modeling data uncertainty and screening out noise through 
resampling from the learned multivariate normal distribution. It is 
optimized jointly end-to-end with the self-attention neural network. On 
the other hand, the multi-head self-attention architecture brings twofold 
benefits. First, the multi-head self-attention shows greater potential to 
encode multiple relationships and nuances for multivariant longitudinal 
data and brings significant accuracy gain compared to traditional 
recurrent neural networks. Second, compared to previous works that 

used the Gaussian process as add-ons to the recurrent neural network 
[13], our self-attention network processes the longitudinal data in a 
parallel manner. This mechanism avoids the long-dependency problem 
that widely exists in recurrent network architectures, and also signifi
cantly improves the speed of training the neural network. 

By jointly modeling the physiological time series as a multivariate 
Gaussian Process with rich kernel functions, we aim to discover the 
latent correlations among the longitudinal physiological data. In 
particular, we model the correlation among the variables by a trainable 
covariance matrix and model the noise in the observational physiolog
ical data using a noise variance matrix. Both are trainable parameters 
and are updated with the neural network in an end-to-end fashion. Given 
a new patient’s observed data and the learned covariance and noise 
matrix, we impute the missing values on the unobserved time points in 
this patient’s encounter using the Multivariant Gaussian Process, and 
the post-imputation data will be used as input for the prediction 
network. Our model is denoted as MGP-MS in the following, and the 
contributions of this study are highlighted:  

• Real-time prediction. The proposed model predicts a patient’s risk 
score upon hospital admission and updates his/her risk score as more 
observational data is collected without re-training the model.  

• Robust, and consistent risk trajectory prediction. The model 
predicts a patient’s risk score trajectory which enhances the pre
diction’s robustness and consistency over time, whereas most tradi
tional models make isolated predictions at each time point that are 
highly fluctuating or conflicting over time.  

• End-to-end model. We build an end-to-end prediction model by 
integrating the MGP into the self-attention deep neural network and 
jointly train them using backpropagation, such that the two modules 
could benefit from each other for finding global optima. 

2. Methods 

Our proposed model is composed of a missing data imputation 
network together with a predictive neural network. The two modules are 
combined seamlessly and trained together in an end-to-end fashion, see 
Fig. 1. 

2.1. Multi-task Gaussian process 

The Gaussian process is a Bayesian nonparametric statistical model 
which is flexible and well suited to modeling irregularly sampled time- 
series data. The core of Gaussian process is the specified kernel function 
that models the correlations of clinical covariates across time, which 
defines a covariant matrix that represents the similarities of a random 
variable’s observations at different time points. The Gaussian process 
assumes a collection of random variables indexed by time or space 
following a multivariate normal distribution, and it has been widely 
adopted to model patient physiological time series data [14–17]. Under 
this assumption, the Gaussian process is completely specified by a mean 
and a covariance function. We use the Multi-task Gaussian Process [18] 
to impute the missing values in multivariate time series data, specif
ically, the missing values of lab tests and vital signs, where each lab or 
vital can be viewed as one task. The mean and covariance matrices are 
our proposed MGP self-attention network parameters and will be 
learned via back-propagation. 

Compared to traditional methods using filling with observed values 
(fill with zeros/average/majority, forward/backward filling, etc.), and 
some other complex imputation methods such as multiple imputation 
[19] which fail to model longitudinal data, the Gaussian process is an 
advanced modeling technique that estimates the multivariant distribu
tion of longitudinal multivariate data. Compared to the above methods, 
a critical advantage of the Gaussian process is its ability to model data 
uncertainties (at the unobserved time points) and prevent over-fitting 
when trained together with neural networks (through sampling and 
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estimation at the unobserved time points). 
The time-lapse between consecutive observations of lab tests and 

vital signs of hospitalized COVID-19 patients often has irregular prop
erty. We denote the number of temporal variables (labs tests, vital signs) 
as D. For the i th patient, we denote all his observed lab and vital values 
and the time points as (ti,Yi), and Ti = |ti| is the number of observational 
times during patient i’s entire hospital stay. The vector ti = [ti1, ...tiTi ]

represents all observational time points (not necessarily even-spaced), 
and Yi =

[
yi1, ..., yiTi

]
is a matrix of Ti × D dimension where yid ∈ RD is 

a vector of observed values at those time points. Function fid(t) is used to 
represent the latent function of time t for patient i’s d-th feature. In our 
task, we assume the prior distribution of the Gaussian process has zero 
mean value, and we have. 

