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The ontogenetic development of human vision and the
real-time neural processing of visual input exhibit a
striking similarity—a sensitivity toward spatial
frequencies that progresses in a coarse-to-fine manner.
During early human development, sensitivity for higher
spatial frequencies increases with age. In adulthood,
when humans receive new visual input, low spatial
frequencies are typically processed first before
subsequent processing of higher spatial frequencies. We
investigated to what extent this coarse-to-fine
progression might impact visual representations in
artificial vision and compared this to adult human
representations. We simulated the coarse-to-fine
progression of image processing in deep convolutional
neural networks (CNNs) by gradually increasing spatial
frequency information during training. We compared
CNN performance after standard and coarse-to-fine
training with a wide range of datasets from behavioral
and neuroimaging experiments. In contrast to humans,
CNNs that are trained using the standard protocol are
very insensitive to low spatial frequency information,
showing very poor performance in being able to classify
such object images. By training CNNs using our
coarse-to-fine method, we improved the classification
accuracy of CNNs from 0% to 32% on low-pass-filtered
images taken from the ImageNet dataset. The
coarse-to-fine training also made the CNNs more
sensitive to low spatial frequencies in hybrid images
with conflicting information in different frequency
bands. When comparing differently trained networks on
images containing full spatial frequency information, we
saw no representational differences. Overall, this

integration of computational, neural, and behavioral
findings shows the relevance of the exposure to and
processing of inputs with variation in spatial frequency
content for some aspects of high-level object
representations.

Introduction

The role of spatial frequency has been extensively
researched in the development of human vision, with
much effort being directed toward visual acuity and
contrast sensitivity (Banks & Salapatek, 1978; Benedek,
Benedek, Kéri, & Janáky, 2003; Ellemberg, Lewis, Liu,
& Maurer, 1999; Leat, Yadav, & Irving, 2009; Mayer
& Dobson, 1982; Norcia & Tyler, 1985; Norcia, Tyler,
& Hamer, 1990; Peterzell, Werner, & Kaplan, 1995;
Stiers, Vanderkelen, & Vandenbussche, 2003). Visual
acuity can be classified into recognition (perceived
detail) and resolution (the separation between dots
or gratings, or spatial frequency) that a person can
successfully resolve. Contrast sensitivity is the smallest
difference in luminance that can be perceived between
an object and its immediate surroundings. Contrast
sensitivity is measurable across the whole spectrum
of spatial frequencies, referred to as the contrast
sensitivity function (Leat et al., 2009). Researchers have
used a variety of methods, including visual evoked
potentials (Norcia & Tyler, 1985; Norcia et al., 1990)
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and psychophysiological methods (Banks & Salapatek,
1978; Benedek et al., 2003; Ellemberg et al., 1999;
Mayer & Dobson, 1982; Peterzell et al., 1995; Stiers et
al., 2003), to reach the conclusion that visual acuity and
contrast sensitivity increase with age until adolescence.
At an infant level, visual acuity and contrast sensitivity
are very poor, and over the span of a number of years
they improve to reach a high functioning level, usually
7 to 12 years for visual acuity and 8 to 19 years for
contrast sensitivity (according to Leat et al., 2009). The
peak of an infant’s contrast sensitivity and the point
at which the infant’s contrast perception falls to zero
(their cut-off frequency) are both lower than those of
adults (Kiorpes, 2016; Leat et al., 2009).

In addition to this coarse-to-fine progression during
the ontogenetic development of human vision, there
appears to be a similar tendency in the real-time
neural processing of fully mature adults as their visual
systems receive input moment to moment. Modern
theories of vision suggest that the visual system
works in a coarse-to-fine manner, in which the low
spatial frequency (LSF) content of visual input, which
contains coarse information such as global shape,
takes precedence over high spatial frequency (HSF)
content, which is important for seeing the finer details
(Kauffman, Ramanoël, & Peyrin, 2014). A number
of neuroimaging studies in human cortical areas of
scene and object processing provide support for this
coarse-to-fine processing. According to Bullier (2001),
faster LSF processing in the dorsal stream guides the
slower HSF processing in the inferotemporal cortex.
Categorization of visual stimuli may be dominated
by LSF or HSF information, depending on the
duration of the stimuli being presented (Schyns &
Oliva, 1994). Activation of orbitofrontal cortex is
elicited by stimuli containing LSF information, 50
ms prior to areas in the temporal cortex, but not by
HSF-only images, indicating that orbitofrontal cortex
has an important role in top–down facilitation of
image recognition (Bar et al., 2006). LSF modulates
HSF processing in broadband images, as measured
by electroencephalography in human participants
(Petras et al., 2019). When LSF is informative of the
image content, HSF contributes to a lesser extent,
indicating that coarse information does indeed guide
the processing of fine detail.

