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A B S T R A C T   

Antimicrobial resistance is increasing in prevalence and there is a clear need for the development of rapid 
detection methods in clinical diagnostics. This review explores –omics studies utilising mass spectrometry to 
investigate the molecular phenotype associated with carbapenem resistance. Whilst the specific mechanisms of 
carbapenem resistance are well characterised, the resistant phenotype is poorly understood. Understanding how 
the acquisition of resistance affects cellular physiology and cell metabolism through molecular phenotyping is a 
necessary step towards detecting resistance by diagnostic means. In addition, this article examines the potential 
of mass spectrometry for the identification of resistance biomarkers through molecular profiling of bacteria. 
Developments in mass spectrometry platforms are expanding the biomarker-based diagnostic landscape. Tar-
geted measures, such as high-resolution mass spectrometry coupled with chromatographic separation show 
considerable promise for the identification of molecular signatures and the development of a rapid diagnostic 
assay for the detection of carbapenem resistance.   

1. Introduction 

Carbapenems are a broad-spectrum class of β-lactam antibiotic 
comprised of a β-lactam ring fused to a 5-membered pyrroline ring. The 
unique structure and stereochemistry of carbapenems (Fig. 1) bestows a 
wider spectrum of antimicrobial activity compared with other β-lactams, 
such as penicillins and cephalosporins, and augmented stability against 
hydrolysis by non-carbapenemase β-lactamases [1,2]. Carbapenems are, 
consequently, regarded as last-resort antibiotic therapies and are used in 
the treatment of infections, such as those caused by extended-spectrum- 
β-lactamase (ESBL) producing Enterobacteriaceae. 

Carbapenem-resistant Enterobacteriaceae (CRE) constitute a major 
global health problem, highlighted by their classification as critical 
priority pathogens by the World Health Organisation [3]. 

Enterobacteriaceae are a family of Gram-negative bacteria, which in-
cludes Escherichia coli and Klebsiella pneumoniae. Whilst some members 
are beneficial commensal microbiota of the gastrointestinal tract, others 
have far greater pathogenic potential. Moreover, Enterobacteriaceae are 
a major source of nosocomial infections including ventilator-associated 
pneumonia, hospital-acquired urinary tract infections, surgical site in-
fections, and septicaemia [4,5]. The consequence of antimicrobial 
resistance (AMR) within these highly transmissible organisms, particu-
larly to carbapenems, is of particular concern. 

Whilst the natural development of drug resistance is inevitable 
through evolutionary means, the rate at which carbapenem resistance 
(CR) has emerged has been exacerbated by factors including the volume 
of antibiotics utilised across sectors such as medicine and agriculture, in 
addition to the dissemination of resistant microorganisms [6–13]. 
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Unsurprisingly, an upsurge in the clinical use of carbapenems, due to 
over-prescription combined with a lack of alternative options, has led to 
the subsequent increase of carbapenem-resistant organisms (CRO) 
[14,15]. CR in Enterobacteriaceae is mainly attributable to the acqui-
sition of genes encoding carbapenemases, which hydrolyse and inacti-
vate the carbapenem molecule [16]. Furthermore, cell membrane porin 
mutations may also confer resistance, especially in conjunction with 
AmpC overexpression [17,18]. The mechanisms of CR in Enterobac-
teriaceae are presented in Fig. 2. 

Carbapenemases are typically encoded on highly mobile genetic el-
ements, such as plasmids, which may be horizontally transferred be-
tween bacterial cells and species [19]. This signifies that the resistance 
itself is transmissible, a phenomenon which poses a significant threat in 
the healthcare environment. Rapidly identifying and isolating patients 
infected with carbapenemase-producing organisms (CPO) is, therefore, 
paramount to reducing the prevalence of nosocomial infections affili-
ated with carbapenem-resistant bacteria and the subsequent spread of 
resistance [20]. Furthermore, given the high mortality rates associated 
with CR infections, rapid detection will facilitate appropriate and timely 
treatment to improve patient outcomes [21]. Measures used in clinical 
practice require significant re-evaluation and improvements to meet 
these needs. Currently, routine clinical methodologies involve incuba-
tion periods of up to 72 h, and are based on ambiguous breakpoint 
criteria [22]. There is a need for rapid and accurate detection methods to 
improve how we manage such highly resistant infections in the 
healthcare environment. 