〈fid(t), fid′ (t′)〉 = KD
dd′ k

t(t, t′), (1)  

yid(t) ∼ N
(
fid(t), σ2

d

)
, (2)  

where yid(t) is the observed value of variable d at time point t of the 
patient i. Similarly, if we denote yi≜vec(Yi)= [yi,11,...,yi,Ti1,yi,12,...,yi,Ti2,...,

yi,1D, ...,yi,TiD], then yi follows the distribution. 

yi ∼ N (0,Σi) (3)  

Σi ∼ KD ⊗ KTi + E ⊗ I (4)  

where KD is a D × D matrix representing the inter-task similarities, KTi is 
a kernel matrix representing the similarities among the observational 
times, and the diagonal matrix E denotes the noise variances, E =

diag(σ2
d),d = 1, ...D. The kernel functions are usually chosen based on a 

different set of assumptions on the function to be modeled, for example, 
the periodic kernel is often chosen to model periodic functions, see [20]. 
The squared exponential function kernel (radial basis function kernel) 

kSE(t, t’) = exp
(
− |t − t’|2/(2l2)

)
is a kernel function that assumes the 

local smoothness, where the parameter l is the length scale of the pro
cess. The parameter l determines the length scale of the "shape" of the 
function, such that the extrapolation can only be performed within l 
units away from the data. This is in accordance with the property of most 
physiological temporal variables that the missing data can be inferred 
from nearby observations but is less influenced by early observations 
that are too further away. Other more complex and powerful kernels 
such as the rational quadratic kernel can be used to model discontinuous 
functions which do not fit our application here. An alternative kernel to 
replace the SE kernel is the OU (Ornstein-Uhlenbeck) Kernel function 
kOU(t, t′) = exp( − |t− t′|/l). Compared to the radial basis function kernel 
which produces more smooth results, the OU kernel function provides 
more sharp values on the results since the covariance decrease 

exponentially for an increasing distance. In our experiments, we notice 
the SE kernel provides slightly better performance on our prediction 
task. 

In practice, each patient encounter has its unique observational time 
points ti = [ti1, ...tiTi ] and often the Ti and Ti’ are different for different 
encounters i and i′ . The MGP not only plays the role of imputing missing 
values but also serves the role of transferring the irregularly spaced data 
at ti to a regularly spaced (for example, every 4 h) grid r which is 
commonly shared across all patients. Hence, the downstream prediction 
neural network has regularly structured data as input. 

We denote the regularly spaced time grid r = {r1, r2, ..., rR}, where 
|r| = R is the same for all patients. The patient i’s imputed values on the 
grid r are denoted as a matrix Zi of dimension R × D. The goal of MGP is 
to estimate the posterior distribution P(zi

⃒
⃒yi, ti, r; θ

)
, where θ is the 

parameter(s) of the multi-task Gaussian process. Let vector zi denote the 
flattened matrix Zi, that is, zi≜vec(Zi) = [zi,11,...,zi,R1,zi,12, ...,zi,R2,...,zi,1D,

..., zi,RD], then zi have the following distribution. 

zi ∼ N (μ(zi),Σ(zi); θ ), (5)  

μ(zi) =
(
KD ⊗ KRTi

)
Σ− 1

i yi, (6)  

Σ(zi) =
(
KD ⊗ KR) −

(
KD ⊗ KRTi

)
Σ− 1

i

(
KD ⊗ KRXi

)
, (7)  

where KRTi is the kernel matrix among all observational time points ti 
and the regularly spaced time grids r. KR is the kernel matrix denoting 
the similarity among regularly spaced times r. The ⊗ denotes the Kro
necker product, which is, for an m × n matrix A with r, s-th element ars 
(r = 1,⋯,m, s = 1,⋯, n) and a p × q matrix B with v, w-th element 
avw(v = 1,⋯,p,w = 1,⋯,q), their Kronecker product is a pm × qn matrix, 
(A ⊗ B)pr+v,qs+w = arsbvw. The parameter θ denotes all parameters of the 
Gaussian process to be learned, i.e., θ =

{
KD,E, l

}
. The multi-task 

Gaussian process outputs an R × D matrix Zi, where each row is the 
observational values of the D physiological variables (lab tests and vital 
signs) on the regular spaced time grid r. 

2.2. Self-attention neural network 

The post-imputation sequential data (labs and vitals) Zi will be 
concatenated with the temporal data without missing values Mi and feed 
into the predictive neural network. The matrix Mi is an R × M one-hot 
(0/1) matrix encoding the information of whether a medication is 
administrated at each time window. The M is the total number of 
medications and R is the length of the regular time grid. The matrix Mi 
denotes the medication administration data in our experiment, and it is 
important since it contains decisions of physiologists that incorporate 

Fig. 1. MGP-MS model overview. The model combines a Multi-task Gaussian Process module with a self-attention neural network for trajectory prediction.  
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information about patients’ status from the expert. We treat the medi
cation administration data as missing-value-free temporal data since i) 
medication administration that has been performed is usually recorded 
in our dataset, ii) contrary to the physiological information such as labs 
and vitals, whose values are objective, continuous, where missing values 
are easy to model and impute, medication administration information 
involves physician decisions which is difficult to model. 

The concatenated matrix (Zi,Mi) of dimension R × (D+M) is fed into 
the prediction neural network. We leverage the self-attention neural 
network (the Transformer) proposed in [21]. First, each row of the 
matrix (Zi,Mi) is encoded to an embedding space of dimension dembed 
using an input embedding layer. Second, the embedding vector is fed 
into the transformer-encoder network. In the end, the output of the 
transformer-encoder will go through a prediction network to realize the 
task of predicting the risk of performing mechanical ventilation. 

