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Simple Summary: Structured survey on the predictive analysis of postoperative complications in
oncology, bridging classic risk scores with machine learning advances, and further establishing
principles to guide the design of cohort studies and the predictive modeling of postsurgical risks.

Abstract: Postoperative complications can impose a significant burden, increasing morbidity, mortal-
ity, and the in-hospital length of stay. Today, the number of studies available on the prognostication
of postsurgical complications in cancer patients is growing and has already created a considerable
set of dispersed contributions. This work provides a comprehensive survey on postoperative risk
analysis, integrating principles from classic risk scores and machine-learning approaches within a
coherent frame. A qualitative comparison is offered, taking into consideration the available cohort
data and the targeted postsurgical outcomes of morbidity (such as the occurrence, nature or severity
of postsurgical complications and hospitalization needs) and mortality. This work further establishes
a taxonomy to assess the adequacy of cohort studies and guide the development and assessment of
new learning approaches for the study and prediction of postoperative complications.

Keywords: postsurgical risk; cancer; machine learning; survey; clinical prognosis; postoperative
outcomes

1. Introduction

Cancer is among the leading causes of death of the 21st century. In the United States,
as of 2020, the number of new cases of cancer was estimated to surpass 1,800,000 and
deaths due to cancer were close to 600,000. The survival rate within 5 years for these
patients is currently around 65% [1]. The morbidity and mortality associated with cancer
can result from direct consequences of the disease but can also occur due to operative and
postoperative complications [2,3], generally lowering the survival rate and, in certain types
of cancer, aggravating the recurrence rate [4].

The health impact of cancer surgeries is difficult to predict, due to the high number of
factors pertaining to the physiological resilience of an individual, the cancer profile and
the nature of the undertaken surgeries. Considerable scientific efforts have focused on
postoperative complication risk assessment tools for cancer and general surgeries. These
tools generally aim at anticipating mortality and morbidity risks in order to guide surgical
design and care decisions [5]. With advances on the technology and health data analysis, an
increasing amount of studies identify the main factors propelling postoperative complica-
tions and, considering these factors, propose new risk tools, or recalibrate existing ones [5].
In this context, medical professionals are assisted when deciding whether a surgery is
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viable for a patient, while patients can more easily manage expectations associated with
potentially high-risk surgeries. From a clinical perspective, the risk scores are also determi-
nant in choosing the course of actions, such as additional testing, specific prehabilitation
programs, or supportive measures that should be followed during the intraoperative or
postoperative periods [5].

Recent advances in machine learning (ML) techniques and the increasingly large
cohort of studies are radically changing cancer surgery prognostication. The number of
papers related to this matter has steadily increased, as shown in Figure 1. Although the
results achieved by ML models are generally comparable or better than classic models
(e.g., Cruz and Wishart [6]), there is considerable agreement that there is still space for
further improvements once more extensive data sets become available [7]. In fact, ML has
been explored to predict cancer-related outcomes for over 30 years [8,9].

Figure 1. Number of publications per year: search results for the joint keywords “machine learning”
and “cancer surgical risk” on PubMed, accessed on January 2021.

This work proposes a structured survey on the problem of predicting postoperative
complications in the oncological domain. To this end, we first establish a taxonomy to
guide the design of cohort studies and the development and assessment of new learning
approaches for predicting postoperative complications. Contextualized by this taxonomy,
this paper then provides a comprehensive survey of classical approaches (risk calculators,
scores and indexes) and ML advances for postsurgical risk analysis. Most of the ML-based
works we discuss were published in the last 2–6 years.

The paper is structured as follows. Section 2 offers essential background on classic
and ML-based stances to prognostication. Section 3 introduces the proposed taxonomy.
Section 4 overviews traditional and state-of-the-art approaches for postsurgical risk analysis
against the introduced taxonomical dimensions. Section 5 discusses the findings, offering
further insights to address the target problem. Finally, concluding remarks and implications
are synthesized.

2. Background
2.1. Classic Prognostication: Calculators, Scores and Indexes

Efforts to predict postoperative complications have been a constant since the dawn
of medical practice, progressively using more sophisticated means and consequently
obtaining more accurate results [10]. Medicine transitioned from intuitive guessing based
on expertise knowledge into having indexes, scores and calculators to aid the medical
assessment of preoperative and postoperative patient states. Solutions such as the original
American Society of Anesthesiologists (ASA) score for the classification of physical status
(PS) [10] started to emerge in the past century as an attempt to standardize “Operative Risk”.
The ASA-PS scale still provides to this day satisfactory results in predicting postoperative
complications and death [11]. However, this classification is inferred from input variables
that inherently depend on the subjective perception of the medical professionals [12]. ASA-
PS is a point system with various parameters whose evaluation is not standardized, thus is
associated with high variability among similar users. Despite these criticisms, ASA-PS is
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still used today since studies suggest that its result roughly transduce the risk of morbidity
and mortality [11]. In fact, it has laid the foundation for other classification systems.

A considerable amount of calculators based on statistical methods, such as multivariate
regression or correlation analysis, have been proposed since then, including those proposed
by Copeland et al. [13] (POSSUM) or Bilimoria et al. [14] (ACS). Although generally more
expressive, they are susceptible to generalization problems and commonly either assume
independence between the monitored variables or simplistic linear combinations [6].

To obtain more complete, accurate and detailed postsurgical information, hospitals
often make use of more than one of these classic systems in order to dilute errors among
the voting of all the predictors. In addition, distinct predictors can provide complemen-
tary views of either the same or different postoperative outcomes. The typical outcomes
associated with cancer prognostication tools are as follows: (1) risk of postoperative mor-
bidity (presence, nature and severity) and mortality; and (2) cancer recurrence probability.
In what strictly concerns postoperative complications’ risk, recurrence is commonly left
out of the equation, although it can be conceptually contained in the larger problem of
prognostication [15,16]. The referred outcomes are usually tied to specific time horizons,
specific complications and/or specific demographics.

Typically, classic prognostication tools use a limited set of variables that can easily
be monitored or statistically inferred by physicians. With the rise of clinical big data [17],
cohorts are increasingly larger and new variables pertaining to the clinical, molecular,
demographic and the exposomic profiles of patients are now available. Today “high-
throughput diagnostics” mean that decisions are made from high-dimensional data spaces,
paving new opportunities for clinical predictive models in the precision medicine era [18].