Developmental progression from lower to higher spa-
tial frequencies appears to be an inherent characteristic
of the human visual system. Here, we explore whether
this progression would alter the representations that
emerge in image processing. Interestingly, in the past
few years, a new class of models for human visual in-
formation processing has become very popular, namely
deep convolutional neural networks (CNNs). With the
unprecedented success of CNNs on tasks such as image
recognition (for an overview, see He, Zhang, Ren, &
Sun, 2015; Krizhevsky, Sutskever, & Hinton, 2012;

LeCun, Bengio, & Hinton, 2015; Simonyan &
Zisserman, 2015), these models are now widely used for
tasks depending on visual representations in cognitive
and computational neuroscience domains. Jozwik,
Kriegeskorte, Storrs, and Mur (2017) found that CNNs
outperform feature-based models in explaining human
similarity judgments. Peterson, Abbott, and Griffiths
(2017) demonstrated a high correlation between the ac-
tivations in fully connected layers of CNNs and human
behavioral similarity judgments of animal image pairs.
Kubilius, Bracci, and Op de Beeck (2016) discovered a
striking similarity between human behavioral and CNN
shape representation. Bracci, Ritchie, Kalfas, and Op
de Beeck (2019) found that CNNs classify objects by
animacy rather than appearance, and this bias toward
animacy is also demonstrated in human judgments and
brain representations. Zeman, Ritchie, Bracci, and Op
de Beeck (2020) found that CNNs represent category in-
dependently from shape in object images, similarly to hu-
man object recognition areas. Altogether, these studies
and more have demonstrated the strength and breadth
of applications for CNNs as a model of human vision.

Despite these promising results, some studies
have shown intriguing counterintuitive properties
of CNNs that place doubt on their viability as a
model of the human visual system. For example,
Jozwik et al. (2017) found that categorical models
outperform CNNs in human similarity judgments,
concluding that further improvements are needed
to make high-level semantic representations more
human like. Peterson et al. (2017) discovered that major
categorical divisions (between animal images) were
missing in CNN representations; multidimensional
scaling showed that major categorical divisions were
not preserved. Szegedy, Zaremba, Sutskever, Bruna,
Erhan, Goodfellow, and Fergus (2013) observed that
minute, imperceptible (for humans) changes to an
image can drastically change the predictions by a CNN
for that image, which surprisingly, and alarmingly,
can generalize to models with different architectures
that are trained under different procedures. Similarly,
Nguyen, Yosinski, and Clune (2015) showed that CNNs
can be easily fooled by images generated using an
evolutionary (gradient ascent) algorithm. These images,
which are unrecognizable to human observers, are
categorized by CNNs with a very high confidence level
and are referred to as adversarial examples. Although
there is some evidence that human classification of
adversarial examples under forced-choice condition
is robustly related to machine classification (Zhou
& Firestone, 2019), there is little explanation of why
such convergence occurs. Also, Dujmović, Malhotra,
and Bowers (2020) found that agreement between
humans and CNNs on adversarial examples is much
weaker and more variable than that reported by
Zhou and Firestone (2019). According to Wang, Wu,
Huang, and Xing (2020), the vulnerability of CNNs to
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adversarial examples might be a consequence of their
over-reliance on high spatial frequency information.
Several studies (e.g., Baker, Lu, Erlikhman, & Kellman,
2018; Geirhos, Rubisch, Michaelis, Wichmann, &
Brendel, 2019) have also shown a texture bias in CNNs,
indicating that texture, which might be carried mostly
by HSF information, is predominantly used by artificial
networks to classify objects, which is opposite to the
human classification strategy, in which shape is the
primary cue. Given these findings, it is clear that there
are further improvements to be made with CNNs, not
only in their architectural components and connectivity
but also in the method in which they are trained. One of
the relevant dimensions is the spatial frequency content
of images. For example, some of the aforementioned
discrepancies between human and deep neural network
representations might be due to a differential sensitivity
for spatial frequency. This hypothesis was mentioned by
Wang et al (2020) but has not been tested explicitly for
most of these discrepancies.

In spite of the convolutional and pooling layers of
CNNs being directly inspired by simple and complex
cells in visual neuroscience and that the overall
architecture is reminiscent of the lateral geniculate
nucleus–visual cortex 1 (V1)–V2–V4–inferior temporal
cortex hierarchy in the visual ventral pathway (LeCun
et al., 2015), the idea of progressively increasing the
spatial frequency content of images during training
has not yet been implemented. One notable exception
was implemented for generative adversarial networks,
initially training with low-resolution images before
continuing with higher resolution images (Karras, Aila,
Laine, & Lecthinen, 2018). This progressive method
allowed for these networks to “discover the large-scale
structure of images prior to details at increasingly finer
scales, as opposed to learning all scales simultaneously”
(Karras et al., 2018, p. 2). The training benefits were
twofold with regard to sufficiently decreasing the
training time and improving the stability in synthesizing
both low- and high-resolution images. Although such
a training regime demonstrated clear benefits, we
note that this study did not include any conjecture or
comparison with human vision, so the question remains
as to whether training CNNs under such conditions

would bring about better performance changes or
representational changes that would increase their
similarity to human observers.