The transformer-encoder network consists of 3 modules: the posi
tional encoder, the multi-head attention module, and the position-wise 
feed-forward network, see Fig. 1. In the positional encoder module, 
we adopt the sine and cosine functions and construct a matrix PE, 

PE(r,2e) = sin(m/100002e/dmodel ) (8)  

PE(r,2e+1) = cos(m/100002e/dmodel ), (9)  

where r ∈ 1,⋯,R is the position index of the regularly spaced time axis 
r = {r1, r2, ..., rR}, e ∈ 1, .., dembed refers to the position along the 
embedding vector dimension, and dmodel is a hyperparameter. The 
function of the positional encoder module is to make use of the temporal 
information in the input matrix. Compared to the conventional recur
rence or convolution function, it not only speeds up the training process 
by parallelization but also helps avoid the challenge of long-range de
pendency problems. 

The embedding matrix is summed with the position encoding matrix 
PE to produce a position-encoded embedding matrix C (with dimension 
R× dembed) to be fed into the self-attention module. The self-attention 
module consists of multiple (h) attention heads where each head is 
composed of four attention matrices to be trained, the query matrix 
WQ(of dimension dmodel × dk), the key matrix WK(of dimension dmodel ×

dk), the value matrix WV(of dimension dmodel × dv) and the output matrix 
WO(of dimension hdv × dmodel). In the general transformer model, there 
are three matrices Q,K,V that is multiplied with the WQ, WK, WV , 
respectively, see equation (12). In the transformer-encoder network it
self, the above three matrices are simply identical copies of the matrix C 
itself. The network performs dot product on all resultant queries with all 
keys, divide by 

̅̅̅̅̅
dk

√
, and apply a SoftMax function to calculate weights 

on resultant value vectors, 

attention(Q;K;V) = softmax
(

QKT

̅̅̅̅̅
dk

√

)

V. (10) 

In the multi-head attention module, the results of all attention heads 
are concatenated together, and a weight matrix is applied to obtain the 
final output of the encoder, 

multihead(Q;K;V) = concat(head1,⋯, headh)WO, (11)  

headl = attention
(
QWQ

l ;KWK
l ;VWV

l

)
. (12) 

Note that in equations (10–12),Q = K = V = C. 
The output of the attention layers multihead(Q;K;V) is a matrix of 

size R× dmodel, and a feed-forward network is applied on each row of this 
matrix separately, 

FFN(u) = max(0;uW1 + b1)W2 + b2, (13)  

where u refers to each row of the matrix multihead(Q;K;V), W1 has 
dimension dmodel × dff and W2 has dimension dff × dmodel. We denote the 
final output of the multi-head self-attention model’s output as Gi (of 

dimension R× dmodel), where i denotes the i-th patient. 
The multi-head attention module and the feed-forward modules are 

repeated Nx times, this helps to increase the model’s generalizability and 
to capture richer interpretation of the input sequence. The output of 
both modules has the dimension of R × dmodel to ensure dimension 
consistency for repeated computation. 

2.3. Risk score trend prediction 

We introduce a block-wise upper-triangular layer to make the model 
capable of producing risk scores on the regularly spaced time points for a 
patient, forming a risk score trajectory. The final encoder’s output Gi 
will be flattened row-wisely to a vector and then concatenated with the 
vector of static variables wi (patient’s baseline covariates such as de
mographics) of dimension F before fed into the block-wise upper- 
triangular network. The final risk score output will be a length R vector 
of real values, representing the score of risk at each time, 

(
flatten(Gi),wT

i

)
=

(
gT

i1, ..., g
T
iR,w

T
i

)
•

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B1 B1

0 B2

0 0

⋯

⋯

⋯

B1

B2

B3

⋮ ⋮ ⋱ ⋮

0 0

P P

⋯

⋯

BR

P

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= (si1, ..., siR) (14)  

where each g is a row of the matrix Gi, matrix Br, r = 1, ...,R is a column 
vector of dimension dmodel, and P is a column vector of dimension F. The 
proposed model outputs a sequence of risk scores (si1, ..., siR) at the 
regular spaced time points r. The design of such structure of the block- 
wise upper-triangular network is to ensure each risk score sr is only 
using patient temporal information Gi before the time point r, and the 
static information wT

i . 
The MGP together with the self-attention neural network can be 

viewed as an implicit function h(ti, yi, r,mi,wi; θ,ω), where θ,ω are the 
MGP parameters and weights in the neural network, respectively. The 
loss function of the proposed model is defined as. 

θ*,ω* = argminθ,ω
∑N

i=1

∑R

r=1
Ezi N ∼(μ(zi),Σ(zi);θ)l(sir, oir), (15)  

where N is the total number of patients in the training dataset and l is the 
loss function for which we choose the binary cross-entropy function. The 
true label oi of a patient i is replicated R times to form the above opti
mization problem, i.e., oi = oir,∀r. 