2.2. Machine Learning Models

Although classic prognostication systems are still widely used within hospitals to pre-
dict postsurgical risks, more advanced approaches have been proposed in the last decades
to address the aforementioned challenges faced by classic approaches [19]. ML approaches
outperform classic methods when the target predictive task is fundamentally non-linear,
being able to learn models from multicolinear variables with complex interdependencies.
Although ML is based on statistics and probability, the differentiating characteristic is
the ability of ML approaches to make inferences or decisions beyond the capabilities of
conventional statistics. The problem of learning from data and generalizing to inference can
be done in either a supervised or unsupervised setting [20]. In supervised learning, the indi-
viduals from a given cohort study are known to have well-defined postoperative outcomes
(whether categorical or numeric), and the goal is to learn a mapping function—the pre-
dictive model—between historical data and the postsurgical outcome. In unsupervised
settings, the goal is rather learning relevant associations from the available cohort data,
including the discovery of temporal patterns of recovery progression, the learning of gen-
erative models of postsurgical health-and-care outcomes, or the clustering of individuals
into risk groups [21]. This review focuses on supervised learning (predictive approaches).

What follows is a brief description of the principles underlying classic ML approaches
for predictive tasks. The listed models were chosen due to their inherent simplicity,
popularity and proved usefulness in the clinical domain. They set the generic foundations
for more advanced variants that are discussed more thoroughly in Section 4. The k-nearest
neighbors(kNN) algorithm, one of the oldest and simplest ML methods [22], identifies the
most similar individuals (the neighborhood) to the individual under assessment for either
classifying outcomes or estimating risk scales. On the side of probabilistic approaches, naïve
Bayes (NB) [23] assumes conditional independence among the input variables to calculate
outcome-conditional probabilities against the fitted distributions per variable. Decision
trees (DT) [24], abundantly used in clinical predictive settings (with both categorical and
numeric outcomes), given their inherent simplicity and interpretability, focus on local
discriminative patterns through the use of information theoretic measures. Tree ensembles,
obtained through the use of bagging and bootstrapping principles [25], can be considered
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to minimize the underfitting propensity of a single decision tree. Random forests (RF)
and extreme gradient boosting (XGBoost) are two paradigmatic cases. Artificial neural
networks (ANN) offer the possibility to learn non-linear mappings, using brain-inspired
pathway connections organized in well-defined layers [26]. In the last years, motivated by
the evolution of technology and size of cohort studies, deep neural networks have been
popularized, due to their capacity to model complex problems. Support vector machines
(SVM) [27] aim at identifying hyperplanes able to either optimally separate individuals
with different outcomes (classification) or approximate quantities with minimum errors
(regression). To learn non-linear surfaces, kernels—transformations of the feature space—are
considered. SVMs are still not as widespread for cancer prognostication as classic regression
models or neural networks [6]. A comprehensive discussion on the potentialities and
limitations of these approaches and other variants for postsurgical risk analysis is provided
along Section 5.

3. Taxonomy of Postsurgical Risk Analysis

Figures 2–6 compose a taxonomy to offer a structured understanding of the diverse
aspects associated with the postsurgical risk analysis from cohort studies. This taxonomy
is further presented as a roadmap to (1) guide the design of cohort studies in terms of
their scope (Figure 2), input data (Figure 3), and study outcome (Figure 4), (2) guide
the development and assessment of approaches (Figures 5 and 6) to study and predict
postoperative complications, and (3) improve the data-quality collected in multicenters.
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Figure 2. Taxonomy for postsurgical risk analysis: cohort study.

Identifying the characteristics of the target cohort study (Figure 2) is an essential step
toward the assessment of postoperative complications, whether the cohort study is at
the design stage or already in place. Important aspects include the following: (1) cohort
size; (2) the demographic diversity of the target population—geography, ethnicity, age,
gender, education, or lifestyle of the individuals; (3) the presence of multiple hospitals
or care facilities with possibly different practices, instrumentation or standards for data
collection; (4) whether the target population is homogeneous or heterogeneous with regard
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to cancer location—including thoracic (breast, lung), digestive (colorectal, stomach, intes-
tine), endocrine (prostate, ovary, thyroid), brain, skin, skeletal, hematologic, lymphatic,
and urinary (bladder, kidney); (5) the diversity of the population regarding cancer ma-
lignancy, dissemination, and other histopathological and biological features, as well as
the characteristics of the undertaken surgical interventions (Figure 2); and (6) the extent
and recurrence of patient health-and-care monitoring during pre- and postsurgical stages.
All these variables are essential to determine the (i) ability to conduct sound statistical
assessments, (ii) generalization ability of the target learning approaches, and (iii) coverage
and external applicability of the target predictive models.
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Figure 3. Taxonomy for postsurgical risk analysis: available data (input).

The available cohort data also determine the nature of the postsurgical analysis
(Figure 3), whether it is primarily driven by the undertaken surgery (procedure and
outcomes) and risk factors of the patients, or further able to integrate additional sources
of information, including the following: (1) cancer histopathological features (such as
histologic grade and mitotic rate); (2) molecular measurements (genetic mutation profile,
epigenetic profile, gene expression, the concentration of specific non-receptor proteins
and metabolites of interest, glycosylation and other molecular additions on key proteins);
(3) hospitalization data (including details on the observed complications, applied prescrip-
tions, and undertaken therapies); (4) exposomic data (including the nutrition, exercise and
lifestyle profile of the patients); (5) hematologic and urinalysis data; and, among others,
(6) at-home care data. The nature of the monitored variables—domain (whether they are
numeric, ordinal, nominal, imagiological, temporal, or semi-structured) and characteristics
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(distribution, susceptibility to noise and missing values)—determine the ability to learn
comprehensive models of postsurgical health progression.