Developments in MS platforms are rapidly expanding the biomarker- 
based diagnostic landscape, enabling analysis of complex biological 
matrices with high sensitivity. Furthermore, molecular phenotyping by 
MS shows immense potential for the development of robust and accurate 
AMR detection methods, which may be translated into routine and high- 
throughput clinical diagnostics. This review will explore recent 

developments in MS-based molecular phenotyping approaches in the 
fields of proteomics, lipidomics and metabolomics for the detection of 
CRE and identify avenues for future exploration. The techniques 
examined are depicted in Table 1, with an evaluation of the associated 
advantages and shortfalls. 

2. Proteomics 

2.1. The bacterial proteome 

As with eukaryotes, bacterial protein networks mediate most cellular 
processes. Consequently, the bacterial proteome is highly dynamic and 
changes in response to cellular conditions. Proteins of the bacterial cell 
envelope, for example, have roles in sensing the outer environment and 
modulating regulatory pathways to maintain homeostasis [23]. Simi-
larly, proteins involved in the stress response elicit modifications of the 
cell membrane to promote stability [24]. In nearly all instances, AMR is 
directly mediated by proteins, thus several proteins are already associ-
ated with resistance [25,26]. 

However, the global resistant phenotype is poorly understood. 
Whilst analysis of resistance-conferring proteins provides information 
pertinent to a particular mechanism, it offers little insight into the 
multitude of interlinked networks contributing to the overall resistant 
phenotype [27]. Exploratory (or “shotgun”) proteomics studies utilising 
MS facilitate a more comprehensive understanding of the networks at 
play and enable the identification of features not encoded by the genome 
or transcriptome [28,29]. Whilst genomic analysis may indicate the 
presence of specific genes, insight into patterns of gene expression is 
usually inferred, and does not provide further information on the 
occurrence of post-translational modifications or phenotypic changes 
due to environmental stresses. 

Proteomics can provide both confirmation of protein presence and a 
direct quantitative measurement of expression levels. The proteome has 
greater complexity than the genome and its analysis offers a more 
elaborate understanding of the organism. The utilisation of proteomics 
for phenotypic prediction has conceivable applicability for the purposes 
of CRE detection, with an ability to identify novel resistance markers 
and post-translational modifications. 

2.2. Methods of profiling 

Matrix-assisted laser desorption ionisation-time of flight mass spec-
trometry (MALDI-TOF MS) has revolutionised clinical protocols for 

Fig. 1. Core structure for the carbapenem class of molecules.  

Fig. 2. The mechanisms of carbapenem resistance in Enterobacteriaceae. 1) Enzymatic hydrolysis by carbapenemase enzymes, resulting in inactivation, 2) Mutations 
leading to porin loss or modification, inhibiting the influx of carbapenem molecules, 3) Efflux pumps which facilitate the active transport of the carbapenem molecule 
out of the cell through both membranes, decreasing cellular concentrations. 
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microorganism identification over the last decade, especially as the 
instrumentation is already established within the clinical laboratory. 
Recent developments in MALDI-TOF MS analysis have demonstrated the 
ability to directly detect carbapenemases [30–35]. Traditionally, 
MALDI-TOF MS microorganism identification focuses on mass peaks 
<20,000 m/z [36]. However, it has been postulated that biomarker 
detection is more probable at higher mass ranges, with Klebsiella pneu-
moniae carbapenemases (KPCs) and other β-lactamases detected in 
Enterobacteriaceae via high range m/z peaks corresponding to these 
enzymes [30–35]. 