The multiple objective design let the model foresee the outcome at 
each previous time point ahead of the event (needing mechanical 
ventilation) occurring. Therefore, the model is encouraged to predict 
correctly at all time points rather than being correct only at the end of 
the observational trajectory. On the other hand, the block-wise upper- 
triangular module also brings the benefit of promoting the network to 
make consistent and robust predictions over time for each individual, 
such that the predicted risk score for a truly intubated patient (Ytrue =

1)’s will be continually increasing over time as the network sees more 
information about this patient after hospital admission (t = 0), and vice 
versa for a negative patient. This can be explained by the nature of the 
binary cross-entropy (BCE) loss function LossBCE = − (Ytruelog(Ypred)+

(1 − Ytrue)log(1 − Ypred)). For a positive patient, even though both 
Ypred = 0.60 and Ypred = 0.99 yield correct predictions (suppose 0.5 is 
used as the cut-off threshold for risk score probability), the latter induces 
a smaller loss than the former. This design ensures the prediction at a 
certain time point only leverages data information before this time 
point, and when the neural network connects more patient data over 
time, the information-gain will facilitate the network to make more 
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confident and accurate predictions over time. 
The loss function in (15) is calculated over the expectation of the 

random samplings of zi, and we use Monte Carlo sampling to approxi
mate this loss function. The number of Monte Carlo samples is a 
hyperparameter to be tuned. Given a well-trained model and a new 
patient i’s time-series data (with missing values), the post-imputation 
data zi is drawn multiple times from the learned model parameters 
μ(zi) and Σ(zi), which are referred to as the Monte Carlo samples. The 
prediction risk value of this patient is thus the average over the pre
dictions of the Monte Carlo samples. 

2.4. Evaluation metrics 

Based on the goal of the prediction task, we evaluate the model’s 
performance from two perspectives: the individual level and the popu
lation level. 

Individual-level: The model should be able to provide consistent and 
robust risk score predictions over time for each individual. We propose 
two performance evaluation metrics, i.e., consistency and robustness, to 
measure the predicted risk score trajectory. We fit the risk score trend 
using a linear function and use the function slope to measure consistency 
and measure robustness according to the Mean Squared Error (MSE) 
between the linear fitting function and the real risk score. Specifically, 
we fit the risk score trend of a patient i, si = (si1, ..., siR) at time points r =
{r1, r2, ..., rR} using linear regression. Denote the fitted function as hi(r), 
an individual i’s risk score trend consistency and robustness are defined 
as. 

consistencyi≜|slope(hi(r) ) |, (16)  

robustnessi ≜
1 − 1

R

∑R
r=1(hi(rr) − sir )

2

1 + 1
R

∑R
r=1(hi(rr) − sir )

2, (17) 

Intuitively, a patient’s risk score trajectory should demonstrate an 
overall upward tendency for those patients who would need mechanical 
ventilation and a downward tendency for those who would not. The 
consistency measures the slope where a higher absolute value of the 
slope corresponds to larger consistency, that is, a more obvious devel
opment tendency (positive or negative) and a clearer trend. Also, the 
risk score trend should be robust and avoid fluctuating frequently or 
significantly over time, and the definition of robustness captures the 
fluctuation by measuring the mean squared error between the linearly 
fitted line and the real predictions. 

Population-level: The model should be able to distinguish the patients 
on the whole population who would need mechanical ventilation from 
those who would not need it. We use AUROC (area under the receiver 
operating characteristic curve) and AUPRC (area under the precision- 
recall curve) to evaluate the binary classification task’s overall accu
racy on the entire population at each time point. 

3. Results 

3.1. Data 

Our model is trained on a dataset of patients with COVID-19, and the 
patient information is derived from the Optum® de-identified COVID-19 
Electronic Health Record dataset (2007–2020). The information we use 
includes the patient’s lab tests history, vital sign observations, medica
tion administrations, and demographic information. 

We performed screening and select patients whose COVID-19 tests 
are positive and hospitalized since the pandemic outbreak during the 
year 2020 and selected a final cohort of 9,532 patients. After an initial 
data cleansing to remove the features that have too few observations, we 
selected 16 lab tests and 9 vital signs (we chose labs and vital signs that 
are measured at least once by more than half of all patients), shown in 
Table 2. For medication administration data, there are over 3,000 

different medication names, and the same medication has a variety of 
different names across different patients. For example, the medication 
"Lidocaine" has over 60 different names (including "Lidocaine HCL 10 
mg/mL (1%)", "Lidocaine HCL 100 mg/10 mL (1%) injection syringe", 
"Lidocaine HCL 5 mg/mL (0.5%) injection solution", "Lidocaine HCL 1% 
(10 mg/mL) injection solution", "Lidocaine HCL 1% injection solution’’, 
etc.) in the database, and different names are used in different hospital 
systems. Including all the variations of the same medication not only 
makes the medication administration matrix very high dimensional and 
very sparse but also decreases model performance by introducing a large 
heterogeneity of variables names that represent the same medication. 
Therefore, we decided to use the more general medication category (in 
total 18 categories) as medication administration variables instead of 
the specific medication names, see Table 3. The medication categories 
are according to the Drugbank standard [22]. In the appendix Table S1, 
we list the example medications names in each category, and for a 

Table 1 
Characteristics of the Study Sample (N = 9,532).  