Following on from the culmination of findings
from different fields, we hypothesized that training a
CNN by simulating the progressive exposure from
low to high spatial frequencies would increase the
performance to be similar to that shown by human
behavior, in addition to increasing the similarity
between artificial and human visual representations.
By encouraging the environmental conditions in which
an artificial visual brain would develop to be more
similar to that of a biological visual brain, we may
potentially overcome some of the current limitations
of CNNs as models for human visual functions. In
the present study, we extensively analyzed the effects
of implementing a training protocol for deep neural
networks that progressively increases the spatial
frequency information of images. We compared our
results against a variety of human findings, including
behavioral and neuroimaging studies.

Method

CNN implementation

For our model architecture, we selected MobileNet
(Howard et al., 2017), an efficient, serially connected
CNN with 28 layers. We trained MobileNet on a subset
of ImageNet, used in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) 2012–2017 image
classification and localization dataset (Russakovsky et
al., 2015), which contains approximately 1.2 million
images from 1000 classes. We implemented three
different training regimes (see Table 1):

1. Full training—We trained the network using
unfiltered images, in which no spatial frequency
(SF) information was omitted from the images. This
regime is the most commonly used technique and
served as a control condition.

Full training Gradual training Mixed training

Epoch LR 0.1 0.3 0.5 0.8 UF LR 0.1 0.3 0.5 0.8 UF LR 0.1 0.3 0.5 0.8 UF

100 0.5 0 0 0 0 100 0.5 100 0 0 0 0 0.5 100 0 0 0 0
200 0.5 0 0 0 0 100 0.5 0 100 0 0 0 0.5 50 50 0 0 0
300 0.5 0 0 0 0 100 0.5 0 0 100 0 0 0.5 25 25 50 0 0
400 0.1 0 0 0 0 100 0.1 0 0 0 100 0 0.1 16 16 16 50 0
450 0.01 0 0 0 0 100 0.01 0 0 0 0 100 0.01 12.5 12.5 12.5 12.5 50

Table 1. Training regimes of MobileNet. Values below the decimal number (c/°) and UF columns denote the proportion (%) of images
at the given stage of training. Note: LR = learning rate; UF = unfiltered.
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2. Gradual training—We progressively shifted the SF
information of images during training. At every
100th epoch, the training set was switched to a set
of identical, albeit differently filtered, images. There
were five different training sets, which included
one unfiltered set and four differently filtered
training sets, each containing images with higher
SF information than the previous (see “Filtering of
images” section).

3. Mixed training—Taking an approach similar to the
gradual-training method, we changed the training
set every 100 epochs, except that a proportion
of images from the previous set were retained in
the subsequent set (those containing lower SF
information).

MobileNet converged in 500 epochs (batch size =
192, steps per epoch= 100). We used stochastic gradient
descent with Nesterov momentum (0.9) as an optimizer
and categorical cross-entropy as a loss function. The
initial learning rate was 0.5, which decreased to 0.1
after 400 epochs and decreased again to 0.01 after
450 epochs. We measured validation accuracy using
validation images that were also filtered on the same
SF levels as the training sets. All training regimes were
implemented in TensorFlow.

Filtering of images

We filtered the train and test images in MATLAB
(MathWorks, Natick, MA) using low-pass Butterworth
filters (Butterworth, 1930) by executing the following
procedure. First, images were resized to 224 × 224 ×
3, which is the training size for MobileNet. Second,
to convert the measuring unit of spatial frequency
information (cycles per degree) into an analogous unit
used by the Butterworth filters (radius in the frequency
domain), we defined the pixels per cycle for given
images. We assumed a visual angle of 60°, which is the
visual angle of a standard smartphone (Apple iPhone
6). Knowing the dimensions of images (224 × 224
× 3) and having a physical measure (60°), we could
approximate pixels per degree (224/60). This allowed us
to compute SFs in cycles per degree (see Equation 1).
Radius in the frequency domain was then compared
to cycles per degree, providing us with all the required
prerequisite information to apply Butterworth filters.
Third, we applied four different Butterworth filters to
ImageNet, each one with attenuating spatial frequencies
higher than a threshold in cycles per degree. The
thresholds that we applied, referred to as spatial
frequency levels (SFLs), were 0.1 c/° (SFL1), 0.3 c/°
(SFL2), 0.5 c/° (SFL3), and 0.8 c/° (SFL4). The specific
values of filters were chosen to mimic the development
of infant contrast sensitivity levels found in different
studies (see Kiorpes, 2016). The four thresholds

represent the approximate peak levels of the contrast
sensitivity function at different stages of development,
from infancy to 8 months, which is considered to be the
most intense period in development. Equation 2 defines
the Butterworth filter, where D is distance from the
center (namely, 113 pixels, given an image size of 224 ×
224), r is the radius in the frequency domain, and n is
the order of the filter (all filters were of order 4):

SF =
(

pixels / degree
pixels / cycle

)
(1)

Filter = 1

1 +
(√

2 − 1
)

× (D
r

)(2×n) (2)

Representational similarity analysis (RSA)

After training the CNNs, we compared
representations between them using RSA, which is a
framework that allows for quantitative comparisons of
internal representations between computational models
and even other modalities, such as neural activity and
behavior (Kriegeskorte, Mur, & Bandettini, 2008). For
CNN representations, after forward passing the images
through the network, we extracted activations from the
final fully connected layer and a mid-level convolutional
layer (layer 15), in each of the three implementations
of MobileNet. From these activations, we constructed
representational dissimilarity matrices (RDMs). RDMs
represent dissimilarities of activations for each image by
measuring correlations (1 – Spearman’s rho). We then
compared the RDMs (using Spearman’s rho) to the
behavioral and conceptual RDMs from the mentioned
studies.

