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Abstract: Heavy oil in crude oil flooding is extremely difficult to extract due to its high viscosity and
poor fluidity. In this paper, molecular dynamics simulation was used to study the emulsification
behavior of sodium dodecyl sulfonate (SDSn) micelles on heavy oil droplets composed of asphaltenes
(ASP) at the molecular level. Some analyzed techniques were used including root mean square
displacement, hydrophile-hydrophobic area of an oil droplet, potential of mean force, and the number
of hydrogen bonds between oil droplet and water phase. The simulated results showed that the
asphaltene with carboxylate groups significantly enhances the hydration layer on the surface of oil
droplets, and SDSn molecules can change the strength of the hydration layer around the surface
of the oil droplets. The water bridge structure between both polar heads of the surfactant was
commonly formed around the hydration layer of the emulsified oil droplet. During the emulsification
of heavy oil, the ratio of hydrophilic hydrophobic surface area around an oil droplet is essential.
Molecular dynamics method can be considered as a helpful tool for experimental techniques at the
molecular level.
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1. Introduction

Asphaltenes are a class of polycyclic aromatic hydrocarbon compounds in crude oil, insoluble
in paraffin medium, such as n-heptane, easily soluble in aromatic crude oil and organic solvent such
as o-xylene [1,2]. The natural asphaltenes in heavy oil tend to accumulate in the crevices of rock and
they can also be blocked in wellbore tubing and other equipment [3,4], which greatly reduces the oil
recovery rate [5] and increases the cost of oil displacement in the oil industry [6–8]. In heavy crude
oil, there are many types of asphaltenes [9]. Among them, asphaltenes containing carboxylate are
amphoteric, easy to stay at the oil-water interface, and have strong surface activity [10,11], which plays
a key role in the emulsification of heavy oil. In recent years, a lot of researches have been conducted on
the aggregation of asphaltenes [12] and the stability of oil-water emulsions [13] has been discussed,
and various techniques [14–18] have been used to analyze the effects of emulsifiers [19] on asphaltene
molecules. For example, micropipette technology [20] was used to study the formation and destruction
of the asphaltene molecular membrane at the water/oil interface [21–24]. Atomic force microscope
(AFM) was used to observe the morphology of asphaltene film on the glass or silicon surface [25,26].

However, experimental research commonly ignored the behavior of surfactant emulsifying heavy
oil at the molecular level. Computer simulation techniques such as molecular dynamics (MD) and
Monte Carlo (MC) methods are effective supplements to the experimental research at the molecular
level. These simulations can well describe the emulsifying behavior of surfactants at the oil/water
interface, and reveal the microscopic properties of asphaltenes [27]. The simulated results showed that
the main mechanism of surfactants enhanced oil recovery [28] is that surfactants can reduce the oil/water
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interfacial tension and change the interfacial property of heavy oil and water phase [29]. The simulation
results of Tang et al. [30] indicated a three-stage process of surfactant flooding driven oil-detachment,
including the initial formation of surfactant micelles and delivery, the disintegration-spread and
migration of surfactant molecules on the oil aggregate. Bhattacharjee et al. studied the aggregates of
asphaltenes in water/organic solvent systems [31]. They found that the model molecules tend to form
aggregates in pure solvents, and the interfacial activity of asphaltenes may be related to the heteroatom
properties, but not to polycyclic aromatic hydrocarbons. Gao et al. [11] used C5Pe containing carboxylic
acid as the asphaltene model molecule. They found that the C5Pe molecules with anionic groups can
be paralleled to the oil-water interface. Su et al. [32] studied the emulsification and viscosity reduction
heavy oil after surfactant molecules were added, and the simulated results showed that the reduced
viscosity of heavy oil is related with the hydrophilicity and emulsification performance of oil/water
surface. However, the emulsification mechanism of surfactant micelle in oil/water emulsion still could
be discussed at the molecular level.

In this work, molecular dynamics (MD) simulation is used to study the adsorption structure
of sodium dodecyl sulfonate (SDSn) micelle on the surface of a heavy oil droplet, and the effect of
asphaltenes was discussed on the emulsification of heavy oil.