Intubation  
Intubated 1,485 (15.58%) 
Not intubated 8,047 (84.42%) 

Mean age (range) 65.12 (21.23, 89.10) 
Gender  

Female 4,231 (44.39%) 
Male 5,299 (55.59%) 
Unknown 2 (0.02%) 

Race  
Caucasian 5,155 (54.08%) 
Other/Unknown 1,803 (18.92%) 
African American 2,299 (24.12%) 
Asian 275 (2.89%) 

Ethnicity  
Unknown 1,036 (10.87%) 
Not Hispanic 7,287 (76.45%) 
Hispanic 1,209 (12.68%) 

Region  
West 492 (5.16%) 
Northeast 4,725 (49.57%) 
Midwest 3,532 (37.05%) 
Other/Unknown 246 (2.58%) 
South 537 (5.63%) 

Deceased  
No 7,473 (78.40%) 
Yes 2,059 (21.60%)  

Table 2 
Lab tests, vital signs (observations) used in the experiment.  

Index Lab tests Index Vitals and 
Observations 

1 Blood urea nitrogen (BUN) 1 Diastolic Blood 
Pressure (DBP) 

2 Phosphorus (PO4) 2 Heart Rate (HR) 
3 Total serum bilirubin (TSB) 3 Systolic Blood 

Pressure (SBP) 
4 Hematocrit (HCT) 4 Respiratory Rate 

(RESP) 
5 Lactate Dehydrogenase (LDH) 5 Pulse Rate (PULSE) 
6 Mean Corpuscular Volume (MCV) 6 Urine Output 

(UROUT) 
7 Partial Thromboplastin Time (PTT) 7 Weight (WT) 
8 Ferritin 8 Body Temperature 
9 Conjugated (“directed”) Bilirubin 9 Pain Assessment 
10 Total Calcium   
11 Alkaline Phosphatase (ALP)   
12 Alanine Aminotransferase (ALT)   
13 Aspartate Aminotransferase (AST)   
14 Mean Corpuscular Hemoglobin 

Concentration (MCHC)   
15 Immature granulocytes/100 leukocytes 

in Blood by Automated count   
16 Prothrombin Time (PT)    
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complete list of medication names in each category, see [22]. In this 
way, we also naturally omit the dosage information of each medication. 
The patient medication administration table would be a binary (0/1) 
matrix where the entry being 1 denotes certain medication was 
administrated to this patient at a certain time point. 

Patient’s categorical demographic data, including race (African 
American, Asian, Caucasian, Other/Unknown), ethnicity (Hispanic, not- 
Hispanic and Unknown), gender (Male, Female), region (Northeast, 
South, West, Midwest, Other/Unknown) and census bureau division 
(West North Central, East South Central, South Atlantic/West South 
Central, New England, Other/Unknown, East North Central, Pacific, 
Mountain, Middle Atlantic) are one-hot encoded, and numerical data 
(age) are kept as it is. Patients’ summary statistics are shown in Table 1. 

3.2. Experiment setting 

Time window setting: The observational window of each patient (Ti) of 
each patient is a hyperparameter to be chosen. Larger observational 
windows incorporate more patient data which we find will increase the 
model performance, however, notice from equation (7) that the matrix 
Σi is of dimension DTi × DTi, and the matrix inversion’s time complexity 
is O((DTi)

2.37) [23]. We set Ti = 3 days (72 h) as the observational 
window to achieve both good performance and acceptable computation 
time. 

4-hour averaging: We also use the 4-hour average value for each lab 
test and vital sign observation. The timestamps of patient’s lab and vital 
observations in our EHR data are by seconds, including all observations 
not only makes the parameter Σi a high dimensional matrix and in
creases the computational time, but also being unnecessary as most 
features stay stable within a reasonable time window. 

Model input: In the training phase of our model, we set the observa
tional time window to be from the patient’s hospital admission to the 
3rd day after admission, that is, ti contains patient i’s time stamps of all 
the D variables (lab tests and vital signs) within the 3 days (72 h) after 
admission. The ri is set to be a 42-length vector, indicating the 1st 4-hour 
window, 2nd 4-hour window, etc. 

Our model is generic, and the observational time window setting 
depends on the specific application. In a critical scenario where the 
hospitals fall short of medical beds and ventilators, it is crucial to predict 
early (like within the first 24–72 h after hospital admission) about a 
patient’s future condition, see also [24–26] for similar settings. Another 
interesting application would be to use a patient’s 72 h of data counting 
backward from the time point of the event of intubation happens. The 
target is to train a model to predict intubation within 72 h before the 
intubation event happens. In this study, we target the first task. We also 
what to highlight that compared to the second application, this is a 
slightly harder task since many biomarkers show abnormality only 
within a few hours before intubation happens. 

