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Isoscattering strings
of concatenating graphs
and networks

Michat Lawniczak'*, Adam Sawicki?*’, Matgorzata Biatous® & Leszek Sirko'**

We identify and investigate isoscattering strings of concatenating quantum graphs possessing n units
and 2n infinite external leads. We give an insight into the principles of designing large graphs and
networks for which the isoscattering properties are preserved forn — oo. The theoretical predictions
are confirmed experimentally using n = 2 units, four-leads microwave networks. In an experimental
and mathematical approach our work goes beyond prior results by demonstrating that using a trace
function one can address the unsettled until now problem of whether scattering properties of open
complex graphs and networks with many external leads are uniquely connected to their shapes. The
application of the trace function reduces the number of required entries to the 2n x 2n scattering
matrices S of the systems to 2n diagonal elements, while the old measures of isoscattering require all
(2n)? entries. The studied problem generalizes a famous question of Mark Kac “Can one hear the shape
of a drum?”, originally posed in the case of isospectral dissipationless systems, to the case of infinite
strings of open graphs and networks.

The celebrated question of Marc Kac “Can one hear the shape of a drum?”! was posed to address the problem
of isospectral drums having the same shape. Mathematically, this question is equivalent to the distinctiveness
of spectra of the Laplace operator on planar domains with Dirichlet boundary conditions. The negative answer
to Marc Kac question was formulated by Gordon, Webb, and Wolpert>®. Using Sunada’s theorem* they con-
structed different in shape pairs of isospectral dissipationless domains in R2. These important theoretical findings
were confirmed experimentally by Sridhar and Kudrolli® and Dhar et al.® who used for this purpose especially
designed pairs of microwave isospectral cavities. One should point out that the isospectral properties of pairs of
neutrino billiards with the shapes of various isospectral in the nonrelativistic limit billiards have been recently
investigated numerically in Ref.’”. It was found that the isospectrality of the billiards is lost when changing from
the nonrelativistic to the relativistic case.

The problem of isospectrality was also analyzed in other important physically, mathematically and techno-
logically quantum systems—quantum graphs. Quantum graphs are the unions of vertices connected by one-
dimensional quantum bounds®’. The importance of quantum graphs stems from the fact that they can be used
to describe a huge number of physical and mathematical systems and models, e.g., nanophotonic lasers on
graphs!?, superconducting quantum circuits'!, entanglement in graph states'>'?, experimental setups for high-
dimensional multipartite quantum states', quantum circuits in tunnel junctions'®, and Weyl and non-Weyl
quantum graphs and networks'®.

Gutkin and Smilansky'’ proved that the spectrum of a graph can be used to uniquely identify graph’ structure
if the lengths of its bonds are incommensurable. However, in the case of graphs with commensurate lengths
of bonds the situation is more complicated. Among infinitely many realizations of graphs with the same total
length L it is also possible to find the isospectral dissipationless ones, which are characterized by different topo-
logical properties. An effective method of construction of such graphs uses the representation theory and the
transplantation technique'®".

In real life open physical systems, including quantum graphs with leads?® and microwave networks, one have
to deal with dissipation of energy due to, e.g., internal absorption and coupling to the outside world. In such a
situation one can ask a more general question whether the geometry of a graph can be revealed in scattering-
type experiments. Also in this case the question was answered in negative. To find this answer Band, Sawicki
and Smilansky®"?? analyzed isospectral quantum graphs with attached two infinite leads. They theoretically
demonstrated that among such graphs it is possible to identify the isoscattering ones.
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Figure 1. Schemes of the isoscattering strings of the concatenating graphs I'; 5, and I'2 5,.. (a) The isoscattering
string I'1 5, with n — 1loops, 211 leads, and V' = 2n + 4 vertices. (b) The isoscattering string I' »,, with # loops,
2n leads, and V = 2n + 2 vertices. The Neumann and Dirichlet boundary conditions are marked by N and D
capital letters, respectively. The restriction of the wave function W, », to a segment k of the string I'1 »,, is denoted
by Wy k. The wave function @, restricted to a segment k of "3, can be expressed by the components of the
wave function \W; 5, using the formulas (2-3). (c—d) The elementary units of the isoscattering strings I'; », and
I"2.24, respectively. The vertices of the internal units possess the Neumann boundary conditions. The vertices of
the last units of the strings from the right-hand side fulfil the Dirichlet boundary conditions.

