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Abstract: Speech signals are degraded in real-life environments, as a product of background noise
or other factors. The processing of such signals for voice recognition and voice analysis systems
presents important challenges. One of the conditions that make adverse quality difficult to handle in
those systems is reverberation, produced by sound wave reflections that travel from the source to
the microphone in multiple directions. To enhance signals in such adverse conditions, several deep
learning-based methods have been proposed and proven to be effective. Recently, recurrent neural
networks, especially those with long short-term memory (LSTM), have presented surprising results
in tasks related to time-dependent processing of signals, such as speech. One of the most challenging
aspects of LSTM networks is the high computational cost of the training procedure, which has limited
extended experimentation in several cases. In this work, we present a proposal to evaluate the
hybrid models of neural networks to learn different reverberation conditions without any previous
information. The results show that some combinations of LSTM and perceptron layers produce
good results in comparison to those from pure LSTM networks, given a fixed number of layers. The
evaluation was made based on quality measurements of the signal’s spectrum, the training time of
the networks, and statistical validation of results. In total, 120 artificial neural networks of eight
different types were trained and compared. The results help to affirm the fact that hybrid networks
represent an important solution for speech signal enhancement, given that reduction in training time
is on the order of 30%, in processes that can normally take several days or weeks, depending on
the amount of data. The results also present advantages in efficiency, but without a significant drop
in quality.

Keywords: artificial neural network; deep learning; LSTM; speech processing

1. Introduction

In real-environments, audio signals are affected by conditions such as additive noise,
reverberation, and other distortions, due to elements that produce sounds simultaneously or
are presented as obstacles in the signal path to the microphone. In the case of speech
signals, communication devices and applications of speech technologies may be affected in their
performance [1–4] by the presence of such conditions.

In recent decades, many algorithms have been developed to enhance degraded speech; these
try to suppress or reduce distortions, as well as preserve or improve the quality of the perceived
signal [5]. Many recent algorithms are based on deep neural networks (DNN) [6–9]. The most common
implementation is based on approximating a mapping function from the degraded characteristics of
speech with noise, towards the corresponding characteristics of clean speech.
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The benefits of achieving this type of speech signal enhancement can be applied to signal
processing in mobile phone applications, voice over Internet protocol, speech recognition systems, and
devices for people with diminished hearing ability [10].

In addition to the classical perceptron model, created in the 1950s, new types of neural networks
have been developed, e.g., recurrent neural networks (RNNs). An example of RNNs are the LSTM
neural networks. In previous efforts to enhance speech, spectrum-derived characteristics, such as
Mel-frequency cepstrum coefficients (MFCC), have been mapped successfully between noisy speech to
clean speech [11,12].

The benefits of using LSTM, as well as other types of RNNs, are superior for modeling of the
dependent nature of speech signals. Among the drawbacks of LSTM are the high computational cost
of its training procedures.

In this work, we extend previous experiments with LSTM by evaluating deep neural networks,
with a fixed number of three hidden layers, that combine LSTM layers (bidirectional) and simpler
layers, based on perceptrons.

Such deep neural network algorithms have been successful in overcoming the performance
of classical methods based on algorithms for signal processing, which have considered several
signal-to-noise ratios (SNR) [12–15], or reverberant speech [16–18]. Some recent work has explored the
use of mixed neural networks to achieve a better performance in different tasks, such as classifying
the temporary stages of sleep, analyzing the real-time behavior of an online buyer, or the suppression
of noise in a MEMS gyroscope, in which good results were obtained for specific situations and
configurations [19–21]. The combination of different types of neural networks have been successfully
presented in [22], in the form of ensemble models to predict diseases in images.

The wide variety of models applied in other fields, where regression, classification, and prediction
are required, have also been analyzed [23,24], and show the multiple possibilities and the wide field of
experimentation that is possible with deep neural networks.

Our main focus is on reducing the training time of the networks without a significant reduction
in the capacity of the network. To achieve improvement, we consider all the different combinations of
layers for de-reverberation, with the goal of accelerating the training process due to fewer connections.
Thus, the process can become more efficient.