To test for the effect of spatial frequency on
representational similarity, we also constructed a set
of hybrid images, which were inspired by Schyns and
Oliva (1994). These images consisted of two different
superimposed images, one filtered with a low-pass filter
(<0.17 c/°) and one with a high-pass filter (>0.17 c/°).
The set was composed of 18 images. Nine of those
images, labeled HSF�, consisted of the same LSF
content but different HSF content. The other nine
images, labeled LSF�, consisted of the same HSF
content but different LSF content. We composed two
conceptual RDMs for the set of hybrid images, the
so-called LSF and HSF models. We postulated that, if
an implementation of MobileNet is sensitive only to the
HSF content of images, it should represent the images
where LSF content is manipulated as more similar than
those where HSF content is manipulated (HSF model).
In contrast, if an implementation of MobileNet is
sensitive only to the LSF content of images, it should
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Figure 1. Example of two images from ImageNet with the Butterworth filter applied using increasing SF cutoff thresholds. From left to
right, 0.1 c/° (SFL 1), 0.3 c/° (SFL 2), 0.5 c/° (SFL 3), 0.8 c/° (SFL 4), and the original unfiltered image.

Figure 2. Stimuli (A) and conceptual models (B) based on Bracci et al. (2019). The black areas in the RDMs represent high similarity (1
– Spearman’s rho = 1), and the gray areas represent low similarity (1 – Spearman’s rho = 0). To construct the RDMs, stimuli were
numbered left to right, top to bottom.

represent the images where HSF content is manipulated
as more similar than those where LSF content is
manipulated (LSF model).

To detect any possible changes in representations due
to our training protocol, we included two stimulus sets
along with the associated CNN, behavioral, and neural
similarity data from Bracci et al. (2019) and Bracci and
Op de Beeck (2016), with further analyses by Zeman et
al. (2020), for comparison with our trained networks.
In both studies, the authors dissociated appearance
from the category for each of the stimuli, allowing
for a controlled comparison between visual and more
conceptual information (see Figures 2 and 3).

We computed inferential statistics using random
permutations and bootstrap methods. To examine if
a model RDM correlated significantly with a target
(conceptual or behavioral) RDM, we permuted image
labels 104 times. We then correlated all the permuted
RDMs with the target RDMs. We calculated the p value
by taking the number of correlations with a greater
value than the correlation of the model and dividing
this by the number of all possible correlations (104). The
error bars shown later in Figure 7 depict the standard
deviations from bootstrapping the correlation of each
model 104 times.

Figure 3. Stimuli (A) and behavioral models (B) based on Zeman
et al. (2020). The rows in (A) represent stimuli that share
category but differ in shape, whereas the columns represent
stimuli that are similar in shape but belong to different
categories. The colors represent the category organization. The
behavioral matrices (B) use the color blue to represent high
similarity, whereas yellow represents low similarity.

Behavioral experiment

To assess human performance in image classification
using differently filtered images, we constructed a
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Figure 4. (A) Hybrid stimuli. The top row shows LSF� stimuli, and the bottom row displays HSF� stimuli. The numbering of images
follows the top–bottom and left–right sequence in the RDMs. (B) Our conceptual RDMs. The matrix on the left in (B) represents the
LSF model. The LSF model showed the greatest similarity between images that contained the same LSF content with varying HSF
content and showed the lowest similarity between images with varying LSF but consistent HSF content. The matrix on the right in (B)
represents the HSF model. The HSF model showed the greatest similarity between images that contained the same HSF content with
varying LSF content and showed the lowest similarity between images with varying HSF but consistent LSF content.

Figure 5. Example of SFL1, SFL2, and unfiltered images for the
category “dial telephone.”

behavioral experiment in psychopy (Peirce et al., 2019).
We chose 10 categories with consistent performance
in the trained CNNs by extracting activations from
the classification layer after feeding in the images from
each category and confirming that accuracy levels were
within 15% of average performance (15% above or
below). These were hammerhead shark (H), cock (C),
badger (B), dial telephone (D), planetarium (P), sports
car (S), upright piano (U), acorn squash (A), Granny
Smith apple (G), and red wine (R). The experiment
consisted of two stages. In the first stage, the training
phase, participants viewed 10 unfiltered examples of
each category in a randomized order. An image was
displayed indefinitely, and participants were required to

press the letter of the corresponding category in order
to continue.

