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Simple Summary: The increase in the incidence of neoplastic disease represents a relentless challenge
in veterinary medicine, and many efforts aimed to increase early diagnosis and life perspective have
been made. Canine mammary tumors are the most common neoplasm and one of the leading causes
of death in female dogs. Using a large number of data from three academic institutions, we found that
dogs with malignant tumors were significantly older than dogs harboring benign tumors and that
malignant tumors were significantly larger than benign counterparts. Moreover, a consistent fraction
of malignant tumors is smaller than 1 cm, providing compelling evidence that the size of mammary
tumors is a critical but easily detectable, indirect prognostic-related, clinical factor. We suggest that
the control of cancer-related risk factors represents one of the most compelling prevention strategies
and paves the way for further investigations.

Abstract: Canine mammary tumors (CMTs) represent a serious issue in worldwide veterinary
practice and several risk factors are variably implicated in the biology of CMTs. The present study
examines the relationship between risk factors and histological diagnosis of a large CMT dataset
from three academic institutions by classical statistical analysis and supervised machine learning
methods. Epidemiological, clinical, and histopathological data of 1866 CMTs were included. Dogs
with malignant tumors were significantly older than dogs with benign tumors (9.6 versus 8.7 years,
p < 0.001). Malignant tumors were significantly larger than benign counterparts (2.69 versus 1.7 cm,
p < 0.001). Interestingly, 18% of malignant tumors were smaller than 1 cm in diameter, providing
compelling evidence that the size of the tumor should be reconsidered during the assessment of the
TNM-WHO clinical staging. The application of the logistic regression and the machine learning model
identified the age and the tumor’s size as the best predictors with an overall diagnostic accuracy of
0.63, suggesting that these risk factors are sufficient but not exhaustive indicators of the malignancy
of CMTs. This multicenter study increases the general knowledge of the main epidemiologica-clinical
risk factors involved in the onset of CMTs and paves the way for further investigations of these factors
in association with CMTs and in the application of machine learning technology.
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1. Introduction

Cancer is the leading cause of death in companion animals, and mammary tumors, the most
common neoplasm in female dogs, represents a serious issue in worldwide veterinary practice [1,2].
As in animals, human breast cancer (HBC) is the most common malignancy in women worldwide,
and several clinical and molecular similarities between canine mammary lesions and HBC have been
described [3,4]. Consequently, dogs have attracted considerable interest as potential animal models
to study human cancer [5]. Despite the tremendous effort made in fighting cancer, the biological
and morphological heterogeneity of canine mammary tumors (CMTs) has challenged veterinary
pathologists since the early days of diagnostic pathology. As a result, an increasing number of studies
in this area have been published in recent decades. Mammary cancer is a multifactorial disease and
various elements contribute to its occurrence and behavior [6].

Epidemiological, clinical, histological, and molecular factors are considered important risk
factors for mammary neoplasms. Among the main epidemiological CMT risk factors, age, breed,
and reproductive and hormonal status are consistently reported in the literature [1,2,6].

CMTs usually affects middle-aged and older dogs with an increased risk between 8–11 years old [6].
Additionally, benign tumors are more likely in dogs ranging between 7 and 9 years, while malignant
tumors are more frequently encountered in older dogs [7–11]. However, the peak incidence dictated by
the age should be carefully evaluated given that larger breeds of dogs have a naturally shorter lifespan
and therefore tend to be younger than smaller breeds when they receive a cancer diagnosis [1].

Mammary neoplasm can occur in dogs of any breed, although pure breeds seem more prone to
develop CMTs [1,2,6,10]. Poodles, Chihuahuas, Dachshunds, Yorkshire Terriers, Maltese, and Cocker
Spaniels are frequently listed as high-risk dog breeds in the small breed category. Some of the larger
breeds are also at higher risk, including the English Springer Spaniel, English Setters, Brittany Spaniels,
German Shepherds, Pointers, Doberman Pinschers, and Boxers [1,2,6,10,11]. However, considerable
discrepancies exist between studies regarding the breed as a CMT risk factor. A representative case is
the evaluation of familial or inherited germline mutations in Breast Cancer 1 and 2 genes (BRCA1 and
BRCA2), that in women are related to an increased lifetime risk of HBC, but that led to nonspecific
results in veterinary medicine [12–15].