For this purpose, several objective measures were used to verify the results, which comparatively
show the capacity of the BLSTM with three layers, and the combination with layers of perceptron,
in improving speech conditions of reverberation. The rest of this document is organized as follows.
Section 2 provides the background and context of the problem of improving reverberant speech and
the BLSTM. Section 4 describes the experimental setup. Section 5 presents the results with a discussion.
In Section 6, conclusions are presented.

2. Problem Statement

In real-world environments where speech signals are registered with microphones, the presence
of reverberation is common. It is caused by the reflections of the audio signal on its path to
the microphone.

This phenomenon is accentuated when the space is wide and the surfaces favor the reflection of
the signals. It can be assumed that the reverberated signal x is a degraded version of the clean signal s.
The relationship between both waves is described by [25]:

x(n) = h>(n) ∗ s(n), (1)

where h = [h1, h2, . . . , hL]
> is the impulse response of the acoustic channel from the source to the

microphone, L is the index of the discrete-time impulse response coefficient vector, > is the transpose
of vector, and ∗ is the convolution operation.
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The degraded speech signal with reverberation is perceived as distant or as a very short type of
echo. Consequently, this effect generally increases as the speaker’s distance to the microphone increases.

Since this effect is not desired for proper recognition and analysis of the speech signal,
new algorithms have been proposed to minimize it. Mainly, in the last few years, algorithms based on
deep learning have stood out.

By implementing deep neural networks, an approximation to s(n) can be estimated using a
function f (·) between the data of the reverberated signal and the clean signal:

ŝ(t) = f (x(t)) . (2)

The quality of the approximation performed by f (·) usually depends on the amount of data and
the algorithm selected. For the present work, we take as a base case the estimation of f (·) made by
bidirectional LSTM (BLSTM) networks with three hidden layers.

The main motivation in applying these deep neural networks is their recent success in speech
enhancement related tasks, where they surpassed other algorithms applied to improve speech in noisy
or reverberant conditions. In most of these experiences, it is noted the high computational cost of
training the LSTM and BLSTM networks as a constraint to perform extended experimentation.

In this model, we propose a comparison and statistical validation of results with mixed networks,
which include combinations of BLSTM layers and perceptron.

3. Autoencoders of BLSTM Networks

Since the appearance of RNNs, there are new alternatives to model the character dependent on
the sequential information in applications where the nature of the parameters is relevant. These types
of neural networks are capable of storing information through feedback connections between neurons
in their hidden layers or another network that is in the same layer [26,27].

With the purpose of expanding the capabilities of RNNs by storing information in the short and
long term, the LSTM networks shown in [28] introduce a set of gates into the memory cells capable
of controlling access and storage and propagation of values across the network. The results obtained
when using LSTM networks in areas that depend on previous states of information, as is the case with
voice recognition, musical composition, and handwriting synthesis, were encouraging [28–30].

In addition to the recurring connections between the internal units, each unit in the network has
additional gates for storing values: One for input, one for memory clearing, one for output, and one
for activating memory. In this way, it is possible to store values for many steps or have them available
at any time [28].

The gates are implemented using the following equations:

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(4)

ct = ftct−1 + it tanh (Wxcxt + Whcht−1 + bc) (5)

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (6)

ht = ot tanh (ct) (7)

where σ is the sigmoid activation function, i is the input gate, f is the memory erase gate, and ot is the
exit gate. c is the activation of memory. Wmn is the matrix that contains the values of the connections
between each unit and the gates. h is the output of the LSTM memory unit.

Additional details about the training process and the implications of this implementation can be
found at [31].
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An additional extension of LSTM networks that has had a greater advantage in tasks related to
temporal parameter dependence is the BLSTM. Here, the configuration of the network allows the
updating of parameters in both directions of the process: One can convert the input parameters to
the reference of the output, and vice versa. In this work, these units are used to make comparisons.
The structure of a simple bidirectional network with input i, output o, and two hidden layers (h f and
hb) is shown in Figure 1.

it-1

hbt-1

hft-1

ot-1

it

hbt

hft

ot

it+1

hbt+1

hft+1

ot+1

Figure 1. Bidirectional Long Short-term Memory (BLSTM) network structure. Adapted from [32].