2. Results

2.1. Aggregation Structure

Root mean square displacement (RMSD) represents the position deviation of the atomic position
coordinates from the initial moment. The change of the distance of a component relative to its initial
position, and the motion of the substance in the system are observed from the RMSD [33], and then the
thermodynamic equilibrium of the system was judged by it. The calculation formula (1) is as follows:

RMSD =

√√√
1
N

N∑
i=1

<|ri(t) − ri(0)|>2 (1)

where N is the number of atoms, ri(t) is the position coordinate of the i-th atom at time t, and ri(0) is
the initial position coordinate of the i-th atom.

The RMSD with only oil droplets is shown in Figure 1. Meanwhile, the RMSD of the surfactants is
also shown in Figure S1. In the first 5 ns, the RMSD of oil droplets both in system A and B increase
rapidly. This is because the systems relaxed rapidly from the spherical oil droplet at the beginning
of the simulation. In system A, the RMSD did not change much within 5–30 ns, indicating that the
oil droplet structure is stable and difficult to change. We noted that the RMSD of the oil droplet
molecules in system B increase significantly within 5–20 ns. This is because the structure of the oil
droplets changed greatly. After 20 ns, there are still significant fluctuations, indicating that the oil
droplet in system B is relatively unstable. The RMSD after 20 ns was calculated, and the average is
about 4.8 nm. From the RMSD of oil droplets in two systems, it can be concluded that the carboxylate
asphaltene in system A can enhance the diffusion of SDSn micelle and make the system more stable.
During the simulation period, when the system reached the equilibrium stage at 50 ns in Figure 2,
the micelles adsorbed in the oil droplets of system A, but not in system B. With the lengthening of the
simulation time, both adsorption and emulsification occur (Figure S2), but the system A adsorbs faster,
which proves that the acidified asphaltenes are very important for forming emulsified oil droplets.
This indicates that the acidified carboxylate group of the asphaltenes is crucial to the formation of
emulsified oil droplets.
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Figure 1. RMSD of oil droplets in water.

Figure 2. The configuration diagram at 50 ns in (a) system A (b) system B. SDSn are displayed in blue,
yellow, and red spheres, ASP are displayed in rods and marked with rose red, and other heavy oil
molecules are marked in gray. To be shown clearly, sodium ions and water molecules are removed.

2.2. Emulsification Process

To gain more insights into the relative position between SDSn molecules and oil droplets, and to
determine whether SDSn molecules are emulsified with oil droplets, the distance as a function of time
about the centroid of them was quantified, as shown in Figure 3. For system A, the distance in Figure 3a
decreases sharply from 4.2 nm to 0 nm in the Z direction, and finally fluctuates at 0 nm. Meanwhile,
there is a slight fluctuation around 0 nm after gradually decrease in the X and Y directions. This shows
that the micelle molecules are quickly adsorbed on the oil droplet during the simulation, and the center
of mass of the SDSn and the oil droplet are approximately coincident with the oil droplets during the
aggregation process. In Figure 3c, the linear distance between the SDSn molecular centroid and the
oil droplet centroid decreases rapidly during 0–5 ns in system A, indicating that adsorption occurs
quickly. Within 5–30 ns, the linear distance drops slowly and tends to 0 nm. But for the B system the
distance between the two centroids (x, y, z) in Figure 3b shows a periodic change in the Z direction up
and down and is away from the coordinate (0, 0, 0) where the centroids of the two coincide. As shown
in Figure 3c, there is a significant fluctuation in the straight line distance which is almost always much
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longer than the initial distance of 4.6 nm. This indicates that the adsorption of the micelle in system B
has never occurred. So next we focus on system A to study the mechanism of the emulsified oil droplet.

Figure 3. The distance as a function of time between the centroid of the SDSn micelle and the centroid
of the oil droplet in (a) (b) direction (x, y, z) (The blue area is the range of motion when they gather) (c)
the straight-line distance.

Solvent accessible surface area is the surface area where the spherical probe rolls around the
periphery of the target molecule, and the contact area generated by the aggregation inside the target
molecule is not included. The hydrophilic and hydrophobic properties of the model molecules can be
characterized by the hydrophilic solvent accessible surface area and the hydrophobic solvent accessible
surface area. To study the properties of the oil-water interface during the adsorption of micelle by
the oil droplet, solvent accessible surface area (SASA) of the oil droplet and SDSn as a function of
time was calculated. Figure 4 shows the ratio of hydrophilic/hydrophobic area of the SDSn and oil
droplet in system A. From 0 to 5 ns, the hydrophilic/hydrophobic surface area of oil droplet and SDSn
molecules in system A increase rapidly from 0.36 to 0.52, and then fluctuate slightly, indicating that
they in system A have been fused during this period.
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Figure 4. The ratio of hydrophilic/hydrophobic area of SDSn and oil droplet in system A and the inset
is the ratio from 0 to 5 ns.