A secondary essential step is to identify the target postsurgical outcomes (Figure 4), as
the focus can be placed on different ends, including determining (1) the occurrence and
severity of postsurgical complications, (2) the nature of complications (morbidity), (3) the
need for rehospitalization or new surgeries, (4) the cancer recurrence, (5) the internment
length, or (6) the survivability of the individuals (mortality). The selection of the outcomes
determine whether the learning task can be better formulated as a classification, regression,
unsupervised, or survivability problem. Illustrating that, considering the assessment of the
postsurgical occurrence of complications, it can be formulated as a yes–no classification
problem (where the yes can be further refined into time horizons) or as a yes–when regres-
sion problem. Outcomes based on severity indexes typically rely on ordinal scales, such
as Clavien–Dindo [28], while outcomes grounded on the assessment of the complication
can rely on classification standards, such as ACS [14]. In this latter case, determining
the granularity at which complications can be predicted is an important step and should
guarantee the presence of a representative number of cases per complication. Common
classifications typically include cardiovascular, pulmonary, renal, and surgical-specific
(localized infections, fistulas, abscesses) complications. Figure 4 provides further taxonomic
details on possible outcomes for postsurgical risk studies.
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surgery

in-hospital treatment
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Figure 4. Taxonomy for postsurgical risk analysis: postsurgical outcomes (output).

Once cohort data are available (input) and the desirable postoperative outcomes
are fixed (output), input–output mappings can be established using one of three major
approaches: descriptive, predictive and prescriptive approaches (Figure 5). Descriptive
approaches can be applied to different ends: (1) discovery of discriminative patterns of
postsurgical risk, and temporal patterns of recovery progression; (2) learning generative
models able to comprehensively capture postsurgical health-and-care outcomes; (3) dis-
criminant feature analysis; (4) clustering of individuals into risk groups; (5) visual analytics
to support the study of correlations; and (6) analysis of outlier individuals, including indi-
viduals with comorbidities or unexpected outcomes. One example of mining pre-surgical
patterns to discriminate postsurgical outcomes in the oncological context is given in [29].
In contrast with descriptive approaches, predictive approaches produce models that can be
readily applicable on new patients to assess their postsurgical risks. Predictive approaches,
the focus of this manuscript, can further benefit from semi-supervised learning principles
when not all information regarding the postsurgical patient outcome is available. Finally,
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the previous approaches can be complemented with optimization and simulation studies
(prescriptive setting) in order to plan on-site and at-home care protocols.
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Figure 5. Taxonomy for postsurgical risk analysis: descriptive, predictive and prescriptive approaches
(input–output mapping).

The resulting descriptive, predictive and prescriptive models should be subjected to
careful assessment (Figure 6) to guarantee their generalization ability, outcome sensitivity,
statistical significance, completeness, interpretability, updatability for ongoing cohort
studies, and actionability.
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learning approach
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confusion-based scores
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interpretability
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sensitivity, specificity
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missing data
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co-morbidity

heterogeneity
instrumentation

clinical practice

Figure 6. Taxonomy for postsurgical risk analysis: assessment.

4. Postoperative Prognostics: A Literature Review

Prognostication tools are in a state of constant improvement. The first formal studies
date back to the 1940s [10]. Out of the diversity of outcomes introduced in Figure 4,
the survey primarily focuses on two major predictive ends, morbidity and mortality,
strongly correlated and denotative of postoperative complications.

Methods. For this survey, studies on cancer surgery, ranging from traditional statistics
to modern machine learning models (in accordance with predictive taxonomic associa-
tions in Figure 5), were analyzed. The search strategy for peer-reviewed manuscripts was
performed through Google Scholar and PubMed engines under the following term-sets:
“cancer postoperative complications”, “cancer prognostic”, “postsurgical complications”
or “surgery prognostic”, coupled with “prediction” or “machine learning”. No filters
were added to the search queries since the objective was to obtain the entire spectrum of
publications across a vast time frame. This search process was conducted in January 2021.
The results of each search were very extensive, ranging from twenty five thousand to more
than one million hits, depending on the search query. The title, abstract and keywords of
each publication were firstly analyzed to filter irrelevant manuscripts. The ones deemed
relevant are here described.
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4.1. Traditional Risk Scores Studies

Classical statistical studies on postoperative complications made their way into clinical
use and were adopted by hospitals to support medical decisions for nearly one century [10].
Most of these clinically adopted scores, indexes and calculators are based on simple
statistical methods, which are largely considered reliable and less susceptible to the same
degree of distrust that some machine-learning methods still face today, due to unfamiliarity
and the “black-box” character typically attributed to them. Table 1 lists the major traditional
statistical studies for postoperative prognostics.

Table 1. Compilation of traditional statistical studies in postoperative prognostics according to the major taxonomic
dimensions (literature references in chronological order).

Study Surgical Cohort Model Data Type Data Size Validation Outcome

Saklad [10] General N/A N/A N/A N/A Morbidity, Mortality

Knaus et al. [30] General LR Clinical 5815 Yes In-Hospital Death

Charlson et al. [31] General WI Clinical 559 Yes 1-Year Mortality

Copeland et al. [13] General LR Clinical 1372 N/A Morbidity, Mortality

Marcantonio et al. [32] Noncardiac LR Clinical 876 Yes Postoperative Delirium

Whiteley et al. [33] General LR Clinical 10,000 Yes Morbidity, Mortality

Roques et al. [34] Cardiac LR Clinical 19,030 N/A Mortality

Dupuis et al. [35] Cardiac LR Clinical 3548 N/A Morbidity, Mortality

Arozullah et al. [36] Noncardiac LR Clinical 160,805 Yes Postoperative Pneumonia

Sutton et al. [37] General LR Clinical 3144 Yes Morbidity

Donati et al. [38] Cardiac LR Clinical 1936 Yes Mortality

Gawande et al. [39] General PS Clinical 303 Yes Morbidity, Mortality

Canet et al. [40] General LR Clinical 2464 Yes Pulmonary Complications

Gupta et al. [41] General LR Clinical, demographic 211,410 Yes Cardiac Complications

Vaid et al. [42] General LR Clinical, demographic 202,741 Yes Mortality

Bilimoria et al. [14] General LR Clinical, demographic 1,414,006 Yes Morbidity, Mortality

LR = Logistic Regression; PS = Point System; WI = Weighted Index; N/A = Not Available.