LSTM networks can handle information over long periods; however, using bidirectional LSTM
(BLSTM) neural networks with two hidden layers connected to the same output layer gives them
access to information in both directions. This allows bidirectional networks to take advantage of not
just the past but also the future context [32].

One of the main architectures applied for regression tasks (including speech enhancement) using
deep neural networks are the autoencoders. An autoencoder for speech enhancement is a neural
network architecture that has been successful in various tasks related to speech [33]. This architecture
consists of an encoder that transforms an input vector s into a representation in the hidden layers h
through a f mapping. It also has a decoder that takes the hidden representation and transforms it back
into a vector in the input space.

During training, the features of the distorted signal (noise or reverberation) are used as inputs for
the noise elimination autoencoders, while the features of the clean speech are presented as outputs.
In addition, to learn the complex relationships between these sets of features, the training algorithm
adjusts the parameters of the network. Currently, computers and algorithms have the ability to process
large datasets, as well as networks with several hidden layers.

4. Experimental Setup

To test our proposed mixed neural networks LSTM/Perceptron to enhance reverberated speech,
the experiment can be summarized in the following steps:

1. Selection of conditions: Given the large number of impulse responses contemplated in the
databases, we randomly chose five reverberated speech conditions. Each of the conditions has
the corresponding clean version in the database.

2. Extraction of features and input-output correspondence: A set of parameters was extracted from
the reverberated and clean audio files. Those of the reverberated files were used as inputs to the
networks, while the corresponding clean functions were the outputs.

3. Training: During training, the weights of the networks were adjusted as the parameters with
reverberation and clean were presented to the network. As usual in recurrent neural networks,
the updating of the values of the internal weights was carried out using the back-propagation
algorithm through time. In total, 210 expressions were used for each condition (approximately
70% of the total database) to train each case. The details and equations of the algorithm followed
can be found in [34].
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4. Validation: After each training step, the sum of the squared errors within the validation set
of approximately 20% of the statements was calculated, and the weights of the network were
updated in each improvement.

5. Test: A subset of 50 phrases, selected at random (about 10% of the total number of phrases in
the database), was chosen for the test set, for each condition. These phrases were not part of the
training process, to provide independence between training and testing.

In the following subsections, more details of the experimental procedure are provided.

4.1. Database

We used the Reverberant Voice Database created at the University of Edinburgh [35], which was
designed to train and evaluate the methods of speech de-reverberation. The reverberated speech of
the database was produced by convolving the recordings of 56 native English speakers with several
impulse responses in various university halls. For this work, we randomly chose the following
conditions: ACE Building Lobby 1, Artificial Room 1, Mardy Room 2, ACE Lecture Room 1, and ACE
Meeting Room 2.

4.2. Feature Extraction

The pairs of WAV files corresponding to clean and reverberated speech were processed using the
Ahocoder [36] software to obtain the coefficients. Those were extracted with a frame size of 160 samples
and a frame-shift of 80 samples. For each frame of speech, we extracted the spectrum parameters
(39 MFCC), fundamental frequency ( f0), and the energy.

For this work, neural networks were applied to improve the 39 MFCC coefficients, while the rest
of the parameters remained invariant. During training, the parameters of the reverberated speech
were presented as the inputs of the network, while the correspondent parameters of the clean speech
were outputs.

For the test set, the MFCC parameters of the reverberated speech were substituted with the
enhanced version, and the evaluation measure was applied to the reconstructed WAVE file, also made
with the Ahocoder system.