Figure 5 shows the distribution of SDSn polar head coordinates with time evolution, and Figure 6
shows the configuration changes of the SDSn molecules and oil droplets in the simulation of system A.
Combining the two figures, at the initial moment, the micelle and oil droplet were randomly placed
without contact (Figure 5a and Figure 8a). In a short time, due to the hydrophilic effect of the polar
heads of surfactant molecules and asphaltene molecules, they formed hydrogen bonds with water
molecules to form the water bridge structure. After that, the tail chains of SDSn were separated
from the micelle, and their alkyl chains were close to the hydrophobic molecules in the oil droplets,
and the polarity head of SDSn molecules was close to the amphiphilic asphaltenes on the oil droplet
surface which SDSn molecules reach (Figure 5a–d). Subsequently, under the hydrophilic effect of
the polar heads of the SDSn and the hydrophobic effect of the alkyl chains, the polar heads of SDSn
are oriented towards the solvent water, and the alkyl tail chains are inserted into the oil droplets
(Figure 6b). With the extension of the simulation time, due to the hydrophobic interaction between the
hydrophilic groups, amphiphilic molecules such as SDSn and asphaltenes are almost evenly distributed
on the surface of the oil droplet (Figure 5e,f). So that’s the emulsification (Figure 6a–6d). Therefore,
the addition of SDSn changes the hydrophilic/lipophilic surface area of the oil droplet and increases
the hydrophilic surface area of the oil droplet.

The adsorption of micelle molecules and oil droplets is mainly caused by non-bonded interactions,
which include electrostatic interaction (Coulombic) and Van der Waals interaction (Lennard Jones).
The difference between systems A and B is only whether they carry carboxylate groups on asphaltenes.
Therefore, we focus on the interaction between SDSn and SDSn ASP in system A as shown in Figure 7.
The interaction between SDSn molecules is mainly dominated by van der Waals. In the first 8 ns,
the van der Waals attraction decreases rapidly from -2400 kJ/mol to -800 kJ/mol, which corresponds
to the micelle dispersion process. Thereafter, the interaction between SDSn molecules is stable at
about −800 kJ/mol, indicating that SDSn interactions are not the main driving force for adsorption and
migration of SDSn on the surface of the oil droplet (Figure 7a). It can be seen that before 28 ns, van
der Waals interaction between SDSn and asphaltene attracts increasingly, and it is divided into two
stages according to the growth rate: During 0–8 ns, the interaction rapidly changes from 0 to −800
kJ/mol, the growth rate of 8–28 ns slows down, from −800 to −889 kJ/mol, which means that in the
process of micelles approaching oil droplet, the van der Waals interaction between the SDSn molecules
and asphaltenes increases rapidly, then the process of decentralization and migration also increases
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(Figure 7b). The Coulomb interaction has a small proportion and a small increase, which shows that
the van der Waals attractive interaction between SDSn and asphaltenes is the main driving force
during the whole process of aggregation (Figure 7a,b). That is to say, SDSn molecules are more likely
to be combined with asphaltenes containing carboxylate than to aggregate with themselves and the
attraction between SDSn molecules and asphaltenes containing carboxylate in system A can further
emulsify by penetrating deep into oil droplet.

Figure 5. The distribution of SDSn polar head coordinates over time. Oil droplets were represented
with gray spheres, and 20 SDSn molecules are randomly selected from all SDSn.

Figure 6. Snapshots of system A without sodium ions and water at different time. (a) 0 ps, (b) 500 ps,
(c) 1 ns, (d) 10 ns. SDSn were represented with the spherical drawing method, and heavy oil molecules
were represented with bond drawing method, color identification: rose-red, asphaltene molecules, gray,
other oil molecules.
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Figure 7. Interaction energy of SDSn molecules with (a) SDSn and (b) ASP.

