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Abstract 

A large amount of valuable information is available 

in plain text clinical reports. New techniques and 

technologies are applied to extract information from 

these reports. One of the leading systems in the 

cancer community is the Cancer Text Information 

Extraction System (caTIES), which was developed 

with caBIG-compliant data structures. caTIES 

embedded two key components for extracting data: 

MMTx and GATE. In this paper, an n-gram based 

framework is proven to be capable of discovering 

concepts from text reports. MetaMap is used to map 

medical terms to the National Cancer Institute (NCI) 

Metathesaurus and the Unified Medical Language 

System (UMLS) Metathesaurus for verifying 

legitimate medical data. The final concepts from our 

framework and caTIES are weighted based on our 

scoring model. The scores show that, on average, our 

framework scores higher than caTIES on 848 

(36.9%) of reports. Furthermore, 1388 (60.5%) of 

reports have similar performances on both systems. 

1. Introduction 

Nowadays, an ever changing world of technology 

produces a vast amount of information in different 

fields. Likewise, pathological data are part of this 

ocean with much valuable information. The challenge 

includes complex systems that would provide proper 

data to physicians on demand basis for quality patient 

care. To enable a pathologist being able to quickly 

identify data from massive information, accurate 

computer-assisted decision support systems with text 

mining abilities are crucial [1]. 

In addition, from initial diagnosis to definitive 

treatment, pathology evaluations play an important 

role in the cancer patient care. Since most patient 

management depends on the right biospecimen 

diagnosis, the pathology stage is widely considered 

the most accurate predictor of survival. It also 

determines the appropriateness of adjuvant treatment. 

Various additional pathology factors have been 

shown by multivariate analysis to have prognostic 

significance that is independent of stage. These may 

help to further sub-stratify tumors, individualize 

treatment, and more accurately predict outcome. On a 

larger scale, pathology data are essential for 

epidemiology and clinical research. Therefore, it is 

known as the common language of cancer worldwide 

[2]. 

Since the data embedded in pathology reports are so 

valuable, concepts have to be extracted accurately. 

Furthermore, information needs to be discovered with 

text mining techniques before the data becomes 

accessible by physicians. In an attempt to overcome 

this challenge, an n-gram based text mining approach 

is adopted to extract valuable concepts from 

pathology reports. Different technologies and 

methods are reported in the literature in order to 

extract data from varies medical reports [3-10]. 

In this study, an n-gram algorithm is used to find the 

common theme, concepts, in pathology reports. A 

word or a group of consecutive words that occurs 

frequently enough in the entire report collection is 

considered as a concept. Each concept candidate is 

expected to fulfill a predefined frequency threshold in 

order to become a concept. The frequency threshold 

is explained in section 3.1. N-gram algorithm is 

chosen because it is domain independent [11], unlike 

Weeber et al. [12], who mapped sentences to 

predefined UMLS [13] concepts. In our study, the 

UMLS and NCI Metathesaurus are only used for 

filtering our results for scoring purposes. 

2. Resources 

Two sources of vocabulary knowledge were used by 

this study: the UMLS and the NCI [14] 

Metathesaurus. The UMLS Metathesaurus is the 

foundational knowledge, which is the base of the 

comprehensive thesaurus and ontology of biomedical 

concepts.  It consists of a collection of terms from 
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different controlled vocabularies and their 

relationships. The NCI Metathesaurus is based on the 

UMLS Metathesaurus; however, it is supplemented 

with additional cancer-centric vocabulary. 

In this study, the MetaMap online tool, which 

accesses the UMLS and the NCI Metathesaurus, is 

used exclusively. MetaMap returns relevant concepts 

based on the UMLS and the NCI Metathesaurus 

when a possible concept is provided. A concept list 

that is generated from our system is passed to 

MetaMap for scoring. Only the concept score of 1000 

is granted for exact concept matches. These exact 

matches become our final concept candidates for 

reconsideration in our framework. Other non-exact 

matched concepts are marked with lower scores such 

as 900, 800, etc. MMTx [15] is a java 

implementation of MetaMap and is used by caTIES. 