4.3. Evaluation

For the evaluation of the results, the following objective measures were applied:

• Perceptual evaluation of speech quality (PESQ): This measure uses a model to predict the
subjective quality of speech, as defined in ITU-T P.862.ITU recommendation. The results are in
the range [0.5, 4.5], where 4.5 corresponds to the signal enhanced perfectly. PESQ is calculated
as [37]:

PESQ = a0 + a1Dind + a2 Aind (8)

where Dind is the average disturbance and Aind is the asymmetric perturbation. The ak were
chosen to optimize PESQ in the measurement of general speech quality.

• Sum of squared errors (sse): This is the most common metric for the validation set error during
the training process of a neural network. It is defined as:

sse(θ) =
T

∑
n=1

(cx − ĉx)
2 (9)

=
T

∑
n=1

(cx − f (cx))
2 , (10)

where cx is the known value of the outputs and ĉx is the approximation made by the network.
• Time per epoch: This refers to the time it takes for an iteration of the training process.
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Additionally, Friedman’s statistical test was used to determine the statistical significance of the
results in the test sets.

4.4. Experiments

Figure 2 shows the procedure followed for the comparison between the different architectures
tested in this work. To analyze all the architectures that can be formed with a mixture of BLSTM layers
and MLP layers, eight different neural networks were tested for each reverberation condition:

• BLSTM–BLSTM–BLSTM
• BLSTM–BLSTM–MLP
• BLSTM–MLP–BLSTM
• BLSTM–MLP–MLP
• MLP–BLSTM–BLSTM
• MLP–BLSTM–MLP
• MLP–MLP–BLSTM
• MLP–MLP–MLP

The metrics were applied in each of these possibilities, which constitute all the possibilities that
can be combined between the BLSTM and MLP layers in three layers.

Inputs

MLP Layer

MLP Layer

BLSTM Layer

MLP Layer

MLP Layer

BLSTM Layer

BLSTM Layer

BLSTM LayerBLSTM Layer

Comparison

Outputs OutputsOutputs

MLP Network BLSTM NetworkMixed Network

Figure 2. Sample of three networks compared in this work: The purely multi-layer perceptron (MPL),
a mixed network, and the purely BLSTM network.

5. Results and Discussion

Table 1 shows the training results for all networks and all possible combinations of three hidden
layers. The training of each set was repeated three times, and the average values are reported.
Following previously reported results, the network with only BLSTM layers provides the best results
in most cases of reverberation conditions.
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Table 1. Efficiency of the different combinations of hidden layers, by the condition of reverberation.
* is the best value of sse in each condition.

Condition Network (Hidden Layers) sse Time per Epoch (s)

MARDY

BLSTM–BLSTM–BLSTM 201.34 * 50.6
BLSTM–BLSTM–MLP 204.39 33.3
BLSTM–MLP–BLSTM 210.81 33.5
BLSTM–MLP–MLP 218.91 15.9
MLP–BLSTM–BLSTM 204.82 36.1
MLP–BLSTM–MLP 256.32 18.6
MLP–MLP–BLSTM 216.46 18.8
MLP–MLP–MLP 400.34 1.2

Lecture Room

BLSTM–BLSTM–BLSTM 213.12 74.9
BLSTM–BLSTM–MLP 214.35 48.8
BLSTM–MLP–BLSTM 221.88 49.3
BLSTM–MLP–MLP 229.22 23.2
MLP–BLSTM–BLSTM 212.34 * 52.8
MLP–BLSTM–MLP 226.39 27.7
MLP–MLP–BLSTM 230.85 27.6
MLP–MLP–MLP 360.41 1.8

Artificial Room

BLSTM–BLSTM–BLSTM 88.47 * 55.5
BLSTM–BLSTM–MLP 90.37 36.5
BLSTM–MLP–BLSTM 93.61 36.6
BLSTM–MLP–MLP 104.23 17.4
MLP–BLSTM–BLSTM 92.18 39.5
MLP–BLSTM–MLP 108.56 20.6
MLP–MLP–BLSTM 111.13 20.5
MLP–MLP–MLP 170.61 1.3