2.3. Emulsification Mechanism

In system A, the enlarged picture of SDSn molecules interacting with acidified asphaltene
molecules to spread on the surface of the oil droplet is shown in Figure 8. During the adsorption
of surfactant by oil droplet, both the SDSn and asphaltene polarity heads are oriented towards the
water molecules. Due to the saturation and directionality of the hydrogen bond, it can be seen that the
two polar heads always take the solvent layer of water molecules as the medium and do not directly
form the hydrogen bond. This means that in the process of adsorption, there is no superposition
and aggregation between surfactant and asphaltenes. On the contrary, the two active substances are
dispersed on the surface of oil droplets as much as possible, even when SDSn molecules migrate and
evenly distribute the oil surface. The polar head of SDSn and asphaltenes hardly contacted directly,
but through the water molecule as a water bridge (Figure 8) to COO− polar head water molecule
polarity SO3- form the hydrogen bonding interaction. Under the pulling of asphaltenes, the water
bridge is used as a bond to continuously slide the SDSn to the surface of the oil droplet.

Figure 8. Partial amplification of hydrogen bond between SDSn and asphaltene at (a) 300 ps, (b) 400 ps,
(c) 500 ps.

The potential of mean force (PMF) between the group atom and the water molecule can be
used to characterize the strength of its interaction with the water molecule and the stability of the
hydration layer, and explain the energy barrier to be overcome when the group atom interacts with
other molecules or ions [34]. The formula is calculated by the radial distribution function g(r) between
it and water molecules, through the formula (2)

E(r) = −kBT ln g(r) (2)
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PMF is obtained, where kB is the Boltzmann constant and T is the temperature of the simulated
system. The acidified molecular groups in system A and the unacidified molecular groups in system B
were selected to calculate the PMF between the groups and the water molecule as shown in Figure 9,
indicating the solvent layer energy barrier to be overcome in the process of external molecules
or ions approaching the group. We take the COO curve as an example to illustrate a few points:
1) The minimum point of the PMF potential energy curve (CM, contact minimum) is about 0.19 nm,
indicating the direct contact distance between the polar head and water molecules; 2) the second
minimum point of the potential energy curve is about 0.28 nm, which is the solvent-separated minimum
point (SSM), indicating the position where the second solvent layer is in contact with water molecules.
The energy values corresponding to CM and SSM determine the stability of the combination of water
molecules and polar heads in the first hydration layer and the second hydration layer; 3) there is a
relatively high barrier of a solvent layer (BS) between CM and SSM. It means that the energy barrier
other molecules have to overcome when they enter the first hydration layer from the second hydration
layer of the polar head and unite with the polar hydrophilic group. It also explains the stability of the
water substructure around the polar head.

Figure 9. The PMF between the groups and the water molecule.

The binding energy between groups and water molecules is determined by SSM and BS, namely
∆E+ = EBS − ESSM; and its dissociation energy depends on CM and BS, namely ∆E− = EBS − ECM.
Table 1 shows the binding energy and dissociation energy between each group and water. Combined
with Figure 9 and Table 1, the following conclusions can be drawn: (1) A relatively stable energy
hydration layer is formed between COO and water molecules, corresponding to the energy in the first
hydration layer 486 J/mol, which is far less than that of unacidified groups 2758 J/mol, (2) the binding
energy of COO with water ∆E+ (2.007 kJ/mol) is greater than that of unacidified groups with water
∆E+ (0.837 kJ/mol), indicating that the energy barrier to be overcome by the combination of COO and
water molecules is higher, which also shows that the combination of COO and water molecules is
more difficult for unacidified groups. We also notice that the dissociation energy of COO and water
molecules ∆E− (1.930 kJ/mol) is much larger than that of unacidified groups and water molecules
∆E− (0.09 kJ/mol), which means that although it is difficult for SDSn molecules to cross the solvent
layer energy barrier and combine water molecules, once the bonding pair and the hydration layer is
formed, the formed hydration layer is difficult to disintegrate extremely stable. It can be obtained
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from the above analysis that the combination of water molecules and COO is difficult, but once the
water molecules form a solvent layer, it is also stable. In contrast, the hydration layer formed by the
unacidified groups are unstable, and the desorption and adsorption are very rapid.

Table 1. The binding energy and dissociation energy between the groups and the water molecule.