Under the above settings, we exclude all patients from our dataset 
who stayed in the hospital for less than 72 h and those patients who 
performed mechanical ventilation in less than 72 h. We will use the first 
72-hour observational data after admission to train our model and use 
the well-trained model to predict the post-admission 72-hour risk score 
trajectory for an unseen patient. There are in total 9,532 patients 
selected after preprocessing, and 1,485 (15.58%) patients would need 
mechanical ventilation 3 days afterward. We deal with the class 
imbalance in the loss function by using class weighting, another and 
equivalent way is to leverage data oversampling. 

A patient’s certain feature may not be observed during a 4-hour 
window, in this case, we denote has a missing value. We calculate the 
missingness of all 25 lab tests and vital sign variables in the 72 h 
observation time of all patients and summarize the data completeness of 
each variable in Fig. 2, where 1.0 denotes data no missingness, that is, all 
patients have at least one observation in each 4-hour window. 

Other hyper-parameters: Our model hyperparameters are set to have 
an embedding size of 512; the feed-forward network dimension is 2048; 
we use 6 encoder layers and 8 attention heads in the attention module. 
The L2 regularization and a dropout rate of 0.3 are added to avoid model 
overfitting. We use the Adam optimizer [27], and a learning rate 
scheduler is adapted to adjust the learning rate (starting from 0.03) 
based on the number of epochs, i.e., decaying the learning rate by a 
multiplicative factor of 0.95 after each epoch. The model is trained for 
100 epochs with a batch size of 50 patients. During the joint training of 
the Multi-task Gaussian Process and the neural network, the MGP gen
erates 50 Monte Carlo Samples (pseudo-patients) for each original pa
tient as the neural network’s input, and the predicted risk score at each 
time point takes the mean of the 50 Monte Carlo Samples. We imple
mented our pipeline in PyTorch, and the model is trained on Nvidia 
Tesla V100 GPU. 

3.3. Risk score trajectory prediction 

The model is well-trained on the train set (70% of patients) and 
makes predictions on the test set (30% of patients). For each patient in 
the test set, the model outputs a 72-hour risk score trajectory. Fig. 3 
demonstrates the mean of 3-day risk score pathways of all test set pa
tients that would need MV after 3 days (light red) and the mean of all test 
set patients that would not (light green), and the shaded area is the +/−
one standard deviation. The model successfully distinguishes the two 
classes of patients, i.e., similar pathways within a class and different 
between the two classes. The patients who would need MV 3 days af
terward have obvious ascending risk score trajectories while those who 
would not need MV have descending trajectories. 

3.4. Compare with machine learning approaches 

We compare our model with the Cox Proportional-Hazard Model 
[28] and machine learning models including Logistic Regression and 
Gradient Boosted Tree Model (using XGBoost) [29]. To make a fair 
comparison with our model, when making predictions at a time point 
(for example, at the 20th hour after admission), the model only uses 
patients’ data before this time point. Similar to the input of our model, 
we take a 4-hour average for each feature. Finally, the time series matrix 
data (row: number of time indices, column: number of features) will be 
stacked into one vector and concatenated with the demographic data to 
form the input vector. For Logistic Regression, the LogisticRegression 
from python library Scikit-learn was used and the class weights were 
specified to handle the class imbalance. The Xgboost model was from the 
library XGBoost [30] and Cox’s proportional hazard model is from 
Lifelines [31]. For missing values, we explored filling with zeros, for
ward filing (use the next valid observation to fill the missing values), 
backward filling (propagating the last valid observation forward to the 
next observation valid, if for certain missing positions there is no pre
vious observation then it is filled using forward filling), and Multiple 

Table 3 
Medicine administrations.  

Index Medicine Class Index Medicine Class 

1 Central nervous system 
agents 

10 Nutritional agents 

2 Respiratory agents 11 Hormones, synthetic substitutes, 
& metabolic agents 

3 Anti-infective agents 12 Ophthalmic preparations 
4 Cardiovascular agents 13 Skin & mucus membrane 

condition agents 
5 Gastrointestinal agents 14 Biologic & immunologic agents 
6 Antineoplastic agents 15 Mouth & throat preparations 
7 Electrolyte, caloric, water 

balance agents 
16 Otic preparations 

8 Blood formation & 
coagulation agents 

17 Compounding products 

9 Medical supplies 18 Diagnostic agents 
10 Miscellaneous agents    

K. Zhang et al.                                                                                                                                                                                                                                   



Journal of Biomedical Informatics 130 (2022) 104079

7

Imputation and selected the one with the best performance. 
Fig. 4 (a) shows the risk score prediction of a randomly selected 

patient in the dataset who would need MV after 3 days since being 
admitted to the hospital, and Fig. 4 (b) shows that of a patient who 
would not after 3 days. Since the compared models cannot output 
consistent real-time predictions, each model is trained using the instant 
physiological data collected during a 4-hour window and makes risk 
score predictions every 4 h, and form a trajectory. It is worth paying 
attention that, for a particular patient, the risk scores predicted by 
different models are not of the same value at the same time point. The 
risk values produced by different models are not comparable, and here 
we focus on the tendency of the risk score trajectory rather than the 
particular values themselves. To this end, we normalize all models’ 
predictions to the range of 0.0–1.0. A smooth and consistent risk score 
pathway is deemed to be a robust prediction instead of a pathway that 
highly fluctuates, which indicates inconsistent predictions over time. 