ACE Building

BLSTM–BLSTM–BLSTM 207.32 * 73.8
BLSTM–BLSTM–MLP 210.17 45.8
BLSTM–MLP–BLSTM 214.29 46.1
BLSTM–MLP–MLP 212.54 21.6
MLP–BLSTM–BLSTM 208.04 49.2
MLP–BLSTM–MLP 221.28 25.6
MLP–MLP–BLSTM 220.13 25.8
MLP–MLP–MLP 333.60 1.7

Meeting Room

BLSTM–BLSTM–BLSTM 197.37 69.9
BLSTM–BLSTM–MLP 199.03 45.7
BLSTM–MLP–BLSTM 204.68 45.8
BLSTM–MLP–MLP 217.52 21.6
MLP–BLSTM–BLSTM 196.90 * 49.6
MLP–BLSTM–MLP 206.03 25.7
MLP–MLP–BLSTM 214.28 25.9
MLP–MLP–MLP 363.19 1.7

For the five cases of reverberation considered in this paper, the network that stands out as a
competitive alternative to the three-layer BLSTM network is the MLP–BLSTM–BLSTM configuration.
In addition to presenting in two cases a better result between all the architectures (under the conditions
“Lecture Room” and “Meeting Room”), the training time is almost 30% less per epoch in comparison to
the BLSTM network. This is one of the main indicators sought in this work.

Table 1 also shows how the training times are similar between those configurations consisting
of two BLSTM layers and one MLP and those consisting of only one BLSTM layer and two MLPs.
The MLP–MLP–MLP type networks, despite having very low training times per epoch, as expected,
do not present competitive results in comparison to the others.

In addition to the verification of the training efficiency of the networks, Table 2 shows the results
in terms of the PESQ quality metric. This is of the utmost importance, since the analysis of the problem
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of de-reverberation of speech signals is what is being presented. Thus, improvements in efficiency and
sse values must also be checked in terms of the quality of the signal achieved.

Table 2. Objective evaluations for the different combinations of hidden layers, by the condition of
reverberation. * is the best value. The p-value was obtained with the Friedman test, with a significance
of 0.05.

Condition Network (Hidden Layers) PESQ Significative Difference p-Value

MARDY

BLSTM-BLSTM-BLSTM 2.30 - -
BLSTM–BLSTM–MLP 2.31 * no 0.715
BLSTM–MLP–BLSTM 2.27 yes 0.003
BLSTM–MLP–MLP 2.19 yes 6.648 × 10−8

MLP–BLSTM–BLSTM 2.28 no 0.147
MLP–BLSTM–MLP 2.08 yes 1.965 × 10−14

MLP–MLP–BLSTM 2.24 yes 0.000
MLP–MLP–MLP 1.94 yes 0.000

Lecture Room

BLSTM–BLSTM–BLSTM 2.28 * - -
BLSTM–BLSTM–MLP 2.21 no 0.095
BLSTM–MLP–BLSTM 2.22 yes 0.0034
BLSTM–MLP–MLP 2.20 yes 1.729 × 10−7

MLP–BLSTM–BLSTM 2.27 no 0.199
MLP–BLSTM–MLP 2.21 yes 9.635 × 10−5

MLP–MLP–BLSTM 2.20 yes 9.617
MLP–MLP–MLP 2.00 yes 0.000

Artificial Room

BLSTM–BLSTM–BLSTM 3.18 * - -
BLSTM–BLSTM–MLP 3.17 no 1.000
BLSTM–MLP–BLSTM 3.14 yes 0.002
BLSTM–MLP–MLP 3.12 yes 6.650 × 10−8

MLP–BLSTM–BLSTM 3.17 no 1.000
MLP–BLSTM–MLP 3.06 yes 1.965 × 10−14

MLP–MLP–BLSTM 3.08 yes 2.695 × 10−6

MLP–MLP–MLP 2.90 yes 0.000

ACE Building

BLSTM–BLSTM–BLSTM 2.37 * - -
BLSTM–BLSTM–MLP 2.35 no 0.068
BLSTM–MLP–BLSTM 2.35 no 0.147
BLSTM–MLP–MLP 2.32 yes 4.22 × 10−5