Groups 4E+ (kJ/mol) 4E— (kJ/mol)

COO 2.007 1.930
CH 0.837 0.090

The number of hydrogen bonds contains a lot of rich information. The existence of hydrogen
bonds in molecular simulation can be judged by the angle formed by the hydrogen bond donor-H
atom-hydrogen bond acceptor and the distance between the donor and acceptor atoms. Hydration
layer can be formed around SDSn, and carboxylic acids on ASP on the surface of oil droplets in
system A can also form hydration layer, thus, to understand the emulsification of the oil droplet
surface, the molecular dynamics simulation calculated the number of hydrogen bonds between the
oil droplet surface and water in the 0–5 ns emulsification process of system A (Figure 10). Since both
the polar heads COO− and SO3

− are easy to form hydrogen bonds with water molecules, the number
of hydrogen bonds forms between the surface of oil droplets and water molecules increases rapidly
from 47 at 0 ns to 427 at 1,500 ps and then keep 427 floating up and down. According to the PMF and
the number of hydrogen bonds, we know that the hydration layer on the surface of the oil droplet
in System A is stable and the polarization ability is strong, while the hydration layer in System B is
unstable and its polarization is weak. SDSn molecules are easy to form hydrogen bond with the oil
droplet of the more stable hydration layer in System A, and then aggregate with oil droplet, while that
is more difficult in system B. It also proves from the side that the oil droplets attached to the surfactant
can form a large number of hydrogen bonds with the aqueous solution, thereby promoting the stability
of the oil-in-water emulsion and achieving the emulsification effect.

Figure 10. The number of H-bond as a function of time between the surface of oil droplet and water in
system A.
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3. Materials and Methods

3.1. Simulation and Force Field

Molecular dynamics simulations were performed using the GROMACS (2019.4) [35,36] software
package, and the GROMOS 54A8 force field was selected [37]. The simulated potential energy functions
include bond length, bond angle, dihedral angle, and other bonding potential and non-bonding
interaction potential, in which non-bonding interactions includes Lennard Jones potential and Coulomb
interaction potential. The calculation formula of the simulated potential energy function is shown in
Equation (3)

Ui j(r) = 4εi j

(σi j

ri j

)12

−

(
σi j

ri j

)6+ qiq j

ri j
(3)

In Equation (3), ri j is the distance between atoms i and j, qi is the charge assigned to the ith atom,
σi j is related to the equilibrium distance between i and j, and εi j is the intensity of action. The structure
parameters of the heavy oil molecules and the surfactant SDSn were generated by the Automated
Topology Builder (ATB) and Repository [38,39] databases, and water molecules were selected the
simple point charge (SPC) model [40]. The main force field parameters and charges in the simulation
are shown in Table S1–S19.

3.2. Molecular Model

3.2.1. Heavy Oil Model

The heavy oil droplet is composed of 2 types of asphaltenes [41], 6 types of resins [42] (Figure 11)
and 8 types of alkanes. The types of alkanes are based on the crude oil model of Miranda [28,43]. To be
close to the “real” heavy oil, the resins and asphaltenes accounted for 38% of the total mass of heavy
oil droplets. According to the oxygen content of asphaltene molecules and whether they contained
carboxylate groups or not, the simulated systems are divided into systems A and B, as shown in Table 1.
The former was the system containing carboxylated groups.

Figure 11. Asphaltenes and Resins used in the simulation. System A contains anionic Asp 1 and 2,
and system B contains Asp 1 and 2, respectively.
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At the initial simulation, asphaltenes, resins and alkanes were randomly placed in 10 × 10 ×
10 nm3 cubic box (see Table 2), and in order to maintain its electrical neutrality, some Na+ ions were
added to system A. The constant-pressure, constant-temperature (NPT) ensemble was operated at a
temperature of 300 K and a pressure of 0.1 MPa to achieve a suitable density. At last, one 6 × 6 × 6 nm3

cubic box containing crude oil phase was obtained (see Figure 12a).

Table 2. Details of the heavy oil simulation system.

Oil Droplet Type A B

Asphalt

Anionic Asp 1 32 0
0Anionic Asp 2 32

Asp 1 0
0

32
Asp 2 32

Cation Na+ 64 0

Hydrocarbon

Hexane 256 256
Heptane 236 236
Octane 276 276
Nonane 320 320

Cyclohexane 172 172
Toluene 276 276
Benzene 108 108

Resin

Resin 1 40 40
Resin 2
Resin 3

40
40

40
40

Resin 4 40 40
Resin 5 40 40
Resin 6 40 40

Figure 12. Simulation of the initial structure and dimensions. (a) Crude oil phase. (b) Heavy oil droplet.
(c) Emulsified oil droplet. To be shown clearly, water molecules were removed in Figure (b) and (c).