The testing phase followed. In this phase, participants
were presented with images in a randomized order
from the 10 categories with three spatial frequency
cutoffs: 0.1 c/° (SFL 1), 0.3 c/° (SFL 2), and no cutoff
(unfiltered). Each image was presented for 150 ms. After
the elapsed time period, the participant was required to
select the letter corresponding to the image (e.g., “A”
for acorn squash). Participants classified 30 images
per category, with 10 per spatial frequency level (for a
total of 300 images). All images and exemplars were
shown only once. To compare human performance in
the 10-way categorization task with CNN performance,
we extracted the activations from the classification
layer only for the 10 categories. Categorization was
correct if the activation of the corresponding category
had the highest value over the other nine possible
outcomes (referred to as “top-1 accuracy,” in this
case for a choice among 10 categories instead of the
1000 categories in ImageNet). Note that we could not
control each participant’s viewing distance, which can
be seen as a caveat, as this can affect the appearance of
the images. However, this experiment was concerned
with how much information was left on the images,
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Figure 6. Top-1 performance of MobileNet trained with the full, gradual, and mixed (from left to right) regimes on images with
different spatial frequency levels (SFL 1 = 0.1 c/°, SFL 2 = 0.3 c/°, SFL 3 = 0.5 c/°, SFL 4 = 0.8 c/°). Acc UNF = validation accuracy on
unfiltered images, Acc = training accuracy.

rather than about mimicking the exact spatial frequency
and stimulus size we targeted when we decided on the
filtering levels.

The experiment included 28 participants (11 males,
15 females, and 2 “other”), with an average age of 23.54
years (SD = 3.13), who participated through the online
platform Pavlovia.com. The experiment included an
agreement to ensure informed consent prior to testing.
Procedures were approved by the KU Leuven Social
and Societal Ethics Committee.

Results

Training and validation accuracy with the three
training regimes

The MobileNet trained with the full training
converged to the highest training accuracy (74%)
and validation accuracy (60%) for unfiltered images
(Figure 6). However, it performed very poorly (0%)
on the lowest spatial frequency level SFL 1 (0.1 c/°).
Accuracy increased with images containing higher
spatial frequency information (21% for SFL 2, 36% for
SFL 3, and 48% for SFL 4). With gradual training,
MobileNet showed increasingly better performance
during learning for the first 100 epochs, during which it
was exposed to only low SF images (SFL 1). However,
there was an immediate drop (to 0%) in performance
after switching to the image set containing higher SF
information. Simultaneously, there was a very rapid
stepwise increase of accuracy, from 0% to around
50%, for the sets containing higher SF information.
With mixed training, we again observed a very rapid
increase in performance of MobileNet after the 100th
epoch for images containing higher SF information;
yet, there was no drop in performance for images
containing the lowest spatial frequency information,
which instead converged further. Interestingly, the
mixed training policy was the only training regime

Figure 7. Performance of MobileNet trained with different
regimes and humans on a 10-way categorization task containing
images with different spatial frequency information (dark gray,
SFL 1 = 0.1 c/°; mid-gray, SFL 2 = 0.3 c/°; light gray, unfiltered).
In the case of MobileNet, error bars indicate the binomial
confidence interval, whereas with humans they indicate
standard error of the mean (SEM). The horizontal dashed line
indicates the chance level (10%).

that allowed the model to reach a sufficient level of
performance on the images containing only the lowest
SF information (32%) while maintaining relatively high
levels of accuracy on the images with higher cutoff
levels and unfiltered images (48% for SFL 2, 50% for
SFL 3, 51% for SFL 4, 60% for training accuracy, and
51% for validation accuracy on unfiltered images).

Comparison with human performance for
low-pass filtered images

We tested how well human participants would
classify low-pass filtered images; the results are shown
in Figure 7. Note that participants did not receive
training with such images in the context of the
experiment. As the behavioral experiment included
only 10 categories, the performance of the CNNs was
also calculated for the same 10-category task. If we
consider the most strongly filtered images as SFL 1, the
full-training policy, which was never presented with
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Figure 8. From left to right, RDMs for the full, gradual, and
mixed training of MobileNet for the mid-level (layer 15)
convolutional layer (A) and the fully connected layer (B). Blue
denotes high similarity, whereas yellow denotes low similarity.
Labels on the left side show how the stimuli were ordered.

these filtered images during training, performed very
poorly. Although the gradual training was initially
trained on filtered images, its performance on SFL 1 did
not exceed that of the full-training policy. Both human
participants and the mixed training model reached
relatively high accuracy with the SFL 1 images, the
latter surpassing human performance by about 10%.
With the SFL 2 condition, the full training showed a
marked drop in performance compared with unfiltered
images that was not present in the other models and in
human performance.

Overall, it seems that an extensive and continuous
exposure to filtered images during training is necessary
to allow deep learning models to reach the capacity
of humans to recognize images that contain only low
spatial frequency content.

RSA with hybrid stimuli

We investigated whether the training affected the
representational similarity of the hybrid images that
combine different information at low and high spatial
frequencies. The results are shown in Figure 8. Both
layers show similar effects of the type of training. This
suggests that the differentiability that the networks
learn to distinguish images with low SF content is
present in earlier layers of the network and not only in
the final classification layer.