Methods that enable the direct detection of resistance markers are 
advantageous, facilitating accurate analysis and the development of 
standardised and automated workflows for diagnostic purposes. Several 
growth-based assays for antibiotic susceptibility testing using MALDI- 
TOF MS have been proposed, and include direct-on-target micro-
droplet protocols, as well as the ability to sample from positive blood 
cultures [37–39]. The value of MALDI-TOF MS for the direct detection of 
CR is debated, however, with some studies demonstrating inefficacy in 
detecting resistance enzymes in clinical strains [40,41]. Although 
analysis time is modest and demonstrates high-throughput capability, 
this can be at the cost of sensitivity loss in complex matrices. Whilst 
detection appears achievable in laboratory strains, clinical strains often 
exhibit lesser enzyme production due to lower plasmid numbers, such 
that enhanced sensitivity is required for their detection [42,43]. Addi-
tionally, whilst MALDI-TOF MS methods for antibiotic susceptibility 
testing are compatible with direct sampling from complex biological 
matrices, such as blood and urine, direct detection of proteins for 
resistance confirmation performs poorly [36,38,39,44]. Measures to 
compensate for the reduced sensitivity include the use of detonated 
nanodiamonds to concentrate proteins [45]. However, the use of such 

reagents limits routine clinical applicability with increased costs and 
sample preparation time. Thus MALDI-TOF MS for the direct identifi-
cation of proteins associated with CR is unsuitable for implementation 
into routine diagnostics without time-consuming and costly sample 
preparation. 

A major drawback of direct MS techniques is ion suppression. Hart 
et al. sought to minimise the degree of ion suppression resulting from 
MALDI-TOF MS analysis of periplasmic extracts by incorporating a 
liquid chromatography (LC) separation step prior to digestion [43]. Ion 
suppression results from competitive desorption and ionisation within a 
complex sample, resulting in the masking of some components’ signals 
by others of greater abundance or which have preferentially desorbed/ 
ionised [46]. However, whilst the target proteins were detected with 
enhanced resolution, differentiation between enzyme subclasses was not 
possible and analysis time was increased by the offline coupling of LC 
and MALDI-TOF MS, making it suboptimal for routine clinical use. 

Differential proteome analysis demonstrates great value during 
initial stages of biomarker discovery and phenotypic characterisation, 
with information obtained offering insight into the mechanisms 
involved in resistance and permitting identification of potential 
biomarker candidates. Additionally, it aids in establishing the resistant 
molecular phenotype, characterised by altered protein expression. Pro-
teome profiling necessitates a separation step prior to MS analysis to 
enable sufficient resolution [47,48]. Previously, gel-based methods were 
a means of achieving such separation. Khan et al. investigated the effect 
of meropenem exposure on the proteome of a K. pneumoniae strain 
carrying a blaKPC-2 gene [49]. Protein spots observed to be upregulated 
after two-dimensional gel electrophoresis of whole-cell extracts were 
manually excised and digested prior to MALDI-TOF MS analysis. Several 
proteins were identified with roles in energy metabolism, detoxification 

Table 1 
An overview of the mass spectrometry platforms discussed in this review for molecular phenotyping studies of CRE by proteomics, lipidomics and metabolomics.  

Platform -omic Advantages Limitations 

Direct infusion-mass spectrometry 
(DI-MS) 

Proteomics 
Lipidomics 
Metabolomics  

Data acquisition is rapid as no chromatographic 
interface present – potential for high-throughput 
analysis 
Analysis is more simplistic and cost efficient as 
does not require solvents 
Limited issues with carryover and intra-batch 
drift 

Lacks retention time dimension 
Issues with coelution, particularly in complex samples – large matrix 
effects 
Difficulty separating isomers and isobaric compounds 
Difficulty with spectral alignment 

Liquid chromatography-mass 
spectrometry 
(LC-MS) 

Proteomics 
Lipidomics 
Metabolomics 

Wide variety of compounds detectable by altering 
chromatographic conditions 
Analysis of thermally labile compounds permitted  

Issue of data variability between platforms and chromatographic 
conditions 
Limited compound identification libraries compared to GC–MS as 
retention time comparisons in databases are only relevant when 
chromatographic conditions match 
Poor coverage of metabolomics databases 