The theoretical findings were experimentally confirmed in the series of papers** where a pair of isoscattering

quantum graphs with two external infinite leads were simulated by two isoscattering microwave networks. In the
experimental analysis relatively simple isoscattering networks were characterized by standard characteristics of
isoscattering properties of graphs such as the cumulative phase and the structures of poles of the determinant
of the two-port scattering matrices.

In this article we present the construction of isoscattering strings resulting from concatenating open quantum
graphs and microwave networks. The strings are constructed from n building blocks (units), each one pos-
sessing two external leads, and therefore they can be characterized by 2n x 2 scattering matrices S. Using the
transplantation technique we prove that the strings are isoscattering, i.e. they have the same spectra of scatter-
ing matrices. It means that their scattering matrices can be, for example, characterized by the same cumulative
phases of their determinants which is a standard indicator of isoscattering™>*. We show that their isoscattering
properties are preserved in the limit#n — oc. Furthermore, we demonstrate that a trace function can be used as
a much simpler and therefore a much more effective tool for identifying of complex isoscattering networks. The
theoretical predictions are confirmed experimentally for n = 2, i.e., strings of four-leads microwave networks.

Isoscattering strings of concatenating graphs

We demonstrate that the two strings of concatenating open graphs I'1 5, and I'; 5, given in Fig. 1a, b are isoscat-
tering. For this we construct the transplantation matrix that transforms a wave function W1 », with the frequency
vdefined on T 3, to a wave function @, 5, with the same frequency v defined on I'; 2,,. Both W1 5, and @5 5, satisfy
all the vertex conditions of I'1 5, and I'z 2, respectively. The construction goes as follows. We divide each string
of graphs into 2x building segments (see Fig. 1c, d). The restriction of the wave function W1, to a segment k is
denoted by W x and similarly the restriction of @, 5, to a segment k is denoted by @, x. Our goal is to show that
there is a 2n x 2n matrix T, that is independent of v and satisfies:
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One can easily see that if we put
D00 = Vion-1+ V120, P21 =V¥11— VY12, ()
Dok = Wyg1 — Vigy1, forkef2,...,2n—1}, (3)

then ﬁ)z,zy, satisfies the vertex conditions of I' 5,, provided that ‘i’un does so onT'; »,. Therefore, the transplanta-
tion matrix T, is given by:

1 —1 0
1 0 -1 0
0 1 0 —10
A 0o 1 .o
Ty, = . (4)
0 1 0 -1 0
o1 0 -1
0 1 1

The existence of transplantation guarantees that the 2n x 27 scattering matrices 8™ and 8D of the open graphs
I'1,2n and 'y 2, are conjugated through the matrix T5,,

30 = F51300F,, 5)

To see this denote by ﬁ,zn and fz,zn the restrictions of W1 5, and @, 5, to infinite leads, respectively. We have

fion = arine ™ 4+ 8D e, (6)
> _ ik M= ik
faon = Gaine 4 UG, e, (7)

Next, note that the transplantation can be restricted to infinite leads. Thus the existence of the transplantation
implies

a2,in = TZnEI,in) (8)
$D a0 = T5,8P a1 jn. )

Combining these two equations we obtain
S(H) j\-‘271al,in = TZnS(I)al,im (10)

which is equivalent to (5).