3.2.2. Heavy Oil Droplets and Micelle Model

SDSn micelles with a concentration greater than critical micelle concentration (CMC) were added
to the oil-in-water emulsion, assuming that a micelle and small oil droplets were captured from the
macro solution. After one reasonable density of the heavy oil was obtained from NPT ensemble,
the heavy oil system was put into the center of another 10 × 10 × 10 nm3 cubic box filled with simple
point charge (SPC) water molecules. Then, the 30 ns canonical ensemble (NVT) ensemble was run
to obtain one heavy oil droplet model surrounded by water molecules (see Figure 12b). Meanwhile,
one spherical micelle of SDSn surfactant containing 50 molecules was obtained from another NPT
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ensemble simulation in 6 × 6 × 6 nm3 box filled with SPC water molecules according to the similar
simulation above.

3.2.3. Emulsified Oil Droplet Model

To study the formation and mechanism of emulsified oil droplets, SDSn micelles were used to mix
with heavy oil droplets in 11 × 11 × 15 nm3 box (see Figure 12c). Based on the difference of asphaltenes,
system A and system B were established respectively. And the initial simulated model was shown
in Figure 12. Whether the oil droplets can be emulsified is related to the position of the micelles.
Considering the configuration of heavy oil during real emulsification, the distance between micelles
and heavy oil droplets is within the energy barrier, which is less than 2 nm, based on the Derjaguin
Landau Verwey Overbeek (DLVO) theory [44]. The boxes were filled with SPC water molecules to run
NPT ensemble for at least 50 ns. The details of the simulation system are listed in Table 3.

Table 3. Details of crude oil emulsion simulation system.

System SDSn Number Na+ Number Water Number Box Size (nm3)

A 50 67 56,410 11 × 11 × 15
B 50 50 57,609 11 × 11 × 15

3.3. Molecular Dynamics Simulation

After the simulated model was constructed, the steepest descent method was set to minimize the
energy, and the energy less than 1000 kJ·mol−1nm−1 was set to reach the convergence standard.
The simulated temperature and pressure of the NPT system were set to 300 K and 0.1 MPa,
respectively. The time step was set to 2 fs, and the periodic boundary condition [45] was used. In the
simulation, the bond length was constrained by the Linear Constraint Solver (LINCS) algorithm [35].
Velocity rescaling thermostat [46] was chosen with a time constant of 0.1 ps as the temperature
coupling method. The Berendsen pressure coupling [47] and the adjustment time constant as 1.0 ps
were selected, and the isothermal compression was adjusted to 4.5 × 10−5

·bar−1. In the simulation,
the cutoff distance of Lennard Jones potential interactions was set to 1.4 nm. For coulomb interaction,
the summation method of particle-mesh Ewald (PME) was selected [48,49]. The Verlet list was updated
every 10 steps, and the initial atomic velocity of the system was determined by the Maxwell Boltzmann
distribution [42]. The entire trajectory is integrated by the leapfrog Verlet algorithm [50]. The dynamics
properties were analyzed using the built-in analytical tools in GROMACS, and the trajectory was
observed with VMD1.8.9.

4. Conclusions

The emulsification process of the oil-water emulsion was studied by molecular dynamics simulation
when SDSn micelles were mixed with two types of oil droplets. Since the asphaltenes containing
carboxylate groups were added to the oil droplet in system A, it makes the hydration layer of the oil
droplet more stable and highly hydrophilic. Under the interaction of van der Waals, by hydrogen
bonds with water molecules to form a hydration layer, the hydration layer becomes a slip link of the
asphaltene molecules and SDSn which form a water bridge structure to attract their aggregation and
fusion. However, the hydration layer formed by the oil droplets without hydrophilic groups in system
B is unstable, and SDSn molecules are not easy to merge into the oil droplet (Figure 13). Therefore,
changing the hydrophilic/lipophilic of the oil droplets and increasing the hydrophilicity of the oil
surface will promote emulsification.



Molecules 2020, 25, 3008 13 of 15

Figure 13. Schematic diagram of SDSn emulsified oil droplets in system A and B.

Supplementary Materials: The following are available online: Figure S1: RMSD of SDSn in water, Figure S2:
Snapshots of the system B at different time in NPT simulation, Figure S3: Velocity of SDSn relative to the oil drop
in water, Figure S4: Velocity of SDSn relative to the oil drop in water, Table S1–Table S19: The field parameters of
molecules used in the simulation.
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