Gas chromatography-mass 
spectrometry 
(GC–MS) 

Lipidomics 
Metabolomics 

Established methodologies and mass spectral 
libraries available 
Highly reproducible 
Gas and liquid sampling matrices possible 
depending on platformSecond chromatographic 
dimension (GCxGC)  
greatly improves resolution and peak 

identification capacity 

Non-volatile compounds require derivatisation which can increase 
analysis time 
Typically longer analytical runs than LC-MS 
High-throughput analysis more difficult to establish than other 
techniques 
Not suitable for macromolecules 

Matrix-assisted laser desorption/ 
ionisation-time of flight-mass 
spectrometry 
(MALDI-TOF MS) 

Proteomics 
Lipidomics 

Relatively low cost and minimal sample 
preparation 
Rapid analysis – potential for high-throughput 
analysis 
Already utilised in clinical laboratories for 
bacterial identification 

Generally only induces singly charged protein ions, making ion 
transmission difficult 
Low sensitivity without pre-concentration/purification 
More limited to macromolecules 
Limited compound identification libraries 

Selected-ion flow-tube-mass 
spectrometry 
(SIFT-MS) 

Metabolomics Real time online analysis 
Rapid analysis – potential for high throughput 
analysis 
Uses soft chemical ionisation giving less 
fragmentation than GC–MS (which typically uses 
electron ionisation) 

Analysis of volatile compounds only 
Sampling from gaseous matrix only 
No retention time dimension, making identification of compounds 
difficult 
Not suitable for macromoleucles 

Secondary electrospray ionisation 
(SESI-MS) 

Metabolomics Can be used for real time online analysis 
No chromatographic interface 
Strong potential for high throughput analysis 
Can detect high and low volatility compounds 

No established compound identification libraries 
Not suitable for macromolecules 
No retention time dimension  
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of the effects of reactive oxygen species, and mediating protein folding. 
Such findings are predictable given the increased energy demands 
associated with the stress response and the upregulation of gene 
expression and protein translation. Of note was the overexpression of 
LysM domain/BON superfamily protein, regulated as part of the general 
stress response and believed to play a role in the modification of 
peptidoglycan cross-linking when cell wall stress is detected [50]. 
However, whilst gel methods confer valuable information on proteins of 
noticeably high abundance, they are inherently biased against low 
abundance and hydrophobic proteins [28]. Inconclusive findings are, 
therefore, likely and may potentiate misrepresentation of the resistant 
phenotype. 

The use of liquid-chromatography coupled to tandem mass- 
spectrometry (LC-MS/MS) confers greater sensitivity than MALDI-TOF 
MS for proteome profiling, with the LC component affording enhanced 
separation through chromatographic means. LC-MS/MS has been used 
to assess the dynamic changes of the CRE proteome under antibiotic 
stress [51,52]. Similar to the reported findings of Khan et al., 
carbapenem-resistance was correlated with the overexpression of pro-
teins involved in folding, e.g. GroEL/GroES chaperonin complex pro-
teins and heat shock proteins after carbapenem exposure [49]. Other 
implicated proteins included those associated with protein biosynthesis, 
as well as DNA/RNA modifying enzymes, which act as defence mecha-
nisms during cellular stress. Interestingly, the presence of a fluo-
roquinolone antibiotic did not trigger the same expression patterns as 
the carbapenem. This suggests that the bacterial stress response to an-
tibiotics is both specific and dynamic, a finding favourable for biomarker 
discovery. Controversially, Sidjabat et al. observed changes in the pro-
teome in the presence of drug only, with the drug-negative proteome 
reflecting that of the susceptible control [52]. However, studies 
employing targeted methods suggest that resistant and susceptible 
phenotypes differ even in the absence of drug stress [53–56]. 