Isoscattering strings of concatenating microwave networks
The simulation of quantum graphs by microwave networks is attainable because of a direct analogy between
the telegraph equation characterizing a microwave network and the Schrodinger equation of the complemen-
tary quantum graph®*-*%. Microwave networks allow for the simulation of quantum graphs described by three
basic ensembles in the random matrix theory (RMT): the Gaussian orthogonal ensemble (GOE)!62%26:29-32,
characterized by time (T) invariance, the Gaussian unitary ensemble (GUE)*-2%33** without T-invariance, and
the Gaussian symplectic ensemble (GSE)* also characterized by T-invariance. Many significant papers on this
topic!®27:2935% clearly demonstrate that microwave networks are particularly useful in the investigation of proper-
ties of open quantum graphs with complex topology. Microwave networks and coupled waveguides can also be
used to study a topological edge invariant®” and the photon number statistics of coherent light®. Recently, micro-
wave networks have been applied to realization of the chiral orthogonal, unitary, and symplectic ensembles®.
In the experiment described in this article strings of microwave networks simulating strings of quantum
graphs with preserved time invariance symmetry were used. They are composed of microwave joints (vertices)
connected by coaxial cables (bonds). Each microwave joint (vertex) i of a network is connected to the other joints
by vi bonds. The number v; is defined as the valency of the joint i. In the construction of strings of networks the
SMA-RG402 microwave coaxial cables were used. They consist of two conductors: the inner one of radius |
which is surrounded by an outer conductor of radius r,. A material with the dielectric constant & = 2.06 is used
to fill the space between the conductors. Below the onset of the TE;; mode, v =~ m ~ 33 GHz*, where
¢ denotes the speed of light in the vacuum, inside a coaxial cable is satisfied the condition for propagating only
the TEM mode.
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Figure 2. The schemes of the isoscattering strings of concatenating graphs I'y 4 and "5 4 with n = 2 units

and 4 leads. (a) The isoscattering string of graphs I'; 4 with 4 leads L{°, . .., L3° and V = 8 vertices. (b) The
isoscattering string of graphs I'; 4 with 4 leads L{°, ..., L3® and V' = 6 vertices. The Neumann and Dirichlet
boundary conditions are marked by N and D capital letters, respectively. (c) The experimental realization of the
string of concatenating graphs I'; 4. The microwave test port cables of the VNA are connected to the vertices 5
and 4 in order to measure the diagonal elements Sy, and S35 of the scattering matrix S, The connection of
the VNA to a microwave network is equivalent to attaching of two infinite leads L3° and L$° to a quantum graph.
To the vertices No. 3 and 2, 50 Q) loads were attached as the realization of the two additional leads L3 and L{°.

The pair of the isoscattering strings of concatenating networks I'; 4 and I'; 4 obtained from the two elemen-
tary units shown in Fig. 1c, d, respectively, are demonstrated in Fig. 2a, b. In Fig. 2c we show the scheme of the
isoscattering strings of concatenating microwave networks I'; 4 used in the experiment.

For the above strings of graphs and networks the two most typical vertex boundary conditions will be con-
sidered, the Neumann and Dirichlet ones. The Neumann boundary condition enforces the continuity of waves
meeting at the joint (vertex) i and vanishing of the sum of their derivatives at i. The Dirichlet boundary condition
requires vanishing of the waves at a given joint.

The stringI'; 4 of the n = 2 graphs in Fig. 2a consists of V' = 8 vertices connected by B = 8 bonds. The valency
of the vertices 3 — 6 is v = 4 while for the other ones the valency is v = 1. The vertices with numbers1 — 2 satisfy
the Dirichlet boundary conditions, while for the vertices 3 — 8 the Neumann boundary conditions are satisfied.
The second string I', 4, shown in Fig. 2b, consists of V' = 6 vertices connected by B = 7 bonds. At the vertex 1
the Dirichlet boundary condition is imposed while the vertices with the numbers 2 — 6 satisfy the Neumann
boundary conditions.