Figures 9 and 10 display the correlations of these
CNN representations with the conceptual LSF and

HSF model. In the fully connected layer, only the
model trained with the mixed-training regime reached
significant positive correlations for both the LSF and
HSF models. In other words, the mixed training model
was sensitive to the manipulation of both the low
and high spatial frequency content of the images. In
contrast, the full-training model had a significantly
negative correlation with the LSF model and the
highest positive correlation with the HSF model.
This indicates that, after full training, the network
is capable of differentiating images with varied HSF
content but not images with varied LSF content,
which elicit similar activations. Findings were similar
between the convolutional layer and the fully connected
layer, with the exception that in gradual training the
convolutional layer correlated with the LSF model.
Overall, a mixed-training regime is required for a model
to become sensitive to both the low and high spatial
frequency information in images.

RSA with stimuli from Bracci and Op de Beeck
(2016) and Bracci et al. (2019)

To this point we have shown that a mixed-training
regime is important to obtain a CNN that is able to
recognize objects from LSF content and take this
content into account in object representations. Next, we
investigated whether such a training regime would also
affect the representational similarity for stimulus sets
that do not include an explicit manipulation of spatial
frequencies.

For the stimulus set of Bracci and Op de Beeck
(2016), all three training regimes of MobileNet
preferred shape over category. In addition, they also
showed a smaller, yet significant correlation with the
category-related behavioral similarities, as was shown
by Zeman et al. (2020) for other networks trained with
unfiltered images. There were no meaningful effects of
the training regime, so the extent and timing of training
with low-pass filtered images did not affect the presence
of a multi-feature representation in a CNN.

Bracci et al. (2019) showed that CNNs pretrained
on ImageNet (VGG-19 and GoogleNet) had a strong
bias for the animacy model over the appearance
model, which puts CNN models at odds with human
perception and neural responses. We also see a stronger
correlation for the animacy model with MobileNet
when trained with unfiltered images. Nevertheless, the
bias toward animacy in the late fully connected layers
was much larger in Bracci et al. (2019).

The bias toward animacy was no longer present
when training included low-pass filtered images. Given
the variability (shown by large error bars), we cannot
state that this effect is significant, so the findings
are inconclusive with regard to a meaningful effect
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Figure 9. (Left) Correlations between conceptual models for hybrid stimuli and the convolutional layer (layer 15) of different
MobileNet models (red, full training; green, gradual training; blue, mixed training). (Right) Correlations between conceptual models
for hybrid stimuli and the fully connected layer of different MobileNet models. Standard errors represent the standard deviations of
104 bootstraps. ***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.10.

Figure 10. (Left) Behavioral model (Zeman et al., 2020) correlations with the fully connected layer of different MobileNet models.
(Right) Conceptual model (Bracci et al., 2019) correlations with the fully connected layer of different MobileNet models. Standard
error bars represent the standard deviations of 104 bootstraps. ***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.10.

of training regime on the nature of representations
investigated with this stimulus set.

Discussion

In our study, we thoroughly examined the effect
of a training regime with progressive exposure to
images with increasingly finer spatial frequencies, akin
to biological vision. This training method allowed
us to determine the effect on deep neural network
performance and representations and to investigate

whether this effect resembled human performance and
representations.

The most widely used training regime in computer
vision and neuroscience communities, which exposes a
model only to unfiltered images, is not able to accurately
classify visual stimuli that contain only low spatial
frequency information. In both the 1000-way and the
10-way task (Figures 6 and 7), the full-training model
demonstrated very low levels of categorization accuracy
when presented with images that had a cutoff spatial
frequency of 0.1 c/° (SFL 1). Comparing this outcome
with human performance, participants demonstrated
much greater accuracy with such stimuli, surpassing
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the performance of the full-training model by almost
a factor of 3, despite most of the spatial frequency
information being omitted (SFL 1). Notably, even with
initial exposure to SFL 1 images, the performance of
the model on these images was not sustained unless
a proportion of those images were retained in the
training set. This was visible in the performance of the
gradual-training model (Figure 6), with an immediate
drop after switching to images with a higher cutoff
(SFL 2). We observed a similar, albeit less dramatic,
fall in performance for SFL 2 images at epoch 200.
There was no apparent drop in accuracy for higher
cutoff levels (SFL 3 and 4). On the other hand, the
mixed-training model was able to sustain relatively high
levels of accuracy across the entire spatial frequency
spectrum. Furthermore, it produced results in the
10-way categorization task that highly resemble the
performance of human participants.