Complementary approaches of bottom-up and top-down proteomics 
have been employed for the targeted detection of carbapenemases. 
Wang et al. developed a protocol for the detection of peptides belonging 
to KPC enzymes [54]. Potential target peptides were identified using 
sequence alignments of the KPC subclasses and in silico digestion. The 
subsequent detection of specific peptides in known KPC-producers 
refined these to three peptides for targeted LC-MS/MS. The diagnostic 
performance of the peptides resulted in an overall accuracy of 100 % 
with a turnaround time <90 min. Lovison et al. later adapted and vali-
dated the method and reported a sensitivity of 96.07 % and specificity of 
100 % [56]. Similar protocols have been published for the detection of 
NDM and OXA-48-like CP isolates [53,55]. The OXA-48-like method 
demonstrated low specificity when performed on OXA-48 β-lactamases 
without carbapenemase activity, struggling to differentiate between 
family members with different levels of resistance. 

Top-down LC-MS/MS methods for the detection of intact KPC and 
OXA-48-like proteins have been recently proposed [57,58]. Compared 
with peptide-based methods, intact protein detection confers several 
advantages. Firstly, less sample preparation is required due to the 
omittance of a digestion step, reducing overall analysis time. In addition, 
detection of intact proteins offers a greater degree of accuracy than 
peptide analysis, enabling the distinction of enzymes within each sub-
class. This confers particular value for the detection of OXA-48-like 
carbepenemases, permitting their differentiation from OXA-48 β-lacta-
mases without carbapenemase activity, a feat unachievable using pep-
tide analysis alone [55]. 

The full capacity of high-resolution LC-MS/MS for protein identifi-
cation is exemplified by the work of Foudraine et al. They detected KPC, 
OXA-48-like, NDM and VIM carbapenemases within a single assay, 
demonstrating the potential for multiplexing and detecting multiple 
resistance markers simultaneously [59]. Expanding analysis to include 
mechanisms aside from those that are enzyme-mediated is also plausible 
with the methodology applicable to the detection of any protein 
observed to be implicated in the resistant phenotype. The identification 

of prospective biomarkers across the proteome in discovery profiling 
experiments will prove paramount to characterising the resistant 
phenotype and developing a rapid diagnostic assay for the detection of 
resistance. 

3. Lipidomics 

3.1. The bacterial lipidome 

Like proteins, lipids are major constituents of the bacterial mem-
brane, and their subcellular organisation is key to facilitating numerous 
cellular processes, including cell signalling [60,61]. Structurally, lipids 
are an exceptionally diverse group of molecules, with differences in 
moieties conferring distinct functions [62,63]. Lipids are comprised 
largely of fatty acids, and structural differences in these molecules aid in 
their characterisation. Similarly, bacteria are known to display species- 
specific characteristics concerning their lipidome, enabling their dif-
ferentiation [64]. Such diversity presents lipids as prospective candi-
dates for biomarkers in a range of biological phenomena. Furthermore, 
lipid homeostasis is a highly dynamic process, and it is well documented 
that bacteria regulate their membrane composition as a response to 
fluctuations in environmental and cellular conditions [65–68]. Alter-
ations in the physicochemical properties and composition of lipids 
regulate membrane bilayer properties, such as fluidity which subse-
quently affect protein position, binding and function [62,69]. Thus, a 
comprehensive understanding of proteins and lipid-protein membrane 
interactions cannot be thoroughly achieved without adequate investi-
gation into the lipidome. 

Lipidomics provides a complement to proteomics due to its ability to 
circumvent certain complexities associated with the identification and 
characterisation of microbes by protein analysis [70]. However, there is 
a paucity of literature relating to bacterial lipidomics for the purposes of 
investigating AMR in Gram-negative pathogens. The exception to this is 
in the case of polymyxin resistance, for which there is extensive research 
[70–74]. However, resistance to polymyxins is generally conferred by 
the modification of the lipid A portion of lipopolysaccharide, and thus 
relates directly to lipids. Nevertheless, owing to the highly diverse and 
dynamic nature of bacterial membrane lipids, it may be speculated that 
differences in the lipidome of resistant and susceptible bacteria may also 
be observed in the context of other resistance mechanisms. Thus, 
methods currently employed for bacterial lipidome profiling, including 
those for the detection of polymyxin resistance, demonstrate potential 
application for the detection of CRE and will be reviewed. 