MLP–BLSTM–BLSTM 2.36 no 0.474
MLP–BLSTM–MLP 2.33 yes 0.026
MLP–MLP–BLSTM 2.33 yes 0.008
MLP–MLP–MLP 2.08 yes 0.000

Meeting Room

BLSTM–BLSTM–BLSTM 2.28 - -
BLSTM–BLSTM–MLP 2.29 * no 0.147
BLSTM–MLP–BLSTM 2.24 no 0.060
BLSTM–MLP–MLP 2.23 yes 0.002
MLP–BLSTM–BLSTM 2.28 no 0.474
MLP–BLSTM–MLP 2.25 no 0.715
MLP–MLP–BLSTM 2.20 yes 0.001
MLP–MLP–MLP 2.0 yes 1.960 × 10−14

In the last table, the differences obtained for the BLSTM–BLSTM–BLSTM base system are
presented, in terms of statistical significance, according to the Friedman test.

In each of the five reverberation conditions, the results of these tests can be summarized:

• MARDY, Lecture Room and Artificial Room: Only two of the mixed configurations present
results that do not significantly differ statistically with the base system. These mixed networks
are BLSTM–BLSTM–MLP and MLP–BLSTM–BLSTM.
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• Ace Building: In this case, three combinations of hidden layers present results that do not differ
significantly from the base case.

• Meeting Room: This is a particular case, because the combination BLSTM-BLSTM-MLP is
the one that presents the best result, although the improvement is not significant compared
to the base system. On the other hand, MLP–BLSTM–BLSTM, BLSTM–MLP–BLSTM, and
MLP–BLSTM–MLP present results that do not differ significantly from the base system.

Figure 3 shows the spectrograms corresponding to clean speech, as well as those corresponding
to speech with reverberation and to two of the proposed configurations: One based solely on BLSTM
layers and the mixed network that obtained better results (MLP–BLSTM–BLSTM). One can appreciate
the improvements introduced by the neural networks and the proximity that is perceived visually in
this representation of the spectrogram of the mixed network in comparison to that of the base system.

(a)

(b)

(c)

(d)

Figure 3. Spectrograms of a phrase in the database: (a) speak clean; (b) speak with reverberation (ACE
Building Lobby); (c) enhancement result with the BLSTM network; and (d) enhancement result with
the mixed MLP–BLSTM–BLSTM network.

Considering the previous efficiency results and how these are reflected in the PESQ metric, it is
emphasized that there are combinations of mixed networks, especially MLP–BLSTM–BLSTM, which
reduce the times of training considerably, without significantly sacrificing the quality of results in the
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reverberation of the signals.However, to increase efficiency in further experiments, some processes can
be parallelized and the proposal repeated in networks of greater depth.

6. Conclusions

In this work, the use of mixed neural networks, consisting of combinations of layers formed by
perceptron units, with BLSTM layers was proposed as an alternative for the reduction of training time
of purely BLSTM networks. Training time has represented a limitation for extensive experimentation
with this type of artificial neural network in different applications, including some related to the
improvement of speech signals.

One of the eight possible combinations of mixed networks presented competitive results, in terms
of the metrics of the training system, and results that did not differ significantly from the purely
BLSTM case in terms of the PESQ of the signals. The significance was determined with a statistical
test. The reduction in training time is on the order of 30%, in processes that can normally take hours or
days, depending on the amount of data.

The results presented here open the possibility for simplifying some neural network configurations
to be able to perform extensive experimentation in different applications where it is required to map
parameters with similar characteristics, as in the case of autoencoders.
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Abbreviations

The following abbreviations are used in this manuscript:

BLSTM Bidirectional Long Short-term Memory Neural Network
DNN Deep Neural Network
LSTM Long Short-term Memory Neural Network
MEMS Microelectromechanical System
MFCC Mel Frequency Cepstral Coefficients
MLP Multi-Layer Perceptron
PESQ Perceptual Evaluation of Speech Quality
RNN Recurrent Neural Network
SNR Signal-to-noise Ratio
TTS Text-to-Speech Synthesis
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