In this study, MetaMap is used with the default 

options. Note that since concepts are validated by 

MetaMap and only exact matches are used, concept 

overlapping is not considered. 

caTIES [16] is a silver level caBIG-compliant open 

source text extraction system. Legacy, Bronze, 

Silver, and Gold level compatibility represents tool‟s 

ability to interoperate with other systems and 

assigned after the caBIG review process. The Cancer 

Biomedical Information Grid (caBIG) [17] is an 

initiative of the NCI, which is a part of the National 

Institutes of Health. It is a truly collaborative 

information network for cancer researchers, to share 

knowledge and data. caBIG enables and encourages 

the discovery of new ideas for the detection, 

treatment, diagnosis, and prevention of cancer in 

order for the cancer community to improve patient 

outcomes. One of the chief strengths of caBIG is its 

ability to join research tools, data, scientists and the 

cancer community. This combined strength and 

expertise in an open environment is the mission of 

caBIG. 

In this study, caTIES is used as a control system. It 

extracts coded information from free text pathology 

reports using varies natural language processing 

(NLP) techniques. GATE (General Architecture for 

Text Engineering) [18] is the main part of the NLP 

core of caTIES and is used extensively. GATE is a 

java toolkit for NLP. By using some publicly 

available NLP tools, algorithms, and the NCI 

Metathesaurus, caTIES is capable of identifying and 

indexing concepts from pathology reports. 

2.1 Dataset 

The most recent two weeks‟ surgical pathology 

reports (total 2,295) were obtained from the 

University of Arkansas for Medical Sciences 

database as our dataset. They were selected from a 

fixed time range (between 6/22/09 and 7/6/09). These 

reports have an average of 151 words. Among them, 

19% are surgical report, 18% are dermatopathology 

report, and 11% are cytogenetics report, etc. These 

reports are the most frequent in the dataset. 

3. Methodology 

In this section, we discuss how we process the text 

report and extract concepts from our system. The 

next section presents how legitimate concepts are 

processed and verified. Finally, we introduce a 

concept scoring model to rank our system against 

caTIES.  

3.1. Data Extraction with the n-gram Approach 

Our model consists of three main components: a non-

character filter, a stop word filter, and an n-gram 

generator. The non-character filter removes non-

characters from all reports including double spaces, 

numbers, and punctuation, etc. Double spaces are 

replaced with a single space. This ensures that empty 

spaces will not be treated as part of a concept. At this 

stage, numbers are not considered as part of a 

concept. In addition, stop words (such as a, an, and 

the, etc.) are removed since they are not part of 

medical concepts. In this study, caTIES‟s stop word 

list is used. In our n-gram algorithm there are two 

main parameters: maximum number of grams 

(MNOG) and frequency. In our experiment, MNOG 

and frequency range from 3 to 5 and from 3 to 10 

respectively. 

The MNOG defines the maximum number of words 

that a concept should consist of. For instance, if 

MNOG is set to four, only concepts with at most four 

words are visible e.g., “Left breast cancer cell” is 

considered as a concept whereas “Left breast cancer 

cell shows red spots” is not considered as a concept. 

Instead, “Left breast cancer cell shows red spots” are 
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two concepts: “Left breast cancer cell” and “red 

spots”. MNOG is also one of the crucial parameters 

in our model. In case a dataset includes a number of 

4-gram concepts (i.e., concepts that are four words 

long) and MNOG is set to 2, then these concepts are 

divided into two separate parts. Therefore, using a 

smaller number for MNOG tends to both lose actual 

concepts, and unnecessarily increase the number of 

shorter concepts. 

The frequency controls how frequent a concept 

candidate should appear among all reports. For 

instance, if “breast cancer” appears ten times within 

all reports, while the frequency is set to five, “breast 

cancer” are considered as one of our concept 

candidates. However, if a term occurs once in all 

reports, this term is treated as a non-significant 

medical related term. Therefore, the frequency 

control enforces differentiating medical terms from 

everyday words while keeping frequently used terms 

together. 