The strings of concatenating microwave networks I'j 4 and I'; 4 have the following optical lengths of the bonds:

b/2 = 0.0537 £ 0.0005 m,

¢/2 = 0.0508 £ 0.0005 m,

a = 0.1597 £ 0.0005 m,

b =0.1074 £ 0.0005 m,

¢ =0.1016 & 0.0005 m,

2a = 0.3194 £ 0.0005 m.
In contrast to the investigated in* systems which consisted of simple isoscattering networks with L = 2 external
leads (one unit, n = 1, of the considered in this article strings) here we study experimentally much more complex
isoscattering microwave strings of concatenating networks, consisting of # = 2 units and having L = 4 external
leads. Because of larger number of leads the systems are more open to the external world. The strings of the

networks I'; 4 and I', 4 are described by 2 x 2n scattering matrices S and S, respectively. The relationship
between both matrices is given by

§O = 718U T, (11)

where T} is 4 x 4 transplantation matrix (4). In general, the application of a standard measure of isoscattering
such as the phase of scattering matrix determinant

Im {log (det (3(1) ) )} =1Im [log (det (3(11)) ) } , (12)

is from the experimental point of view very inconvenient since for each 2n x 2n scattering matrix S or §40 it
requires measurements of (21)2 matrix elements. If we even assume the reciprocity of the matrices ¢ and SU0
for T-invariant systems, which imposes that the transmission between any of two “ports” of the matrices does
not depend upon the propagation direction, it still requires 2#? 4- n matrix elements for each of them.

Therefore, we introduce a new measure of isocattering which is the trace of scattering matrices !’ and §UP.
Using the properties of the trace function from the formula (5) one obtains

tr§O = e §UD. (13)
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Figure 3. The amplitudes [trSD | and [trSTD | (a) and the phases Im [log (trg a ))} and Im [log (trS(H ) )} (b) of the
trace function of the scattering matrices SV and §/0 obtained for the isoscattering strings of concatenating
microwave networks I'; 4 with V' = 8 vertices (red solid line) and I'; 4 with V' = 6 vertices (black empty circles),
respectively.

One should point out that both functions trS® and trS" are complex and depend on microwave frequency v.
The application of the trace function significantly simplifies the experimental procedure. Now, the measurement
of only 2n diagonal elements of each scattering matrix in a function of frequency v is required.

The measurements of the scattering matrices S!) and S were performed using the vector network analyzer
(VNA) Agilent E8364B. The experimental procedure is explained in the case of the string of microwave networks
I"2,4 presented in Fig. 2c. .

To measure the diagonal elements S;I;) and Sfép of the scattering matrix SU0 the flexible 50 Q) test port cables
HP 85133-60016 and HP 85133-60017 of the VNA were connected to the vertices 4 and 5 of the string of
microwave networks shown in Fig. 2¢. To the vertices 3 and 2, 50 Q) loads were attached as the realization of the
two additional leads L3® and L{°. The connection of the VNA to a string of microwave networks (see Fig. 2¢c) is
eg%ivalent to attaching of two infinite leads L3° and L3° to a string of quantum graphs. The diagonal elements
S11 and S5, were measured similarly. In this case the VNA was connected to the vertices 2 and 3, while to the
vertices 4 and 5, 50 2 loads were connected.

The full scattering matrices S? and §/0, including the off-diagonal elements, are required for testing of
the properties of the isoscattering strings using the transplantation matrix T4. In this case six combinations of
connections of microwave test port cables to each string are possible. If any of two vertices of the string were
connected to the VNA the remaining two vertices were terminated with 50 2 loads.

Experimental results

The measurements of the diagonal elements of the scattering matrices S and §U" were performed in the fre-
quency range v = 0.01-1.3 GHz. In Fig. 3a we show that the amplitudes of the trace function |tr§(1 )|and |tr§ )
of the scattering matrices SD and 8D of the strings of networks I'; 4 and I", 4, marked by red solid line and black
open circles, respectively, are close to each other, proving that we are dealing with the isoscattering networks.
For the frequency range 0.01-1 GHz the agreement between the results obtained for both strings of networks is
almost perfect. However, for the frequency range 1-1.3 GHz small discrepancies arise, caused possibly by small
differences in the cables’ lengths and a small differentiation of the vertex boundary conditions of the networks
in a function of frequency v.