More consistent data are reported regarding the sex hormones effect, with a general agreement
on the concept that the exposure to endogenous ovarian hormones is a cause of mammary tumor
development in dogs [1,2] and references therein. According to Schneider and colleagues in 1969 [16],
dogs spayed before their first estrus have a 0.5% risk of developing CMTs in their lifetime, while the
benefits of the ovariohysterectomy diminish with each estrus cycle. It seems biologically plausible
to state that the greatest benefit on CMTs prevention is exerted when the dogs are spayed early in
their reproductive lifetime, probably by reducing the occurrence of proliferation stimuli and therefore
the risk for cancer-related events (e.g., mutations) [3,4,17]. Furthermore, a more recent prospective
randomized study reported a significantly decreased risk for new tumor development by performing
ovariohysterectomy concurrently with benign CMT removal [18], while the same effect was not
observed for malignant tumors [19].

Clinical features of CMTs are also considered as prognostic factors by numerous studies [1,20–24].
Of note, the tumor size (T), the involvement of lymph nodes (N), and the presence of distant metastasis
(M) are the key features of the clinical, prognosis-related, “TNM” staging system, developed in 1980 by
the World Health Organization (WHO) and recently revised [1,20–24].

In the recent WHO version [1], stage advances from I to II to III as the size of the primary tumor
increases from smaller than 3 cm, to between 3 and 5 cm, to larger than 5 cm. Lymph node metastasis
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represents stage IV disease, regardless of tumor size, and distant metastasis constitutes stage V. Notably,
the size of the tumors represents a critical parameter in stage I, II, and III and strongly impacts on CMT
prognosis and outcome. According to MacEwen et al. [25], 1985, dogs with tumors larger than 3.4 cm
in diameter have a statistically significant worse outcome than dogs with smaller tumors, both in terms
of remission and survival. Other authors, however, have found a change in prognosis only when
tumors are larger than 5 cm [21]. In one study, tumor size was not prognostic when node involvement
was detected [24]. Despite these studies, the importance of the tumor size is a biologically trustworthy
factor, considering that more aggressive tumors grow faster and, therefore, are larger and more likely
to harbor metastatic subclones [8]. Hence, the staging systems integrating different clinical parameters
provide specific recommendations to clinician’s treatment decision making [1,26,27].

In this study, we evaluated in a large retrospective statistical analysis the breed, the spayed status,
and the age as epidemiological risk factors and the tumor size as a clinical prognostic-related feature
of 1866 CMTs collected from three different Departments of Veterinary Medicine of the University of
Sassari (UNISS), Padua (UNIPD), and Perugia (UNIPG). We analyzed the relationship between some
epidemiological-clinical risk factors and the histological diagnosis to test the ability to prompt clinical
data in predicting the diagnosis and, indirectly, a prognostic outcome. A supervised machine learning
technique was compared to the classical statistical analysis and used to investigate the ability to predict
the diagnosis of CMTs (malignant versus benign).

2. Materials and Methods

This retrospective study focused on reviewing CMT data generated from 3 different tumors
databases (UNISS, UNIPD, UNIPG). Experiment permission was not required from the University’s
Animal Care Ethics Committee because all the samples were retrieved from the archive of the pathology
laboratories and were used for diagnostic purposes.

The inclusion criteria for data selection were: dogs with single mammary neoplasia, availability
of documented medical history including breed, age, macroscopical tumor size as indicated either by
the clinician or by the histological laboratory and histopathological diagnosis of the neoplasm.

All previous histological diagnoses were updated and classified according to the recent publication
of Surgical Pathology of Tumors of Domestic Animals, Volume 2: Mammary tumors [28].