Cohort–outcome relationship. As highlighted in the input and output taxonomic
dimensions in Figures 2–4, the characteristics of the monitored population are a determinant
factor. The POSSUM score was created to predict the mortality risk from a general surgery
cohort [13]. Although it has wide applicability, POSSUM discards the oncology-specific
context. In the same line of thought, CARES surgical risk calculator was developed
from a cohort of individuals undertaking cardiac surgeries [35]. Being more specific than
POSSUM, CARES predictions for in-hospital death and morbidity are also more adequate
for application in patients submitted to cardiac interventions. Although extrapolation is
possible, further testing of the gathered scores is advised, as generalizing predictions for
other clinical specialties is generally susceptible to errors.

There are studies which rely on massive cross-hospital populations comprising mil-
lions of individuals, such as the ACS NSQIP, which makes use of data collected from
393 American hospitals, amounting to nearly 1,500,000 patients [14]. Studies with such
extensive data sets are able not only to yield better predictions, but accommodate less-
trivial outcomes other than mortality and morbidity targets. ACS offers 8 outcomes: two
“primary” scores dedicated to mortality and morbidity, and 6 “secondary” scores dedicated
to classes of complications (Figure 4). Each score is predicted by its own regression model.

Specialty-specific scores often rely on considerably small cohorts with a few hundred
individuals. The Surgical Apgar Score considered only 303 patients for training the sta-
tistical model [39]. As only three variables are collected to make the predictions (ratio
of 100 records per variable), the statistical significance of the inferred associations can be
assessed and further validated in validation sets.

These observations show that the nature of the surgical cohort available at the time
of research and development is a crucial factor that can limit the final outcome. Larger
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populations and broader demographics, in accordance with the dimensions introduced
in Figure 2, contribute to wider applicability and greater diversity of context-specific
outcomes. As highlighted in Figure 3, the size of the cohort, as well as its dimensionality,
sparsity, regularities and dependencies among the collected variables are determinant
factors across classic point systems [43,44].

The monitored variables throughout the majority of the reviewed traditional statistical
studies are generally limited to clinical, clinicopathological and hematological variables.
Very seldom did the studies include demographic, socioeconomic, exposomic and a more
comprehensive molecular profile of the individuals (as surveyed in Figure 3), important
variables that could promote the international applicability of each study. One case is the
ACS NSQIP Surgical Risk Calculator [14], which accounts for demographic data collected
from over 393 American hospitals, thereby having a solid and proved national applicability.

Point systems. The novelty behind each one of the reviewed scores (Table 1) is gen-
erally attributed to the type of model used, cohort extent, or the nature of the monitored
variables considered to train the model. There are models ranging from simple scoring
point systems to regression models. The Charlson Comorbidity Index (Charlson et al. [31])
or the Surgical Apgar Score (Gawande et al. [39]), used to classify disease severity and
also predict in-hospital death, are good examples of point systems that sum the results
or apply a simple statistic, using the devised points. These methods generally lack the
generalization guarantees, adaptability and complex modeling capabilities that ML models
easily attain nowadays. Instead, point systems can be manually tuned, based on a number
of factors previously studied and proven to have impact on a certain outcome.

Logistic regression. Alternative risk scores make use of more advanced training or
more complex models to make their prediction. In fact, this is the case with the majority of
the reviewed scores in Table 1. The difference between regression and point systems or
weighted indexes is small in practice and resides solely on the way in which the weights
of each factor are approximated from the available cohort data. Multivariate logistic
regression is the most widely used model, generally employed when the target outcome
is of a binary nature and essentially obtained by minimizing the loss between the actual
outcomes and the sigmoid of the computed scores produced by linear regression [21].

4.2. Machine Learning Studies

More recently, ML also stepped into the field of postoperative prognostication, with the
number of yearly contributions considerably rising in last years as shown in Figure 1. A
comprehensive list of machine-learning studies for postsurgical risk analysis is presented
in Table 2.

From traditional statistics to machine learning. The median publication year of
the classical postsurgical studies corresponds to 2001, while ML studies correspond to
2015. Along these fourteen years, the computational resources and techniques evolved,
as well as the size and characteristics of the conducted cohort studies. When comparing
Tables 1 and 2 in light of the introduced taxonomy (Section 3), differences are notorious,
particularly differences pertaining to the nature and extent of the monitored variables.
More recent ML models make use of genomic, biophysiological, radiomic, demographic
and socio-economic variables. By these means, studies employing ML models dispose
of a broader individual’s profile to foster prediction capabilities, as well as assess their
adaptability and reusability across different clinical and surgical areas (Figure 6). Another
characteristic differentiating ML from classical studies is the discrepancy of their clinical
translation footprint. Many classical statistical studies were driven by (or in strong collabo-
ration with) medical professionals and, despite their inherent simplicity and generalization
difficulties, are widely adopted. ML approaches are commonly more experimental in
nature and generally show limited cross-hospital applicability.
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Table 2. Compilation of machine-learning studies in postoperative prognostics, according to the major taxonomic dimen-
sions (literature references in chronological order).

Study Surgical Cohort Model Data Type Data Size Validation Outcome

Khan et al. [45] Breast Fuzzy DT Clinical, Biological 162,500 Yes 5-year mortality

Chang et al. [46] Oral NN, Fuzzy NN, SVM,
LR

Clinical, histopathologi-
cal, genetic

31 Yes 3-year mortality

Zięba et al. [47] Lung Boosted SVM Clinical, histopathological 1200 N/A 1-year survival

Danjuma [48] Lung MLP, DT, NB Clinical 470 Yes 1-year mortality

Parmar et al. [49] Head and neck NB, RF, NN Radiomics 101 Yes 3-year mortality

Wang et al. [50] Bladder NB, SVM, kNN, NN Clinical, histopathological 117 Yes 5-year mortality

Thottakkara et al. [51] Major surgery LR, GAM, SVM, NB Demographic, socioeco-
nomic, clinical, laboratory

50,318 Yes Postoperative sepsis and
kidney injury

Soguero-Ruiz et al. [52] Colorectal SVM Physiological, clinical 402 Yes Anastomosis leakage

Kim et al. [53] Oral NN Clinical, histopathological 255 Yes 5-year mortality

Parikh et al. [54] General oncology LR, GB, RF Demographic, laboratory,
comorbidities

26,525 Yes 180-day and 500-day mor-
tality

NN = Neural Network; DT = Decision Tree; LR = Logistic Regression; GB = Gradient Boosting; RF = Random Forest; NB = Naive Bayes;
GAM = Generalized Additive Model; SVM = Support Vector Machine; kNN = k-Nearest Neighbors; MLP = Multilayer Perceptron.