In order to obtain concepts, our algorithm performs 

two major steps: generating candidate concepts and 

validating candidates based on the frequency.  

Higher order n-grams, 5-gram, are generated first so 

that it will not split words apart from their neighbors 

(consecutive words). For each „n‟, where „n‟ is the 

number of words in the concept, the algorithm passes 

through the data collection once.  

Once a list of concept candidates is generated, the 

frequency is used to check against the concept 

candidate list. Those concepts, which satisfy the 

frequency threshold, are considered as active 

concepts. In order to prevent concept reconsideration, 

as mentioned in section 2, these active concepts are 

removed from the data collection. In addition, 

candidate concepts generation and validation are 

processed for each gram.  

3.2. caTIES  Data Extraction 

The same pathology reports are passed into caTIES 

for concept coding. Concepts of caTIES are stored in 

a centralized database in compressed binary format. 

In this study, they are decoded and stored in a 

concept list. Some „exact duplicate‟ concepts were 

removed from the list. 

3.3. Legitimate Concept Validation 

MetaMap batch online tool is used to validate 

concepts from both our system and caTIES. Two 

separate lists were generated after data extraction 

with both our approach and caTIES. Then, these lists 

are passed into MetaMap. MetaMap provides scores 

for all concepts and is based on the UMLS and NCI 

Metathesaurus. If there is an exact match being 

found, the score is 1000. In this study, only the exact 

matching results are considered in order to simplify 

our comparison. After all the concepts are being 

evaluated, a list of concept scores for our system and 

caTIES are generated. 

3.4. Legitimate Concept Processing 

The list of exact match concepts both for our system 

and caTIES are being counted from the reports. 

Those concepts that were counted are completely 

removed from the dataset in order to avoid concept 

recounting. Higher gram concepts are considered first 

so that longer concepts are preserved. Therefore, the 

number of concepts that each system recognizes are 

recorded. As a result, comparisons of both our system 

and caTIES become possible by using our scoring 

model. 

3.5. Concept Scoring Model 

If a system discovers a concept, for example “Colon 

Cancer Treatment” while another system found 

“Colon Cancer” and “Treatment” separately from the 

same report, a method is needed to determine which 

system is more accurate. In most cases, “Colon 

Cancer Treatment” should be one concept instead of 

two. With this philosophy in mind, a concept scoring 

model is developed to rank the performance of our 

system. The total concept score for a report is 

denoted as (𝜉). 

𝜉 =  
 𝛿𝐿

𝑝=1 𝐾𝑡, 𝑖𝑓 𝐿 > 0

0                  , 𝑖𝑓 𝐿 = 0
   𝐾 =  

1 𝑖𝑓 𝛿 = 1

2 𝑖𝑓 𝛿 > 1
  (eq. 1) 

In equation 1, L represents the total number of 

concepts in a report. If no concepts are found (L=0), 

𝜉 is zero. p represents the index of concepts, t is the 

concept occurrence in a report, and 𝛿 is the number 

of grams of a concept. K is a constant and its value 

depends on 𝛿. Assuming that we found L number of 
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concepts (C1, C2... CL) in the N
th

 document in reports 

(R1, R2... RN). If the number of grams of C1 (p=1) is 

one (𝛿=1), then K is set to 1, otherwise 2. This is 

because higher order concepts are more important 

than 1-gram concepts. The concept score (𝜉) depends 

linearly on t because concepts with higher frequency 

in the report should be favored. 

In section 3.3, an individual concept list is generated 

for both systems pertaining to each report. The 

scoring model is then applied to these lists to 

calculate how each system scores on each report. One 

point is added to a particular system if it is 

determined that it scores better on a report than the 

other system. If our system scores the same or better 

than caTIES, it demonstrates that our approach is 

capable of extracting valid medical terms from 

pathology reports. 

4. Experiments and Results 

2,295 pathology reports were selected from our 

database to demonstrate efficiency and robustness of 

the proposed system. According to our experiment as 

shown in Table 1, the specification of the MNOG and 

the frequency affects the results significantly (As 

mentioned in section 3). In order to obtain the 

optimum results, nine parameter pairs were selected 

as shown in Table 1. 