2.1. Statistical Analysis—Descriptive Statistics and Univariate Analysis

To determine whether there was an association between epidemiological (age, breed, spayed status)
and clinical characteristics (tumor size) and tumor diagnosis, the breed, age, spayed status, and tumor
size were examined in association with the histological diagnosis. For statistical purposes, the breed
was classified as pure breed and mixed breed, the age was either treated as a numerical variable
(in years) or categorized in 4 classes (0–4 years; 5–8 years; 9–12 years and >13 years).

The greatest diameter of the tumor (i.e., the size) was treated as a numerical variable (in centimeters),
or categorized according to WHO TNM system (3 categories: T1 < 3 cm, T2 = 3–5 cm, and T3 > 5 cm)
or as proposed by Sonremno and colleagues (5 categories: S1 < 1 cm, S2 = 1 to <2 cm, S3 = 2 to <3 cm,
S4 = 3 to <5 cm, S5 > 5 cm) [1,8].

According to Pena et al., 2013, and references therein, malignant tumors were grouped into
3 histological categories (i.e., HD3 categories) based on morphological features and biological behavior
as follows: group I, which included in situ carcinoma, simple carcinoma, carcinoma arising in a
mixed tumor, complex carcinoma, mixed-type carcinoma, ductal carcinoma, and adenosquamous
carcinoma; group II, which included solid carcinoma, comedocarcinoma, carcinoma, and malignant
myoepithelioma, and anaplastic carcinoma; group III, which included other histological types [24].

Statistical analysis was carried out using a Student’s T test for continuous normally distributed
variables, chi-square (X2) test and nonparametric Kruskal–Wallis ANOVA followed by Dunn’s post
hoc test for categories. Data were analyzed with Stata version 11.2 (StataCorp, 2009), and results were
considered significant when p ≤ 0.05.
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2.2. Statistical Analysis—Multivariate Analysis and Machine Learning Model

Logistic regression analysis was performed to evaluate the influence of the different covariates
(age, tumor size, spayed status, and breed) on tumor diagnosis. Covariates were selected through a
nested likelihood ratio test (Table 1 and Supplementary Materials).

Table 1. Model selection.

Model 1 Variables 2 Likelihood Test 3 Wald Test 4 Coefficients βn
5 Exp 6 Confidence Intervals 7

I Tumor size 8.59; <0.0001 0.24 1.27 1.21–1.35

II
Tumor size 35.48; <0.0001 7.94; <0.0001 0.22 1.25 1.19–1.32

Age 5.88; <0.0001 0.11 1.12 1.08–1.16

III
Tumor size

0.16; 0.69
7.93; <0.0001 0.22 1.25 1.19–1.32

Age 5.82; <0.0001 0.11 1.12 1.08–1.16
Spayed 0.40; 0.69 0.05 1.05 0.82–1.36

IV

Tumor size

0.88; 0.35

7.96; <0.0001 0.22 1.25 1.19–1.32
Age 5.68; <0.0001 0.11 1.11 1.07–1.16

Spayed 0.35; 0.73 0.05 1.05 0.81–1.35
Pure breed −0.94; 0.35 −0.09 0.91 0.75–1.11

1 Models are built so that the smaller models are special cases of the larger ones. Equivalently, the smaller models
are obtained by sequentially setting to 0 the coefficients of the full model (IV). The general form is: log-odds =
β0 + β1×1+ β2X2 + ... + βnXn: where β1, β2, ..., βn are the coefficients of the x1, x2, ..., xn independent variables
(covariates) included in the model. odds is calculated according to the formula: odds = exp(β0 + β1X1+ β2X2 + ... +
βnXn); 2 Covariates included in the model. Intercept not reported; 3 Likelihood ratio test statistic: Deviance, p value;
4 Wald test statistic: z and p value; 5 Model parameters βn;

6 Exponentiated model parameters e βn; 7 Wald 95%
confidence interval for an exponentiated model parameter.

The selected continuous covariates were then converted into categorical covariates according to
the previously described schemes, generating two further models: the IC model where the tumor size
was encoded according to the WHO TNM system and the IIC model where the tumor size was split
into 5 categories as previously reported by Sonremno et al., 2009 [1,8].