Our findings with gradual training are peculiar.
Given the cumulative nature of spatial frequency
information, where each set of images with a higher SF
cutoff contains information from the lower SF cutoff
plus new, higher SF information, we would expect that
initial exposure is enough to calibrate the weights of
a model in a way that would later provide sensitivity
to low spatial frequencies. However, this was not the
case. Apparently, providing images with lower levels of
spatial frequency information is necessary throughout
the entire training process to sustain high levels of
accuracy. This could be a result of the non-additive way
in which weights are computed in the models. From
this perspective, the relationship between the nonlinear
functions of the model with those of the human visual
system is put into question. Although CNNs reach
high levels of accuracy in image categorization tasks,
they might achieve this in an inherently different way
as humans. To express it another way, the ability
to achieve similar results, in terms of outstanding
categorization accuracy, might stem from different
underlying processes.

Hermann and Lampinen (2020) examined some of
the underlying processes of feature extraction in CNNs.
They found that when trained to label based on a target
feature (either global information as shape or local
information as texture), CNNs were able to enhance the
target and suppress the irrelevant feature. Furthermore,
when two features were redundantly predictive of the
label, the model extracted one and suppressed the
other. In their experiment, shape had precedence over
texture. Thus, the feature extraction process seemed
to engage in a sort of “zero-sum game,” the outcome
of which depended on the final goal that was set for
the model and the resulting redundancy of specific
features. Drawing a parallel to the gradual-training
protocol, we could assume that the sudden decrement
in classification accuracy for images containing lower
SF information could be a result of (global or LSF)

information suppression, because this information
became redundant after the goal of the model changed
to classifying images with higher SF information.
Such processes might not occur in the human visual
system; rather, the human visual system utilizes LSF
information early in the process to guide the recognition
of an object (Bar et al., 2006; Bullier, 2001; Kauffman
et al., 2014; Petras, Oever, Jacobs, & Goffaux, 2019;
Schyns & Oliva, 1994).

The possibility of divergence between the underlying
processes of the human visual system and of CNNs
is further supported by the findings with the full
training. Even for the SFL 2 images, the accuracy of
the full-training model was substantially lower than
that of the human participants, whose accuracy was
almost equivalent to the unfiltered images (Figure 7).
Indeed, if we look at an example of an SFL 2 image
(Figure 1), the changes caused by the filter are so subtle
that they are barely registered by the human eye. Yet,
the full-training model struggled with such images.
These limitations were solved using a simple technique
of retaining the lower SF images in the training set
the entire time, as we did in the mixed-training regime.
These findings are consistent with the observations
of Wang et al. (2020). In their paper, they suggested
that counterintuitive generalizations of CNNs (such as
adversarial examples) might be the result of excessive
reliance of the models on HSF information and can
be dealt with by annulling these signals with smooth
convolutional kernels. The hypothesis that CNNs
rely primarily on HSF information is also supported
by Baker et al. (2018). They found that, for CNNs,
surface texture (local or HSF information) is an equally
important cue in object recognition as shape (global
or LSF information). Similarly, Geirhos et al. (2019)
found texture bias in images with conflicting shape and
texture. The equivalence, or even dominance, of the
informative value of texture does not seem to hold for
humans, who can accurately categorize objects by shape
alone. These observations can be linked with our work
if we assume that texture information is mostly carried
by higher spatial frequencies. There is some evidence
that supports this assumption. Namely, Yoshihara,
Fukiage, and Nishida (2021) were able to induce a
shape bias in CNNs by training them with blurred
(LSF) images, although the bias was still much smaller
than in human observers.

The implication that the full-training model was
not sensitive to LSF content was reaffirmed by results
from RSA. We can see that the full-training model
was sensitive to manipulation of HSF content but not
LSF content, as it correlates significantly only with the
HSF model. On the other hand, the mixed-training was
sensitive to both manipulations, which is reflected in
significant correlations with both the LSF and HSF
models (Figure 9). We must acknowledge that there
could possibly be a trade-off between sensitivities at
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different SF levels. The enhanced sensitivity for LSF
information results in deteriorated sensitivity for HSF
information. Thus, the full-training model surpasses
the mixed-training model in terms of classification
accuracy for unfiltered images in the 1000-way task and
in correlation levels with the HSF model, where we can
see an almost linear decrease in the full–gradual–mixed
order (Figure 9). Nevertheless, this trade-off does not
have such a large magnitude, and the mixed-training
model produces very sensible behavior, incorporating
both LSF and HSF information.

Furthermore, we examined if different training
regimes affect internal CNN representations of visual
stimuli, where spatial frequencies were not directly
manipulated (Figure 10). Correlations with RDMs
from Zeman et al. (2020) did not show any significant
changes. All three models correlated significantly
with both behavioral models but preferred shape
over category. No statistically significant differences
between models were found. Likewise, the results
for Bracci et al. (2019) stimuli showed significant
correlation for both conceptual models. There are
some apparent fluctuations across training regimes,
but given the standard errors we cannot conclude
that there are significant differences. The findings
with the full-training model tend to be most similar
to the findings reported by Bracci et al. (2019), who
demonstrated a much greater preference for the
animacy model than for the appearance model. We
could still see a slight preference for animacy with the
full-training model, whereas this preference disappeared
in the mixed-training model. Further tests with larger
stimulus sets will be needed to investigate whether such
effects would be statistically robust.