In Fig. 5, we evaluated the consistency and robustness of the 3-day 
risk score trajectories of all patients predicted by the four models. It 
can be seen that our proposed model has significant improvement in 
consistency and robustness compared to the other three models (con
sistency improved by around 258.00%, 166.00%, and 343.00%, 
respectively; robustness improved by around 5.56%, 8.05%, and 6.74%, 
respectively). 

In Fig. 6, each patient’s 3-day risk score trajectory’s robustness and 
consistency are shown as a scatter plot where the robustness and con
sistency metrics are formed as perpendicular axes. The horizontal axis is 
the slope of the fitted linear function, and the vertical axis is the 
robustness. For the two classes of patients, the figure shows the proposed 
model has more separable slope values for the two categories, where the 
slope is positive (an increasing risk score trend) for each patient who 
would need mechanical ventilation and negative (a decreasing risk score 
trend) for those who would not need it. 

Fig. 2. Data completeness of lab tests and vital signs (100% means a feature’s data is fully complete).  

Fig. 3. The average risk score trajectories of the two classes of patients with the shaded area denote the +/− 1 standard deviation. The right panel shows the two risk 
score distributions at the 64th hour, and the Wilcoxon rank-sum test yields a p-value of 6.00 × 10− 38 when assuming the null hypothesis to be two distributions are 
the same. 
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Fig. 4. Two sample patients’ risk score trajectory prediction using different models. (a) The risk score pathway of a randomly selected patient with COVID-19 who 
would need MV after 3 days since admission. (b) The risk score pathway of a randomly selected patient with COVID-19 who would not need MV after 3 days 
since admission. 

Fig. 5. Performance evaluation of different models, (a) Consistency (b) Robustness.  
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3.5. Compare with neural-network-based approaches 

The proposed model outperforms Neural-network-based models in 
the prediction accuracy for the whole population. 

Several models were previously proposed and showed success on 
similar prediction tasks that take irregularly sampled data as input, 
including the time-aware LSTM network (T-LSTM) [32], the GRU-D 
[33], the Gaussian process temporal convolutional networks (GP-TCN) 
[34], the Interpolation-prediction networks (IPN) [35] and the multi- 
task Gaussian process RNN model (MGP-RNN) [13]. This section com
pares them with our proposed model in terms of the AUROC and AUPRC 

performance metrics. We also compare MGP-MS with typical RNN 
models combined with simple data imputation methods, including the 
standard long short-term memory (LSTM) [36] network and the gated 
recurrent unit (GRU) [37] network. Similar to the machine learning 
models, we explored different data imputation techniques including 
zero-filling, forward (backward)-filling, and selected the forward-filling 
since it produces slightly better performance. In all the above models, 
patients’ static demographics data are appended to the input vector of 
the last layer (classification layer) to make the prediction. 

In Table 4, we summarize the population-level performances 
(AUROC and AUPRC) of our proposed model and several other models 

Fig. 6. Scatter plots of 200 sample patients’ trajectory robustness and slopes. (a) Logistic Regression, (b) XGBoost, (c) Cox Proportional-Hazard Model, (d) the 
proposed MGP-MS model. 

Table 4 
AUROC and AUPRC Performance Comparison.  