Machine learning was performed to investigate the possibility to predict the diagnosis of
mammary neoplasms in the dog (malignant versus benign) based on the recorded epidemiological
(breed, spayed status, and the age) and clinical (tumor size) factors. Models were built using
the R programming language relying upon the caret package through algorithms provided by
the GLM (for logistic regression), and the GBM (for stochastic gradient boosting) libraries [29–35]
(see Supplementary Materials for details). In particular, the supervised machine learning technique
employed is stochastic gradient boosting which is a powerful learning method based on the combination
of many simple models. The basic idea is to apply sequentially a “weak” learner (here, a decision tree) to
modified versions of the initial data. Each time a tree is built, the data are modified by applying weights
to increase the influence of misclassified observations. The final classification is performed through a
weighted majority vote [36–39]. To assess the predictive performances of logistic regressions (GLM)
and stochastic gradient boosting (GBM), a nested cross-validation was performed [39]. The dataset
was split into 5 nonoverlapping training and a test sets by keeping 80% of cases for training. The split
was performed randomly within each of the two classes of the outcome, to preserve the overall class
distribution of the data. For each of the two classifiers (even if not required for GLM, using the
same procedure allows for an easier comparison), the tuning of the hyperparameters was performed
through 10-fold cross-validation repeated 5 times [34,36]. Continuous features were centered and
scaled. The best setup was chosen by optimizing the area under the receiver operating characteristic
(ROC) curve [40] and, with such parameters, a final fit was performed on the entire training set.
The final result was obtained by repeating the procedure for each outer split and taking the average
over the test sets.
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3. Results

3.1. Descriptive Data and Histological Diagnosis

The databases account for 1866 single mammary neoplasms. According to the histological
classification, 867/1866 (46.5%) were benign tumors (BTs) and 999/1866 (53.5%) malignant tumors (MTs).
According to the applied classification [28], 239/1866 (12.8%) were diagnosed as simple benign tumors,
628/1866 (33.6%) as nonsimple benign tumors, 624/1866 (33.4%) as simple malignant, 341/1866 (18.27%)
as nonsimple malignant, 25/1866 (1.34%) as special type malignant and 9/1866 (0.5%) as sarcomas.
Specific histological diagnoses are reported in Table 2. The most frequent benign lesions were benign
mixed tumors (329/867; 37.95%) followed by complex adenomas (281/867; 32.41%) and simple adenomas
(225/867; 25.9%) while the most frequent malignant tumors were simple tubulopapillary (256/999;
25.6%) followed by complex carcinomas (248/999; 24.92%). Additionally, according to Pena et al., 2013,
837/999 (83.7%) of malignant tumors were included in group I, 148/999 (14.81) in group II and 14/999
(1.4%) in group III [24].

Table 2. Histological diagnosis.

Histological Diagnosis N %

Simple benign tumors Adenoma, simple 225 12.1
Myoepithelioma 3 0.2

Ductal-associated benign tumors Intraductal papillary adenoma (duct papilloma) 11 0.6

Nonsimple benign tumors Complex adenoma 281 15.1
Benign mixed tumor 329 17.6

Fibroadenoma 18 1.0

Simple carcinoma Tubular carcinoma 231 12.4
Tubulopapillary carcinoma 256 13.7

Solid carcinoma 130 7.0
Anaplastic carcinoma 7 0.4

Nonsimple carcinoma Carcinoma arising in a complex adenoma/benign mixed tumor 88 4.7
Complex carcinoma 248 13.3

Carcinoma-and-malignant myoepithelioma 5 0.3

Special type Adenosquamous carcinoma 14 0.8
Lipidic-rich carcinoma 2 0.1

Malignant myoepithelioma 1 6 0.3
Mucinous carcinoma 2 0.1

Spindle cell carcinoma 1 0.1

Others Osteosarcoma 5 0.3
Carcinosarcoma 4 0.2

Total 1866 100%
1 The diagnosis of malignant myoepithelioma was formulated after performing immunohistochemistry with
neoplastic cells positive immunostaining for alpha-smooth actin and P63 and negative stain for luminal
epithelial markers.