To sum up, we showed that CNNs trained in the
usual way displayed some properties that make their
similarity to human representations questionable.
Firestone (2020) argued that, when comparing human
to CNN behavior, we should make a distinction
between competence and performance, this distinction
being a methodological tool to compare the behavior
of different organisms (e.g., infants and adults,
animals and humans). Competence relates to the
underlying capabilities of an organism, whereas
performance relates to behavioral output, which does
not necessarily reflect the full capacity of organisms’
underlying resources. Such an approach can facilitate
differentiation between organisms at superficial
and deep levels. Differences in behavior can be the
result of a variety of factors. These include human
constraints, machine constraints, and non-aligned
species-specific tasks. One reason why the full-training
regime performed so badly on LSF images might have
been a limitation due to the digital input resolution.
Humans view images on displays, using their lens,
which can further distort the resolution (Firestone,
2020). In our case, the human constraint—limited

visual acuity—could play a vital role in incorporating
LSF information for object categorization. Mimicking
human physiology in computational models has shown
some promise before. For example, Adeli, Vitu, and
Zelinsky (2017) showed that a model of superior
colliculus can predict fixation locations in human
viewing of natural scenes and exemplar and categorical
search tasks. Even more interestingly, modeling a
human fovea (Deza & Konkle, 2020) or primary visual
cortex (Dapello, Marques, Schrimpf, Geiger, Cox, &
DiCarlo, 2020) at the front of CNNs has been shown to
increase their robustness to adversarial examples. Note
that adversarial examples usually include subtle changes
to images at high spatial frequencies. The human burden
of limited visual acuity makes these manipulations
unperceivable; thus, they do not affect human behavior
(Firestone, 2020). It would be interesting to examine
whether the addition of a foveal model or primary
visual cortex would improve the capability of CNNs to
use LSF information.

Similarly, we can ask whether our mixed-training
regime would improve the resistance of CNNs to
adversarial examples. As already mentioned, like
humans, the mixed-training regime was capable of
using LSF information and thus showed much higher
(human-like) accuracy for such images than the
full-training regime, which was trained by the method
that is normally used in computational neuroscience.
This technique was applied by keeping a proportion of
images with a lower cutoff frequency filter throughout
the entire training. Such a method restrained the model
from only focusing on high spatial frequencies. In this
way, we induced a “human-like” constraint, similarly to
what Deza and Konkle (2020) did with adding a model
of the human fovea. It also resembles the suggestion
of Wang et al. (2020), who proposed annulment of
HSF signals by smooth convolutional kernels. As
Jang, McCormack, and Tong (2021) implied, the
robustness to visual noise in CNNs is, like in humans,
acquired through exposure and learning from noisy
images.

Despite the similarity in performance, the question
of concordance between the underlying processes
remains. To elaborate on this point, Bar et al. (2006)
demonstrated that LSF information affected the
processing of HSF information in a top–down manner.
None of our models was made to simulate top–down
processes, which require recurrent connections.
An intriguing pathway of research would be to
implement our method of mixed training on a
recurrent neural network. A further concern is the
problem of generalizability. Our training protocols
were implemented on a specific CNN (MobileNet)
with a specific architecture and other properties.
However, given that all CNN networks are very similar
in how image content is treated in the convolutional
layers, we expect that the major benefit of mixed
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training would generalize widely across networks,
with possibly some variation in the effect size of this
benefit.

Our findings provide some direct implications
for real-world applications, particularly in the field
of autonomous driving with incorporated real-time
processing of camera images. According to Zang, Ding,
Smith, Tyler, Rakotoarivelo, and Kaafar (2019), one
of the critical issues of autonomous driving systems is
their performance under adverse weather conditions,
such as rain, snow, or fog. These conditions distort
the pixel intensities and thus lower the quality of
images. For example, raindrops can create patterns
that blur the edges in a scene and, in doing so, impede
the recognition of objects (Kurihata, Takahashi, Ide,
Mekada, Murase, Tamatsu, & Miyahara, 2005). Of
special interest is the perception of scenes under foggy
conditions. Whereas scenes are composed of a broad
spectrum of spatial frequencies under normal viewing
conditions, the frequency components are concentrated
at low spatial frequencies under foggy conditions (Zang
et al., 2019). Thus, fog acts like a low-pass filter that
blurs the finer details of an image. As we have shown,
such a filter can have detrimental effects for deep
neural networks that had not been exposed to filtered
images.

Jang et al. (2021) proposed a noise training method,
which could potentially aid artificial intelligence
(AI) systems in autonomous vehicles. They found
that exposure to spatially independent and spatially
correlated noise increases the robustness of models
to such noise, making their behavior more human
like. To optimize AI-based autonomous driving
systems, researchers should carefully examine what
kind of visual noise is frequently present on the road
and then expose the CNNs to such noise within
the training protocol. These results and suggestions
converge with our findings of success using the
mixed-training protocol, which was motivated by how
the human visual system filters incoming signals in early
development.

Keywords: human vision, spatial frequency analysis,
deep convolutional neural networks, coarse-to-fine
progression, computational modeling
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