Machine-learning contributions. Naïve Bayes (NB), commonly chosen when variable
dependencies are not determinant, was selected in four of the ML prognostication studies
in review [48–51]. Due to its outcome-conditional behavior, NB did not score as the
best method across all of these four studies. According to Danjuma [48], its simplistic
nature is capable of improved prognostics when compared with logistic regression, and
Parmar et al. [49] shows to be competitive with SVMs, NNs and RFs.

The k-nearest neighbors (kNN) algorithm, one of the most intuitive and simple methods
available, partakes in the Wang et al. [50] prognostication study of post-cystectomy mortal-
ity. The authors considered the application of the Euclidean distance to measure individual
similarities from nominal and ordinal data, a disputable choice, given the categorical nature
of variables. The size of the neighborhood, k, was shown to be determinant to avoid the
impact of outlier individual profiles (k too low) and non-local dominance (k too high).
Despite the inherent merits of kNN, it was shown to not be competitive with other ML
peers for the considered prognostic outcomes.

Decision trees (DTs), non-parametric models able to capture non-linear yet simplistic
discriminative associations between variables and outcomes, are popular in prognostica-
tion, due to their high interpretability and suitablity for mixed variable domains, numerical
and categorical. Danjuma [48] used DTs to predict mortality within 1 year from surgery.
The results shown their efficacy for the targeted ends, with the efficacy only slightly
surpassed by artificial neural networks. Fuzzy DTs are similar to classic DTs, with one
difference residing on the explicit accommodation of class-conditional strengths along
paths, instead of crisp classification. Khan et al. [45] applied both fuzzy and crisp DTs for
breast cancer survivability and showed that, despite the absence of statistically significant
differences in performance, fuzzy logic brings broader insight to the predictions, further
promoting the interpretability of postsurgical models.

Support vector machines (SVMs), popular choices although not as interpretable for
healthcare practitioners as DTs or kNN, were considered in four of the studies in our
review. Chang et al. [46] showed that a linear kernel SVM for predicting 3-year mortal-
ity, although yielding comparable performance with logistic regression, was not ranked
among the best ML models since the collected survivability-conditional data are hardly
linearly separable. Soguero-Ruiz et al. [52] tested linear and non-linear kernel SVMs over
well-diversified sets of variables extracted from clinical records’ free-text, hematological
exams and vital signs. Non-linear kernels generally yielded better results, especially when
heterogeneous types of variables were considered. In contrast with some of the previous
findings, Thottakkara et al. [51] highlight the good performance of linear SVMs, show-
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ing that the nature of the undertaken cohort study and target outcome are determinant.
Lastly, polynomial kernel SVMs were further assessed by Wang et al. [50] to predict 5-year
mortality, yielding accurate results, yet not showing competitive sensitivity levels.

Neural networks (NNs) are used in five of the reviewed studies. Kim et al. [53] used
DeepSurv, a class of deep feed forward neural networks to make predictions about sur-
vivability. The structure and hyperparameters of DeepSurv models were subjected to
grid search optimization. This study shows DeepSurv to be the best model, surpassing
RFs and traditional survivability models, such as Cox proportional-hazards. Allied with
various feature selection methods, Parmar et al. [49] tried to predict 3-year mortality on a
high-dimensional data set with 101 patients and 404 features. After feature selection, only
30 features remained, and out of all the models, NNs yielded superior AUC and stability
across the tested settings. Danjuma [48] showed that feed forward NNs can outperform
DT and NB to predict postoperative life expectancy in lung cancer patients.

Chang et al. [46] considered multi-layered feed forward neural networks, trained using
the Levenberg–Marquardt algorithm, as well as fuzzy network referred to as an adaptive
neuro-fuzzy inference system (ANFIS) based on rules generated from output member-
ship functions. Among the assessed ML models, ANFIS was found to be the overall best
method, further contrasting the poor performance of simplistic feed forward NNs. Lastly,
Wang et al. [50] also compared various NNs in their set of ML models. Architectural deci-
sions and hyperparameters were subjected to optimization to guarantee the generalization
ability of the models. In addition to classic NNs, Wang et al. [50] further assessed extreme
learning machines (ELM). A key feature of ELM is that the weights and bias between the in-
put and the hidden layers are randomly assigned, whereas the weights between the hidden
and the output layers are analytically determined using the Moore–Penrose generalized
inverse operation. The authors concluded that a regularized version of ELM, RELM, yields
the best generalization followed by ELM, while simpler multi-layer perceptrons are less
competitive, yielding a performance comparable with kNN.

Ensemble learning, aiming at reducing the sources of noise, bias and variance by combin-
ing multiple ML models, are considered in three of the reviewed studies. Parmar et al. [49]
assessed the role of random forests (RF) as prognostic biomarkers of head and neck cancer.
The results suggested that RFs yield competitive performance and stability across testing
partitions. Zięba et al. [47] proposed a boosted SVM model to solve inner- and between-
class imbalanced data problems. The problem of uneven data is solved by proposing
weighted error function with different misclassification costs for positive and negative
examples, respectively. The boosting algorithm used is AdaBoost, which makes use of
weak learners (in this case SVMs) to iteratively adjust the data weights in order to in-
crease the significance of misclassified weights, tackling outcome imbalance. The results
revealed good performance and proved the ability to overcome imbalance-induced bias.
Parikh et al. [54] used RFs and gradient boosting (GB), both tree based ensemble models.
RFs and GB were tuned, using grid search to optimize the number of tree estimators, tree
depth-related parameters, and, in particular for GB, the loss function and learning rate.
Gradient boosting behavior is analogous to AdaBoost, with the difference residing on the
assessment of weak learners—while AdaBoost weights data points, GB adapts gradients in
the loss function. Both models showed superior results with a positive predictive value
superior to that of traditional statistical values. They also helped in recognizing less-trivial
relevant predictive variables [54] for which the domains are listed in Figure 3, previously
ignored by traditional statistical methods.