3.2. Descriptive Statistics and Univariate Analysis: Breed, Age, Spayed Status, Tumor Size and Their
Association with the Presence of Canine Mammary Tumors

3.2.1. Breed

Sixty-one percent (1142/1866) of CMTs were observed in pure breed dogs, mostly represented by
small size dogs, while the other 39% (724/1866) were observed in mixed breed dogs.

Although BTs occur predominantly in small breed dogs with Yorkshire terrier breed the most
represented (64/867; 7%) and MTs occur mostly in German Shepherd dogs (79/999; 7.91%), no statistically
significant association was observed between breeds and the prevalence of BTs and MTs. Similar
results were noticed for the three histological malignant categories proposed by Pena (X2 (2) = 0.9090,
p = 0.635).
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3.2.2. Age

The mean age of dogs with mammary tumors was 9.20 ± 2.63 years (mean ± SD). Furthermore,
dogs with malignant mammary neoplasm were older (n: 999; mean 9.61 ± SD 2.63 years) compared
with those harboring benign tumors (n: 867; mean 8.74 ± SD 2.54) (T test = −7.2679, P < 0.001).
The studied population was divided into four age groups (0–4 years; 5–8 years; 9–12 years; 13–22 years).
Interestingly, 1587/1866 (85%) of CMT were found between 5–12 years with an increased prevalence of
BTs and MTs in the 9–12 age range (918/1866; 49.20%) (X2 (3) = 52.2150; p < 0.001).

Moreover, both benign tumors, either simple and nonsimple, occur at a younger median age (9 years
old) than simple malignant (median = 10 years old) and malignant special type (median = 11 years
old), while simple malignant occurs at an older age than nonsimple malignant (median = 11 years old)
(Kruskal–Wallis χ2 (corrected for ties) = 68.471, p < 0.001; Dunn’s post hoc test, p < 0.001).

Noteworthy, no statistically significant difference was recorded based on the three histological
malignant categories proposed by Pena et al., 2013 (Kruskal–Wallis χ2 (corrected for ties) = 3.870,
p = 0.14) [24].

3.2.3. Spayed Status

In our study, 1556/1866 (83.39%) tumors were diagnosed in nonspayed dogs, of which 47.04%
(732/1556) were benign and 52.96% (824/1556) malignant tumors (X2 (1) = 1.2696; p = 0.260).
No significant association was recorded between the spayed status and the three histological categories
proposed by Pena and colleagues (X2 (2) = 0.3241; p = 0.850) [24].

However, a high prevalence of nonsimple benign tumors (34.51%; 537/1556) were diagnosed
in nonspayed dogs, while in spayed dogs 39.35% (122/310) of tumors were simple malignant type
(X2 (5) = 12.4204; p = 0.029).

3.2.4. Tumor Size

The tumor size is considered among the most clinical prognostic-related feature. The tumor size
ranged from 0.1 to 30 cm (n = 1866; mean = 2.23 ± SD 2.39 cm) and benign tumors were smaller
(n: 867; mean 1.70 ± SD 1.97 cm) than malignant ones (n: 999; mean 2.699 ± SD 2.62) (T test = −9.0967;
p < 0.001). Based on the three histological categories proposed by Pena [24], grade I tumors had a
lower diameter (n = 837; mean 2.56 ± SD 2.62, median 2, ranges 0.2–30 cm) compared to both grade II
(n = 148; mean 3.19 ± SD 2.40, median 3, ranges 0.3–13 cm) and grade III (n = 14; mean 4.77 ± SD 3.17,
median 3.7, ranges 1–10 cm) (Kruskal–Wallis χ2 (corrected for ties) = 26.820, p < 0.001; Dunn’s post hoc
test, p < 0.001).

According to the WHO tumor size system [1], there were 1363/1866 (73%) T1 neoplasms (<3 cm),
310/1866 (16.6%) T2 neoplasms (3–5 cm), and 193/1866 (10.3%) T3 neoplasms (>5 cm). Interestingly,
89.65% (1673/1866) of the CMTs were found between 0–5 cm and, remarkably, 63.76% (637/999) of the
malignant tumors were less than 3 cm (T1 class), of which 398/637 (62.5%) were classified as simple
carcinoma. T2 and T3 classes included 21.32% (213/999) and 14.91% (149/999) of the MTs.