3.2. Methods of profiling 

Early methods of lipid profiling generally employed gas chroma-
tography (GC) for fatty acid analysis [75–78]. Whilst the structural di-
versity of these molecules was not observed to be species-specific, 
distinct differences in the relative abundance of each fatty acid were 
noted, such that each species exhibited unique fatty acid profiles based 
on quantitative differences [77–79]. However, due to the requirement of 
extraction and derivatisation of fatty acids prior to analysis, these earlier 
techniques have lost popularity in favour of methods which require less 
laborious and time-consuming sample preparation. In addition, fatty 
acids have been shown to vary significantly when experimental pa-
rameters including growth medium and growth phase were modified, 
emphasising the need for standardisation [77,79]. However, whilst this 
may have prevented the introduction of these methods into routine 
clinical use, such observations offer valuable insight into the dynamic 
and responsive nature of bacterial fatty acid profiles and aid in estab-
lishing fatty acids as prospective biomarkers. Furthermore, a relation-
ship between fatty acid composition and antibiotic resistance has been 
demonstrated in penicillin- and tetracycline-resistant E. coli, polymyxin- 
resistant Serratia marcescens and K. pneumoniae, and methicillin-resistant 
Staphylococcus aureus (MRSA) [76,80–82]. The fatty acid profiles 

B. Dixon et al.                                                                                                                                                                                                                                   



Journal of Mass Spectrometry and Advances in the Clinical Lab 26 (2022) 9–19

13

associated with the resistant bacteria were observed irrespective of drug 
stress, suggesting that the resistant phenotype is intrinsic in nature. The 
influence of CR on the bacterial lipidome, however, does not appear to 
have been extensively investigated. Since the mechanism of action of 
carbapenems directly involves disruption of cell wall biosynthesis 
through the inhibition of peptidoglycan crosslinking, it is relevant to 
analyse the lipidome of CRO. These studies, which demonstrate specific 
lipidomes associated with β-lactam resistance and Enterobacterales, 
provide strong support for further lipidomic investigation of CR. 

Rees et al. used GC–MS to assess the fatty acid methyl ester (FAME) 
profile of CP K. pneumoniae, implementing a single-step method to 
simultaneously lyse cells and transesterify the lipid portion [83]. 
Interestingly, differential profiles of FAMEs linked with fatty acid, lipid 
and amino acid biosynthesis were found between CC258, a dominant CP 
lineage, and non-CC258 isolates. However, no significant differences 
were observed between KPC-producing and non-KPC-producing iso-
lates. These results suggest that resistance phenotypes involve a complex 
interplay of multiple factors giving rise to an altered cellular meta-
bolism, and consequently phenotype, rather than simply modifications 
in the expression of those proteins known to directly mediate resistance. 

Alternative MS platforms should also be considered for the charac-
terisation of bacterial lipids. MALDI-TOF MS coupled with CeO2 in 
metal-oxide laser ionisation (MOLI MS) has recently been used to 
characterise bacterial species and strains based on fatty acid profiles 
[82,84]. Cerium displays catalytic properties and acts as a biocatalyst to 
convert lipids into fatty acids in situ. The use of CeO2 as the MALDI 
matrix reduces background noise due to the absence of matrix ion peaks 
and the cleavage of fatty acyls produces negative ions similar to those 
generated by classic derivatisation methods, but without the need for 
hazardous chemicals or lengthy procedures [84]. Results indicated ac-
curacy superior to protein profiling by MALDI-TOF MS, with the suc-
cessful characterisation of closely related strains that had been 
previously misidentified by protein analysis. Furthermore, the method 
successfully discriminated between MRSA and methicillin-susceptible 
S. aureus strains, supporting the concept that differences between the 
lipidomes of resistant and susceptible strains exist [82]. 