4.3. Preprocessing

Preprocessing the available cohort data is generally entailed to support the subsequent
learning. This quality leveraging process is inherent to every surveyed study, yet sparingly
documented. Out of the analyzed publications, only 38% actually disclosed the undertaken
processing strategies. Understandably, preprocessing needs depend on the unique aspects
of each cohort study (Figures 2–4). For instance, the limited number of individuals and high
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number of monitored variables in some cohort studies creates generalization difficulties—
described as “the curse of dimensionality” [55]. Different preprocessing principles are
employed by statistical and ML studies to handle this problem in accordance with its
severity, outcome-conditional data regularities, and the behavior of the applied methods.
What follows is a brief description of the major preprocessing challenges, together with the
principled solutions found among the reviewed literature.

In postsurgical cohort studies, missing values are a common result of unavailable
data at the time of registry, exam dispense, unchanged records since last examination, or
a product of human error, among other sources [56]. Since a considerable portion of the
surveyed ML models cannot handle missing values, record removals and missing value
estimation are commonly pursued [56]. Given the limited size and dimensionality of most
cohort studies, the removal of patients or variables with missing entries cannot be afforded,
and imputation using mean, median, mode or dedicated missing labels are a commonly
preferred option [51,57]. Another solution consists of using methods that are well-prepared
to handle missing values, including logistic regressors, NBs, DTs and NNs [58]. Alternative
distance-based methods, such as kNN, can take into account missing occurrences when
comparing patients, bypassing biases caused by imputation techniques [58].

Outcome imbalance is commonly present in postoperative predictive problems [47].
Due to this inevitable fact, depending on the model used, predictions can be biased toward
the majority class. This is particularly problematic when the minority class represents
negative effects, such as death, or a morbidity factor, such as a particular postoperative
complication [59]. Undersampling and oversampling are commonly pursued resampling
options [59], yet respectively challenged by information loss and synthetic-duplicate biases.
Combining such options can be alternatively considered [60]. To tackle the limitations of
resampling options, outcome imbalance can also be addressed out of the preprocessing
stage by selecting models sensitive to the effects of imbalanced data. As previously intro-
duced, Zięba et al. [47] introduced SVM-based ensemble principles that were proved to be
efficient at dealing with data imbalances.

High dimensionality further poses generalization challenges, predisposing overfitting
risks for small cohort studies. Several studies alleviated the learning stage by pursuing
feature selection as a preprocessing step, such as Chang et al. [46], Parmar et al. [49] or
Parikh et al. [54], to improve model interpretation, efficiency, and generalization ability by
reducing model variance. Complementarily, feature extraction techniques able to capture
dependencies between features, such as forms of principal and discriminant component
analysis [61,62], were also pursued in prognostication studies [51]. A recent study showed
that issues pertaining to assessment and feature selection choices are commonly associated
with optimistic results [63]. This observation should not be neglected upon consulting
the surveyed works, given the general scarcity of reproducible information regarding the
entailed preprocessing steps.

4.4. Prognostic Accuracy

Assessing postsurgical prognostication models should, beyond accuracy-loss views,
further account for the generalization, and interpretable, updatable and actionable ca-
pacities of the models, as introduced in Figure 6, to guarantee their clinical translation.
The majority of the reviewed publications with categorical outcomes rely on confusion-based
predictive metrics. Confusion matrices trace actual versus predicted outcomes, enabling
the extraction of various metrics, including sensitivity (also referred to as recall or true pos-
itive rate), specificity (false positive rate), accuracy, precision and F-measures. The former
three being common choices for balanced outcome settings when the false positive rate is
significant, while sensitivity and the latter two are the common options for imbalanced
settings or when the focus should be majorly placed on a specific outcome of interest [64].
The receiver operating characteristic (ROC) curve, and the corresponding area under the
curve (AUC), are more comprehensive measures of outcome separability. Considering
non-binary categorical outcomes, ROC curves can be inferred per outcome and their joint
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AUCs (or overlap ROC plotting) used to assess the separation ability. Bridging back to the
reviewed works, only three neglect ROC-based assessments [31,33,39].

Despite the relevance of the previous evaluation criteria, they are unable to assess
the statistical significance of the outcome predictions. To this end, the Pearson’s Chi
Square Test can be applied to ensure if prognostics arose by chance [65]. In total, eight
of the reviewed studies conducted this statistical test [13,30–33,35,39,40]. Much like the
coefficient of determination, the Hosmer–Lemeshow Test (HL) is a measure of the goodness
of fit, specifically designed for logistic regression models, frequently used in risk prediction
tasks [66] to assess whether or not the observed event rates match the expected event rates
in subgroups of the model population. Those subgroups are based on the deciles of the
fitted risk values. HL is frequent among classical statistical studies [14,36,38,40,51].

In contrast with previous stances, the reviewed publications with numerical outcomes
rely on residue-based predictive metrics. In this context, error metrics can be placed to
assess how distant quantity predictions are from true observations, including the frequent
mean absolute error (MAE) and root mean squared error (RMSE) metrics. In addition
to MAE and RMSE, some studies also rely on the relative absolute error (RAE) and root
relative squared error (RRSE) to obtain normalized views of the error [48]. In addition
to statistical and ML regression methods, a few classification models with probabilistic
outputs were also subjected to residue-based assessment prior to dichotomization, such
as those in Danjuma [48]. Complementary to residue-based scores, the coefficient of de-
termination, R2 transduces the percentage of variation suffered by the outcome variable
as explained by the independent variables, being a strong indicator of the goodness of fit.
This metric is used in two of the reviewed studies [30,31].

The validation process should ensure the generalization ability of the postsurgical
predictive models for new patients falling inside or outside the targeted population. In
this context, cross-validation—specifically, leave-one-out cross-validation for small cohort
studies—should be pursued. Understandably, preprocessing choices and hyperparameter-
ization of the models should be conducted within the training partitions for a fair assess-
ment. In this context, if cross-validation is further suggested for optimizing preprocessing
and learning decisions, nested cross-validation—with inner and outer steps—should be
considered [67]. Problems related to poor international applicability were highlighted by
Garofallo et al. [68], Chin et al. [69], Formiga et al. [70] and Goh et al. [71]. The common con-
clusions pinpoint the need for further validation with foreign cohorts. As such, to guarantee
the generalization ability for new populations, external validation should be further be
pursued whenever possible, complementary to cross-validation (Figure 6) [5]. These stud-
ies also highlight that there are social and economic factors that should be included in the
models to better support their generalization ability. Out of the surveyed works, only five
out of twenty six do not refer to any validation means, perhaps due to data scarcity or the
highly experimental character of contributions. For the remaining studies, the use of an
independent validation set is more prevalent than the cross-validation setting [15,16,46,46].