Considering the high percentage of tumors within the range limit 0 to 5 cm, a further new variable
of tumor size with five categories subclassification was applied. The S2 category (less than 2 cm
in diameter) included 68.5% of benign neoplasms, whereas 63.76% of MTs were smaller than 3 cm
(X2 (4) = 128.0751; p < 0.001). Interestingly, 17.72% (177/999), 27.13% (271/999), and 18.92% (189/999)
of these MTs were observed in the S1 (<1 cm), S2 (from 1 to 2 cm) and S3 (from 2 to 3 cm) class,
respectively, with a higher percentage of simple carcinomas compared to complex ones.

3.3. Multivariate Analysis and Machine Learning Model

According to the likelihood ratio and Wald test performed on the logistic regression, the tumor
size and the dog’s age were significantly related to the histological diagnosis, differently than what
was observed for the spay status and breed (Table 1).
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Given the values of the exponentiated coefficients and using the age and tumor size covariates as
continuous variables (model II), a 25% increase in the odds of a malignant tumor per 1 cm increase in
tumor size adjusting for age was observed. Similarly, the logistic regression model estimates a 12%
increase in the odds of a malignant tumor per 1 year increase in age, adjusting for tumor size.

Furthermore, when continuous variables were converted in categorical covariates (Table 3), a 2.3-
and a 3.6-fold increase in the odds of a malignant tumor was observed when passing from T1 (<3 cm)
to T2 (from 3 to 5 cm), and from T1(<3 cm) to T3 (<5 cm), respectively (p < 0.05).

Table 3. Models with categorical covariates.

Model 1 Variables 2 Wald Test 3 Coefficients βn
4 Exp 5 Confidence Intervals 6

IC

T2 6.152; <0.0001 0.835 2.305 1.77–3.02
T3 7.086; <0.0001 1.286 3.619 2.56–5.22

Age 5–8 −0.022; 0.98 −0.005 0.995 0.61–1.62
Age 9–12 1.872; 0.06 0.456 1.579 0.98–2.56
Age > 12 3.207; <0.002 0.905 2.472 1.43–4.32

IIC

S2 2.266; <0.03 0.29 1.337 1.04–1.72
S3 5.069; <0.0001 0.761 2.141 1.60–2.88
S4 7.257; <0.0001 1.144 3.14 2.31–4.29
S5 8.036; <0.0001 1.594 4.922 3.36–7.32

Age 5–8 −0.044; 0.96 −0.011 0.989 0.61–1.62
Age 9–12 1.751; 0.08 0.431 1.538 0.95–2.50
Age > 12 2.976; 0.003 0.846 2.331 1.34–4.09

1. Model: Model IC: macroscopic tumor size split according to WHO (T1 < 3 cm, T2 = 3–5 cm, and T3 > 5 cm);
Model IIC: macroscopic size split according to Soremno (S1 < 1 cm, S2 = 1 to <2 cm, S3 = 2 to <3 cm, S4 = 3 to < 5 cm,
S5 > 5 cm); 2. Covariates included in the model. Reference levels are T1 and age 0–4 years for model IC, tumor size
0–1 cm and age 0–4 years for model IIC; 3. Wald test statistic: z; P value; 4. Model parameters βn; 5. Exponentiated
model parameters e βn; 6. Wald 95% confidence interval for an exponentiated model parameter.

A similar pattern is present for the IIC model; compared to the reference level (0–1 cm) the odds
ratios of all other tumor size groups were larger than 1, progressing from 1.3 (tumor size 1 to 2 cm)
to 4.9 in neoplasm larger than 5 cm (Table 3). In both models, only animals with an age greater than
12 years have more than a 2-fold increase in the odds of an MT when compared to the baseline age of
0–4 years.