Model Admission 0.5 Day 1 Day 2 Days 3 Days  

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR 

GRU- 
ffill 

0.7378 ±
0.0487 

0.3193 ±
0.0562 

0.7404 ±
0.0968 

0.3348 ±
0.0626 

0.7901 ±
0.0333 

0.3756 ±
0.0388 

0.7754 ±
0.0760 

0.4048 ±
0.0688 

0.8061 ±
0.0507 

0.4447 ±
0.0176 

GRU-D 0.6080 ±
0.0064 

0.2420 ±
0.0094 

0.6062 ±
0.0077 

0.2442 ±
0.0096 

0.6747 ±
0.0093 

0.3031 ±
0.0072 

0.7517 ±
0.0107 

0.4109 ±
0.0292 

0.8099 ±
0.0055 

0.4814 ±
0.0182 

MGP- 
TCN 

0.5972 ±
0.0152 

0.2220 ±
0.0064 

0.5862 ±
0.0127 

0.2135 ±
0.0084 

0.6394 ±
0.0135 

0.3131 ±
0.0132 

0.7602 ±
0.0037 

0.3909 ±
0.0053 

0.7732 ±
0.0153 

0.4632 ±
0.0125 

IPN 0.7034 ±
0.0136 

0.3473 ±
0.0056 

0.7286 ±
0.084 

0.3687 ±
0.0043 

0.7605 ±
0.0094 

0.3904 ±
0.0148 

0.7653 ±
0.0158 

0.4116 ±
0.0053 

0.7770 ±
0.0198 

0.4014 ±
0.0098 

T-LSTM 0.5051 ±
0.0020 

0.1836 ±
0.0098 

0.5132 ±
0.0066 

0.2020 ±
0.0293 

0.5540 ±
0.0046 

0.2642 ±
0.0099 

0.6140 ±
0.0156 

0.3525 ±
0.0054 

0.6910 ±
0.0045 

0.3956 ±
0.0124 

MGP- 
GRU 

0.7048 ±
0.0036 

0.2912 ±
0.0021 

0.7329 ±
0.0078 

0.3176 ±
0.0100 

0.7631 ±
0.0101 

0.3555 ±
0.0069 

0.7859 ±
0.0023 

0.4398 ±
0.0145 

0.7912 ±
0.0089 

0.4712 ±
0.0120 

MGP- 
MS 

0.7920 ±
0.0063 

0.3992 ±
0.0112 

0.8221 ±
0.0030 

0.4507 ±
0.0043 

0.8292 ±
0.0046 

0.4587 ±
0.0066 

0.8420 ±
0.0052 

0.4678 ±
0.0062 

0.8421 ±
0.0056 

0.4813 ±
0.0096  
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for the mechanical ventilation prediction task on the same dataset. To 
ensure a fair comparison, we tuned the hyper-parameters to ensure the 
best performance. The predictions at a time point are made using all 
observations after hospital admission and before this time point. Our 
model outperforms most of the previous models and gains the largest 
improvement in the early times after admission. 

4. Discussions 

We presented a novel data-driven early warning model to predict the 
COVID-19 patient’s risk score and distinguish the patients that will need 
mechanical ventilation or not soon after admission. The proposed model 
provides accurate, robust, and real-time risk score predictions. We 
evaluated our model on a cohort of nearly 10,000 COVID-19 patients 
and demonstrated high accuracies. We also compared our model with 
several baseline models and it demonstrated a clear performance 
improvement, at individual level and population level. The model ach
ieves higher prediction accuracy compared to other deep-learning 
models, especially in the early times after the patient’s hospital 
admission. 

Overall, we address the following challenges in this study. First, 
typical classification models such as logistic regression, tree-based 
methods, Cox proportional-hazards model, etc., cannot provide real- 
time risk predictions despite their high accuracy. Whereas training 
separate models at different time points often produces a good overall 
performance on the population level but raises consistency on the in
dividual level. Second, EHRs are usually collected in an unscheduled 
manner such that traditional frameworks view most patients as having 
missing data, which deteriorates the model’s performance. Third, the 
EHRs among different patient encounters face the problems of asyn
chronously sampling (lab tests and vital signs are sampled at different 
timestamps) and irregularly sampling (the time interval between every 
two contiguous observations is not always consistent), and EHR data 
often demonstrates a mixture of both patterns which causes the con
ventional data imputation methods such multiple imputation methods 
to fail. Fourth, the need for mechanical ventilation (indicating deterio
ration of the patient’s situation) is determined by a combination of many 
factors such that complicated interaction pattern is too complex to 
capture for human beings and simple scoring systems, which limit their 
performances. Finally, it is difficult to distinguish the patients who 
would need mechanical ventilation from the others at very early times 
after admission, since the biochemical indicators only become abnormal 
after several hours or even a few days for most patients. 

We addressed these challenges by the integration of the MGP for data 
imputation and the deep neural network for prediction. We leverage the 
self-attention mechanism to handle long-term dependency problems. 
The model has clinical significance during the circumstances of the 
ongoing COVID-19 pandemic, especially for the hospitals that are 
experiencing a shortage of ventilators due to the increasing number of 
in-hospital patients. The allocation of ventilators to patients of higher 
risk would significantly increase the overall survival rate. 

Several future directions are worth exploring. The Gaussian process 
involves a large matrix inversion, approximation techniques could be 
utilized to decrease the computational complexity. The medication 
administration information in our dataset needs an inspection to make 
the medication names consistent for all patients. The medication 
administration dosage would also be an important factor for the pre
diction task but extracting the dosage information would be a more 
difficult task on the dataset we use. It would also be interesting to cluster 
the patients into sub-phenotypes based on their risk trend progression 
pattern, to analyze how factors such as age, race, and comorbidities 
would cause disease progression pathways. 
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Appendix A. Supplementary material 

The simulation data and codes used to replicate the results are 
available at https://github.com/anotherkaizhang/MGPMS. The real- 
world data that support the findings of this study are available from 
Optum® but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly 
available. Data are however available from the authors upon reasonable 
request and with permission of Optum®. Supplementary data to this 
article can be found online at https://doi.org/10.1016/j.jbi.2022.1040 
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