5. Discussion

In previous sections, we journeyed through different approaches for postsurgical
analysis of outcomes. The choice is inherently dependent on the available cohort data
(Figures 2 and 3) and desirable study outcomes (Figure 4), determining whether the
focus should be placed on predictive models or outcome-conditional descriptive models
(Figure 5) and which learning approach should be pursued.

Classic statistical approaches for postsurgical risk analysis (including point system and
regression-based approaches) are inherently simple and interpretable. However, they are
generally unable to do the following:

• Capture non-linear relationships within data;
• Translate risk scores into well-defined clinical decisions;
• Properly deal with the high-dimensional nature of clinical data;
• Identify local dependencies between variables;
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• Be incrementally updated in the presence of new data;
• Tolerate arbitrarily-high levels of missing data;
• Explore the inherent temporal nature of clinical data.

Several extensions were proposed to minimize the impact of some of these limitations:
(1) logistic regressions can be combined with decision trees to capture local regularities
and guarantee a better ability to generalize in the presence of high-dimensional data;
(2) conditional random fields can be applied to explicitly model dependencies between
variables [72]; and, among others, (3) conditional logistic regressions can be pursued to take
into account the population stratification and matching, particularly important given the
diversity of demographic and cancer profiles as highlighted by the given taxonomy [73].

Moving from classical to machine-learning approaches brings unique opportunities of in-
terest, namely a greater ability to capture non-linear and local relationships within data, while
still placing principles to guarantee the ability of the models to generalize for new individuals.
In accordance with Domingos [74] categorization, symbolist approaches—including associative
classifiers and tree ensembles—are the most common option for postoperative care deci-
sions. Decision trees are inherently simple, interpretable, provide a pattern-centric view
of outcome-conditional associations, and can be enriched with statistical principles [75,76]
to assess a decision’s significance. Still, they are susceptible to underfitting risks (losing
relevant data that can support the discrimination of outcomes), as well as limitations when
learning from numeric variables, a property associated with hypercubic decision boundaries.
These limitations can be minimized by recurring to the ensembles of trees, based on bagging
and bootstrapping principles, as shown by the promising performance of classifiers such as
XGBoost [77] or CatBoost [78]. Despite their inherent merits, the interpretability is hampered,
as well as efficiency (especially for those ensemble methods relying on stochastic gradients).
Feature engineering is achieved by some of the ensemble methods to explore complex rela-
tionships among variables [79]. Although this possibility further degrades the interpretability
of the models, mechanisms to show the relevance of each feature when placing decisions
can be provided. To guarantee the ability to learn from temporal data, feature extraction
is commonly applied, although associative classifiers based on discriminative temporal
patterns are an increasingly common option toward longitudinal studies [80].

Bayesian approaches provide alternative principles for postsurgical risk analysis. They
are inherently simple and the underlying graphical models can be extended to capture
temporal dynamics—this is the case of hidden Markov models or dynamic Bayesian
networks [81]. However, they are challenged by four major aspects. First, dependence on
distribution assumptions. Second, the need to apply regularization principles to guarantee
their ability to learn from high-dimensional data, specially for graphical models. Third,
the need to place independence assumptions among groups of variables, even when
considering Bayesian networks. Finally, as these approaches typically return one model
per postsurgical outcome (class-conditional learning), there is an inherent difficulty on
assessing how the values of certain variables (such as certain histopathological or surgical
factors) affect the final decision.

Analogizer approaches constitute an additional possibility. Among them, lazy learning
approaches, such as kNN, offer local decisions by focusing on individuals with similar
demographic, physiologic and clinical profiles. In this context, they bypass the need to
establish outcome-discriminative associations, thus handling with inherent simplicity
the singularity of individual profiles, interventions, and present co-morbidities. On the
downside, lazy learners suffer from three major challenges. First, they are dependent on
adequate distance functions and neighborhood size (k). Second, the presence of mixtures
of nominal–ordinal–numeric variables make difficult the assessment of the true distances
between individuals. Third, the high-dimensionality of the available cohort data further
challenges the assessment of similarities, even when the weight of variables is known and
provided a priori [82]. Analogizer alternatives to lazy learning are kernel-based approaches,
including support vector machines (SVMs), where dissimilarities are assessed to identify
adequate decision boundaries. Despite their inherent merits, these approaches suffer from
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key limitations. First, SVMs are unable to properly handle categorical variables with
medium-to-high cardinality. This is a severe drawback in the context of postsurgical risk
analysis since such variables represent a good portion of commonly available variables
from the target cohort studies [83]. Second, they are dependent on the selection of adequate
kernels to learn non-linear decision boundaries. Third, kernel-based models generally lack
interpretability. Finally, they are susceptible toward overfitting risk in the absence of proper
regularization principles. A limitation transversal to analogizers is the presence of missing
postsurgical clinical data, which generally needs to be imputed, creating biases.

Among the learning paradigms, connectionist approaches for clinical data analysis have
seen a resurgence in the last decades with the advent of deep learning, and hold particular
properties of interest for the specific aim of analyzing postsurgical outcomes [7]. First,
they are inherently able to learn from high-dimensional data, possibly combining non-iid
and temporal variables. Second, they are inherently prepared to capture complex non-
linear relationships without the need to establish assumptions regarding the nature of
the regularities underlying data (Figure 3). Despite their inherent merits, the efficacy of
connectionist approaches depends on the adequacy of the underlying architecture and on
proper hyperparameter choices. Fixing architectural decisions (e.g., layering, or activation)
is generally a computationally complex step. In addition, neural networks generally (1) lack
interpretability, (2) are unable to provide statistical guarantees on the adequacy of decisions,
and (3) depend on the availability of a considerably large cohort of studies to guarantee
learning convergence. With the aim of addressing these challenges, recent contributions in
the field offer the possibility to (1) extract visual representations on the underlying network
patterning [84], (2) provide a Bayesian frame to neural network learning for statistical
assessments [85], and (3) have pairwise learning principles for data augmentation [86].