Predictive performances of the logistic regression in terms of overall accuracy, positive predictive
values (PPVs), and negative predictive values (NPVs) (i.e., number of malignant -PPV- and benign
-NPV- tumors correctly diagnosed) were 0.63 (CI 0.60–0.65), 0.65 (CI 0.63–0.67), and 0.61 (CI 0.57–0.64),
respectively. The GBM machine learning model had a similar predictive performance compared
to the logistic model (Table 4), probably as a consequence of the small number of predictors of the
dataset, which does not allow for the full exploitation such a technique to model complex nonlinear
relationships possibly present in the data [41,42]. Interestingly, the tumor size and the age had a
relative influence of ~69% and ~30%, respectively, while the breed (<1%) and the spay status (<1%)
were insignificant in the gradient boosting model. R code, and corresponding output can be found in
the Supplementary Material.
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Table 4. Prediction performances for logistic regression (GLM) and stochastic gradient boosting (GBM).
In parentheses 95 percent confidence intervals. Positive class “malignant”.

AUC (inner) 1 AUC 2 PPV 3 NPV 4 Accuracy 5

GLM
0.66 0.66 0.65 0.61 0.63

(0.65–0.67) (0.63–0.70) (0.63–0.67) (0.57–0.64) (0.60–0.65)

GBM
0.67 0.67 0.65 0.59 0.62

(0.66–0.67) (0.64–0.69) (0.63–0.67) (0.57–0.62) (0.61–0.64)
1 Average Area Under the receiver operating Characteristic from the inner cross-validation; 2 Average Area Under
the receiver operating Characteristic from the outer cross-validation; 3 Average Positive Predictive Value; 4 Average
Negative Predictive Value; 5 Average Accuracy.

4. Discussion

In veterinary medicine, the increase in the incidence of neoplastic disease represents a relentless
challenge for veterinary oncology specialists. Consequently, many efforts have been made in the
on-going research to increase the early diagnosis and life perspective in dogs harboring mammary
tumors. As a consequence, in this background, cancer research is mainly focused on the discovery
and control of cancer-related risk factors [43,44]. However, a large retrospective statistical analysis
that related the breed, hormonal status, age, and tumor size with the histological diagnosis and,
consequently, with the possible behavior of CMTs, has not been previously performed.

In this work, an approximately equal proportion of benign (46.5%) and malignant tumors (53.5%)
was observed, and mixed BTs accounted for the highest number of the total cases. Mixed neoplasms
are the most frequent neoplasias in female dogs, and are characterized by the proliferation of both
luminal epithelial and interstitial myoepithelial elements admixed with foci of mesenchymal tissues
such as cartilage, bone, and fat [28,45]. The most frequent MT was simple tubular or tubulopapillary
carcinoma (26.1%) followed by complex carcinoma (13.3%) confirming what has been reported in the
literature [10] and references therein.

In our study, sixty-one percent of CMTs were observed in pure breed dogs, suggesting, as previously
described by Sorenmo and colleagues [6], that the breed could be a putative risk factor, and that
certain breeds, such as Miniature Toy, Shih Tzu as well as German Shepherd, are prone to develop
mammary neoplasms [1,2,6,10,11]. Interestingly, in our study, benign tumors occurred predominantly
in small breed dogs, particularly in Yorkshire terriers, while malignant ones were detected with higher
frequency in German Shepherd dogs. A better prognosis for small breeds has been previously reported
in a retrospective multivariate survival analysis [46]. However, given the increasing prevalence of
CMTs in small breeds, it is uncertain whether small size in dogs could represent a reliable risk factor
or if these data are influenced by the greater veterinary care in those breeds than larger dogs [10].
According to Salas and collaborators [7], no significant association was observed between the breed and
the development of BTs, MTs, as well as with the malignant carcinoma categories proposed by Pena et
al., 2013 [24]. Similarly, the breed showed a slight influence in the logistic and GBM machine learning
models (<1%), corroborating the considerable divergences between studies regarding the breed as a
CMT risk factor. Moreover, considering that the mutations in Breast BRCA1 and 2 genes and their
protein products have been variably associated with the development of CMTs, a definitive conclusion
about CMT breed-related risk should be performed in the context of genetic research [12–15].