The ubiquitous nature of phospholipids can complicate analysis of 
biological samples, with molecules shared between host and pathogen 
eliciting difficulties in discerning origin [70]. The use of membrane 
glycolipids for the rapid identification of bacteria with MALDI-TOF MS 
has been proposed [72,74]. Several complex glycolipids, such as lipo-
polysaccharide, are found exclusively in bacterial membranes, estab-
lishing them as potential biomarkers. Leung et al. demonstrated that 
mass spectral analysis of bacterial glycolipids provides a chemical 
fingerprint for both the identification of pathogens, as well as for colistin 
resistance [74]. Furthermore, detection of the resistant phenotype 
remained possible when polymicrobial mixtures and blood cultures 
were examined. Drawbacks of the protocol relate to the time-consuming 
and hazardous extraction method [85]. Further method development by 
Liang et al. introduced a sodium acetate lysis buffer, as proposed initially 
by Zhou et al., reducing sample turnaround time to <1 h and eliminating 
the need for hazardous chemicals [72,86]. As observed with blood, the 
ability to sample directly from polymicrobial urine was demonstrated, 
furthering the method’s clinical applicability. Future lipidomics studies 
encompassing CR should consider glycolipids, amongst other molecules, 
to improve the chances of identifying biomarkers which are detectable 
even in complex biological matrices and facilitate applicability in the 
clinical setting. 

Owing to the outer membrane origin of outer membrane vesicles 
(OMVs), these structures are highly representative of cell membrane 
composition and state [87,88]. Furthermore, as OMVs are not enclosed 
within the cellular membrane, they are easily isolated and remain in the 
cell-free supernatant after centrifugation of cultures [88,89]. This offers 
significant practicality in terms of sample preparation and may help to 
minimise suppression effects by other cellular components. Jasim et al. 
proposed the analysis of OMV lipids using LC-MS/MS to better 

understand pathogenicity and resistance in K. pneumoniae and demon-
strated outer membrane remodelling in polymyxin-resistant strains 
through intrinsic differences observed in OMV lipidomes [89]. Whilst 
the observed changes in lipid composition directly relate to polymyxin 
resistance mechanisms, the concept of resistance-mediated membrane 
remodelling is supported by these findings. Thus, it may be speculated 
that the increased levels of lipids involved in maintaining membrane 
integrity and bacterial vitality, including sphingolipids, fatty acids and 
glycerophospholipids, may also be observed in other resistance mech-
anisms including CR. 

It is also important to consider non-membrane-based lipids, and 
protocols which permit the profiling of both free and membrane lipids. 
Such analysis provides insight into the metabolite component of the 
lipidome in addition to membrane state, meaning that unique pheno-
typic differences are more likely to be observed. Following this 
approach, Allwood et al. demonstrated distinct grouping of the lipid 
profiles of ciprofloxacin-resistant and –susceptible E. coli and high-
lighted the potential of LC-MS lipidomics for the investigation of AMR 
[90]. The use of LC-MS permits the analysis of whole lipids rather than 
merely the fatty acid constituents, allowing for greater confidence in 
molecular characterisation and in ascertaining cellular origins [91]. 
Furthermore, lipids may be separated according to either fatty acid 
chain composition or polar head group, depending on whether reverse 
or normal phase is selected, allowing for greater molecular discrimina-
tion. Rashid et al. assessed membrane lipid composition in Enterococcus 
faecalis strains with resistance to daptomycin, a cationic lipopeptide 
antibiotic, and observed correlation between resistance and quantitative 
measures of lipids [92]. The lipid profile was initially obtained through 
untargeted direct infusion-MS with characterisation optimised via tar-
geted analysis using several LC-MS/MS methods. However, whilst sin-
gular analysis time may be modest, employing numerous analytical 
methods for the quantification of multiple components is time- 
consuming and does not translate to practical clinical application. 
Nonetheless, studies such as these lay the foundation for future work, 
with biomarker discovery not feasible without the availability of 
comprehensive profiles and initial exploratory analysis. Studies by Hines 
et al., however, circumvented these issues by employing a hydrophilic 
interaction LC-ion mobility-MS (HILIC-IM-MS) method to separate lipids 
based on both head group polarity and gas phase structure, facilitating 
more powerful discrimination [93–95]. Results validated those of 
Rashid et al., and revealed alterations in the lipid profiles of 
daptomycin-resistant MRSA and Corynebacterium striatum [92,93]. 
Furthermore, the abundance of long-chain fatty acyl phosphatidylgly-
cerols was observed to be negatively correlated with β-lactam suscep-
tibility in MRSA [95]. Importantly, these studies demonstrate the 
development of a sensitive, high-throughput and multi-analyte MS 
method that may detect perturbations in molecular profiles for the 
purposes of assessing AMR. 