According to our results in Table 1, our system 

scores higher than caTIES on an average of 36.9% of 

reports. This percentage of documents generated 

higher scores based on our scoring model. On the 

other hand, both systems have similar performance 

on an average of 60.5% of reports. A time-wise 

comparison will be one of our future works. Once 

concept scores are assigned to each system for each 

report, the concept score difference (Φ) is found. 

Thus, three result conditions are obtained: (a) tie 

(where Φ <= 10), (b) lose (caTIES performs better), 

and (c) win (n-gram performs better). Since our 

largest MNOG is five and the maximum K value in 

eq. 1 is two, the highest single score increment is ten. 

Therefore, the concept score difference less than or 

equal to ten points is considered to be a tie.  

This promising result shown in Table 1 indicates that 

our model is capable of effectively extracting 

concepts from pathology reports. The next challenge 

is: what parameter specifications should be used to 

obtain the most accurate results. From results in 

Table 1, it is observed that with the same gram 

settings; when the frequency (t) increases, q (the total 

number of reports with Φ greater than ten with the 

proposed algorithm) decreases. This suggests that t is 

inversely proportional to q ( 𝑡 ~ 1
𝑞  ) (Table 1). 

Table 1. Score comparisons with different parameter 

specifications (sorted by MNOG) 

Parameter Spec. System # of Reports 

MNOG Freq. Φ * <= 10 Φ * > 10 

- - caTIES 1185 2 
3 3 n-gram 1108 
- - caTIES 1262 7 
3 5 n-gram 1026 
- - caTIES 1679 28 
3 10 n-gram 588 
- - caTIES 1150 1 
4 3 n-gram 1144 
- - caTIES 1328 58 
4 5 n-gram 909 
- - caTIES 1680 55 
4 10 n-gram 560 
- - caTIES 1346 2 
5 3 n-gram 947 
- - caTIES 1276 182 
5 5 n-gram 837 
- - caTIES 1588 195 
5 10 n-gram 512 

Average caTIES 1388 

 

 

59 
n-gram 848 

* Φ is the score difference for each report between 

two sample systems. 

Also, the relationship between the MNOG and q is 

realized. The MNOG and q are also inversely 

proportional ( MNOG ~ 1
𝑞  ) to each other. However, 

there is an exception: when q reaches its optimum 

result. This happens when the MNOG is set to 4 and 

the frequency is set to 3: our system scores higher 

than caTIES on 49.9% of reports and both systems 

have similar performances on 50.1% of reports. 

One reason our system has scored better than caTIES 

is because our scoring model is being used. The 

scoring model is designed to favor a system that 

discovers higher gram concepts. Thus, a concept that 

is longer in length scores higher with our scoring 

model. 
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5. Discussion 

One disadvantage our framework has is its dataset 

dependent nature. Therefore, our results are highly 

correlated to the data collection. For instance, a term 

only appears once in all reports, which is less than 

our frequency threshold, will not be considered as a 

concept. Since some specific terms will only appear 

in certain types of pathology reports, these terms will 

be missed by our system. One way to address this 

issue is to classify pathology reports by their type. 

Thus, the data collection size for different type of 

reports will be controlled. This ensures that enough 

training data for various types of pathology reports is 

obtained. 

6. Conclusion and Future Work 

In this study, our system scores higher than caTIES 

on an average of 36.9% of reports. On the other hand, 

both systems have similar performance on an average 

of 60.5% of reports. Although promising results are 

generated, there is still room for improvement. Some 

future work includes incorporating MetaMap with 

our algorithm. MetaMap can be used as a mean for 

suggesting and breaking down invalid concepts. In 

addition, numbers and symbols will also be taken into 

the consideration as part of concept candidates. This 

in turn will provide more information to MetaMap 

while scoring concepts. Moreover, our training 

dataset will be tailored based on the report type. This 

will increase the frequency of the legitimate 

concepts. In addition, the time-wise comparison will 

be evaluated in the future. 
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