Age is considered one of the most important risk factors for developing mammary tumors with a
peak incidence between 8 to 11 years, with younger dogs prone to having BTs [6–9]. These data seem
to be confirmed by our study, in full agreement with what was reported by Sorenmo [6].

Noteworthy, simple MTs occurred at an older age than nonsimple ones. According to different
authors [47,48], simple carcinomas have a poor prognosis compared to complex ones confirming,
as proposed by Pena and collaborators [24], that the age should be considered an indirect, but a strong,
prognostic factor. Furthermore, these data are supported by the multivariate analysis where a 12%
increase in the odds of a MT per 1 year increase in age was observed.
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Hormonal exposure is a well-documented canine mammary tumor-associated risk factor and
steroid hormones, mainly 17 beta-estradiol (E2), are involved in cell proliferation by exerting an
antiapoptotic effect that favors the neoplastic process [10,49]. Furthermore, the landmark publication
by Schneider et al., in 1969, reported that mammary tumors occurred in 0.05% of females spayed before
the first heat cycle, and this incidence increased from 8% to 26% when the animals were spayed after
the first or second heat [16]. As a consequence, reproductive health policies responsible for spaying
animals at a very early stage of life had a double beneficial effect, contributing to the reduction in
the number of stray dogs and preventing mammary neoplasm development. Likewise, in our study,
83% of mammary neoplasms were diagnosed in unspayed dogs, substantiating the protective effects of
ovariohysterectomy as described by several authors [16,18,19].

However, the lack of significance between BTs and MTs and spayed and unspayed dogs could
suggest that the hormonal influence sorts an unrelated effect on the CMT malignancy, although 39% of
the tumors observed in our cohort of spayed dogs were simple MTs that are generally related to an
overall poor prognosis when compared to complex tumors [47,48]. Nevertheless, considering that our
dataset lacks information regarding the age of dogs at spaying and that most of the tumors occurred in
unspayed dogs probably as a consequence of the ethical concerns in Mediterranean countries regarding
the gonadectomy, a careful and prudent outlook should be kept regarding the generalization of the
hormonal status role in the onset of CMTs.

The size of the tumor is considered one of the main macroscopical findings related to CMT
behavior. In the present study, we also considered the role of the tumor’s size as a clinical,
prognosis-related, CMT factor demonstrating that BTs were smaller than MTs, as previously reported
by Sonremno et al., 2009 [8]. Furthermore, the tumor’s diameter was related to the histological
malignant categories proposed by Pena [24], with small size neoplasm was more prone to a better
prognosis compared to the larger one. However, considering the size of the tumor using the WHO
classification and the five categories proposed by Sonremno [8], 62.5% of carcinomas were smaller than
3 cm, and 18% were less than 1 cm. Interestingly, these data conflict with what has been described
by Sorenmo et al., 2009 [8], who reported that only 3% of MTs were smaller than 1 cm, providing
compelling evidence that the tumor size should be carefully evaluated during the assessment of the
TNM-WHO clinical staging, as previously suggested by Pena [24].

Supporting these data, the application of the logistic regression characterized the age and the
size as the best predictors, with an overall diagnostic accuracy of 0.63 and low predictive values,
both positive and negative. This value of accuracy is probably related to the number of factors used in
our model. A similar predictive performance was observed using one of the most powerful machine
learning models, suggesting that the age and the size are sufficient but not exhaustive parameters
for the diagnosis of CMTs. Thanks to dramatic breakthroughs in artificial intelligence and machine
learning technologies in the mainstreaming of vertiginous cancer-related research, it is highly credible
that the ways to investigate cancer risk factors and the consequently generalized impact will be
subverted and revolutionized in a tailor-made personalized animal outlook.

5. Conclusions

In conclusion, this multicenter retrospective study, accounting for a large number of CMTs from
different academic institutions, offers a unique opportunity to increase the overall knowledge of the
main factors involved in canine mammary tumor onset. In our study, the observation that a high
number of MTs are smaller than 1 cm suggests the need for a reconsideration of the size (T) parameter
in the TNM system and pave the way for the development of tools for the investigation and control of
clinical risk factors for small size tumors.
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