5.1. On the Interpretability of Predictive Models

Among the diversity of introduced quality aspects (Figure 6), the interpretability of
machine-learning predictors is a major demotivator for their clinical translation. There is
already a diverse yet disperse set of contributions aimed at fostering the interpretability
and explainability of ML models [87–89]. White-box models are inherently simple and
provide some type of clear justification associated with the decision while also providing
insight into the internal structure of the model. Linear regression models and decision
trees fall into this category, either for their simple mathematical foundations or their intu-
itive visual representation [89]. Black-box models bring new dimensions to the concept
of interpretability, often coming in the form of non-representative justifications of a deci-
sion [87]. The peak of black-box models is consensually found in connectionist approaches.
However, strategies have already been developed to mitigate this downside of otherwise
very powerful predictors. Layer-wise relevance propagation (LRP) is a technique that
offers explainability and is able to scale to complex deep neural networks, operating by
propagating the prediction backwards in the network, aiming to explain the factors leading
to a decision [90]. Analogous mechanisms are used by complex associative models through
feature importance, as seen in XGBoost [77] or CatBoost [78]. Surrogate models further
complement the tool set for interpretability extraction and enhancement. Rationalizers
propose a novel approach for incorporating rationale generation as an integral part of the
overall learning process [91]. From this perspective, the rationales are simply sub-sets
of the inputs able to yield the same prediction, therefore qualifying as an explanation.
Local interpretable model-agnostic explanations (LIME) is another technique that is model
agnostic, learning the behavior of a given model by perturbing the input and watching
how the predictions change [92]. The idea behind LIME is that a model may be complex to
explain globally; however, it is easier to approximate the model around the proximity of a
particular instance. This principle fosters interpretability and further supports validation
in clinical contexts by allowing healthcare professionals to undergo model perturbations in
accordance with the surgical, histopathological, molecular and demographic profile of the
individuals under assessment.
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5.2. A final note on quantitative assessments

Motivated by the need to account for the diversity of the introduced taxonomic
dimensions, a cohort study was conducted with 847 patients who had undertaken surgery
for cancer treatment at the IPO-Porto cancer center, Porto, Portugal. Different areas of
surgical oncology (Figure 2) were considered and more than 120 clinical variables were
collected, comprising most of the dimensions introduced in Figure 3. Considering this
recent initiative, we employed an extensive set of ML models (Figure 5) to predict four
outcomes of interest: the existence of postoperative complications, the complications’
severity, the ICU length of stay, and 1-year death after surgery [93].

The results (Figures S1–S4 in Supplementary Material), after cross-validation, showed
variations on the performance of the surveyed predictors in accordance with the given
input variables and selected outcome. We were able to verify in practice many of the aspects
described in this review, such as the suitability of associative models, such as random
forests and XGBoost, for clinical contexts as previously highlighted by Domingos [74].

This preliminary study stresses the relevance of carefully considering the introduced
variables along the dimensions of the proposed taxonomy to aid the design of cohort stud-
ies, assist the development or selection of predictive approaches, and properly assess the
accuracy, generalization, updatability and interpretability of the proposed prognostication
tools to guarantee their proper clinical translation.

6. Conclusions

This paper proposes a structured view of the problem of predicting postoperative
complications within the oncological domain, surveying the main contributions in the field.
To this end, we first established a taxonomy to (1) assess the opportunities and challenges of
existing cohort studies with regards to their scope, postsurgical outcome and data collection,
and (2) guide the development and evaluation of learning approaches to study and predict
postoperative complications. Contextualized by this taxonomy, the work then provided a
comprehensive overview of classical and machine learning approaches for postsurgical risk
analysis. A qualitative comparison was offered by taking into consideration the available
cohorts per study, as well as the targeted outcomes, either associated with morbidity aspects
(such as the occurrence, nature or severity of postsurgical complications and hospitalization
needs) or mortality concerns.

This study shows that the area of postsurgical risk analysis is still in its infancy, as the
existing approaches often neglect important demographic, biophysiological and clinical
variables, particularly those pertaining to the nature of interventions, postsurgical care
and recovery. In addition, the inherent heterogeneous, temporal and structurally sparse
nature of pre- and postoperative data is generally disregarded. As more and more high-
quality data from multi-hospitals become available, novel integrative learning approaches
able to tackle these challenges are expected, particularly driven by the need to guarantee
the generalization ability, sensitivity, updatability and statistical significance of the pre-
dictive models. From our point of view, this is just possible through multidisciplinary
collaborations between health professionals and data scientists.

The present study is being conducted in the context of the IPOscore project, a project
that aims to consider the aforementioned findings for postsurgical risk analysis as well as
address some of the shortcomings of available cohort studies through a comprehensive
monitoring of demographic, biologic, histopathologic and clinical aspects from a population
of cancer patients subjected to surgical interventions.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072
-6694/13/13/3217/s1, Figure S1: Best model results for postoperative complications prediction
(RF = Random Forest; MLP = Multi-Layer Perceptron; SVM = Support Vector Machine; CBC =
CatBoost Classifier; LR = Logistic Regression); Figure S2: Best model results for complications’
severity prediction (RF = Random Forest; CBC = CatBoost Classifier; DT = Decision Tree; SVM
= Support Vector Machine; XGB = XGBoost); Figure S3: Best model results for ICU length of stay
prediction (Ridge = Ridge Regression; Linear = Linear Regression; PLS = Partial Least Squares; MLPR
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= Multi-Layer Perceptron Regressor; RF = Random Forest); Figure S4: Best model results for 1-year
death prediction (RF = Random Forest; CBC = CatBoost Classifier; XGB = XGBoost; SVM = Support
Vector Machine; NB = Naive Bayes).
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DT Decision Tree
ELM Extreme Learning Machines
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NSQIP National Surgical Quality Improvement Program
POSSUM Physiological and Operative Severity Score for enumeration of Mortality and Morbidity
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RELM Regularized Extreme Learning Machines
RF Random Forest
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