The modulus of the trace function of the scattering matrices can be treated as a concise measure of the iso-
cattering properties of the strings of networks and graphs with dissipation. The problem of losses in microwave
networks are discussed in*!. However, the formula (13) deals with the full trace function which is a complex
number. Therefore, the isoscattering properties of the two strings of networks should be also observed in the
phases of the trace functions, regardless of the absorption strength

Im [log(trg(l))] =1Im [log(tr:S‘(H))]. (14)

In Fig. 3b we present the comparison of the phases Im [log (trga ))} (red solid line) and Im [log(trg(n ))} (black

empty circles) of the trace function of the scattering matrices S¢) and SV, respectively. The agreement between
the results obtained for different networks I'; 4 and I, 4 is very good, demonstrating that we deal with the isoscat-
tering strings of networks.

It is important to note that the isoscattering strings of graphs considered in this article have an additional
important property, namely the scattering matrices of them are conjugated to each other by the transplantation
relation (11), where
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Figure 4. Validation of the transplantation relation (11). The modulus|S 511) ' | (red solid line) that was obtained
using the transplantation relation applied to the experimentally measured scattering matrix of the second string
4,80 = T, 18D Ty, is compared to the measured modulus of the scattering matrix element |S§I]) | of the first
string I'; 4 (black empty circles).

1-10 0

R 10 —1 0

=1y 1 o -1 (15)
00 1 1

The matrix Ty does not depend on the frequency and the Eq. (11) is valid for all values of v.

In order to check the transplantation relation (11) we transformed experimentally measured scattering matrix
of the first string of networks SO = T, 'SUD T, and compared it to the scattering matrix S of the second one.
In Fig. 4 we present the results obtained for the moduli |S§Il) | (red solid line) and |S§Il)| (black empty circles),
respectively. Figure 4 shows clearly that the transplantation relation works very well. Also in this case some small
differences that are seen for v > 0.55 GHz can be attributed to small differences in the cables’ lengths and a small
differentiation of the vertex boundary conditions in a function of microwave frequency. In general, however,
the transformed scattering matrix of the first string of networks T, 18UD Ty reconstructs very well the scattering
matrix of the second one S

In summary, we proved that there are isoscattering strings of concatenating graphs possessing 7 units and 2n
infinite external leads. The isoscattering properties of such strings of open graphs are preserved forn — oo. The
theoretical predictions were confirmed experimentally using the strings of two microwave networks I'; 4 and
I', 4 consisting 1 = 2 units and four-leads which are characterized by the scattering matrices S and S, respec-
tively. We proved that both systems are isoscattering showing that both matrices are linked by the transplantation
relation (11). Furthermore, in the analysis of the strings of microwave networks we used a new measure of
isoscattering—the trace function. We demonstrated that the amplitudes [trSD| and [trSUD|, and the phases

Im [log (trg a ))} and Im [log (trS(U ))} of the trace function measured in the frequency range v =0.01-1.3 GHz are

very close to each other, proving that both networks are isoscattering.

_ The application of this new measure reduces the number of required entries of the 2 x 2# scattering matrices
S of the systems to only 2n diagonal elements. The measures of isoscattering used in the earlier investigations®*
required all (211)? entries of the scattering matrices S. Thus for large open experimental systems, with many leads,
they have no operational meaning. The obtained results clearly show that the investigated strings of microwave
networks I'; 4 and "y 4 are isoscattering paving the way towards the future experimental analysis of even more
complex isoscattering systems for which the transplantation relation can be applied. Moreover, after deleting
infinite leads, the considered strings of graphs are isospectral as closed quantum systems. They, therefore con-
stitute an interesting example of arbitrary large isospectral quantum graphs.

Data availability
The data that support results presented in this paper and other findings of this study are available from the cor-
responding authors upon reasonable request.
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