There is a dearth of knowledge regarding the bacterial lipidome and 
CR, and more generally, β-lactam resistance as a whole. Further research 
is warranted to determine the correlation between lipid composition and 
CR, especially given the role of carbapenems in the disruption of cell 
wall biosynthesis. Greater insight into this relationship will facilitate 
elucidation of the resistant phenotype and will promote the identifica-
tion of prospective molecular biomarkers that may be used in the rapid 
identification of AMR. Since a close relationship exists between the 
lipidome and proteome, especially in the context of the cell membrane, 
the implementation of complementary -omics disciplines in in-
vestigations of resistance may provide a more comprehensive and 
unique insight into the mechanisms of resistance. Furthermore, the 
analysis of extracellular components, such as OMVs, should be consid-
ered, owing to their easily isolatable nature and close relationship with 
cellular state. 
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4. Metabolomics 

4.1. The bacterial metabolome 

It is well recognised that alterations in bacterial metabolism may 
modulate antimicrobial susceptibility through phenotypic resistance, 
thus a relationship between resistance and metabolism has already been 
demonstrated [96]. Previously, the acquisition of resistance was 
assumed to be a burden on bacterial metabolism, associated with loss of 
function and increased fitness cost [96,97]. However, it has since been 
postulated that the acquisition of resistance can generate modifications 
in the bacterial physiology that do not convey loss of function, but rather 
compensate for metabolic burden [96,98–100]. 

Both intracellular and extracellular metabolites convey valuable in-
formation about cellular state. Whilst the metabolic fingerprint of a 
microorganism is characterised by intracellular metabolites, the entire 
complement of extracellular molecules secreted and taken up by bac-
teria defines the metabolic footprint [101]. The environment exerts in-
fluence on the uptake and secretion of bacterial metabolites through 
regulation of the genome and proteome (Fig. 3) [102–104]. Conse-
quently, the metabolic footprint is highly reflective of the cellular state 
[105,106]. Furthermore, since metabolites are the end-products of up-
stream biochemical processes, they offer insight into intracellular 
metabolism [107]. Thus, extracellular metabolites may prove equally as 
useful in determining the molecular basis of certain phenomena and 
identifying the biological networks involved in cellular processes. 
Similarly, genomic modifications may be indirectly observed through 
alterations in metabolism [108]. Characterising the metabolome asso-
ciated with a particular phenotype is paramount to identifying metab-
olites with biomarker potential and to better understanding the 
interconnected molecular networks which give rise to specific pheno-
types, such as CR. 

4.2. Methods of profiling 

Metabolomics is largely concerned with biomarker discovery and 
involves the study of the small molecules involved in metabolism, or 
metabolites, as well as their associated chemical interactions within a 
biological system. Recent studies have sought to assess the metabolic 
profiles associated with AMR [109–111]. Lin et al. utilised a GC–MS 
method to analyse the metabolic profile of multi-drug resistant E. coli 
[109]. Results demonstrated differential expression of metabolites be-
tween susceptible and resistant strains with many implicated in amino 
acid biosynthesis. Interestingly, differing metabolic profiles within the 
resistant strains were also observed, with the more resistant strain 
exhibiting a greater degree of differential expression. This suggests that 
the metabolic profile of resistant bacteria may be specific to the resis-
tance mechanism and that metabolic profiling demonstrates applica-
bility for the assessment of drug susceptibility. Owing to the use of GC, 
the extraction procedure utilised was inherently complex; however, 
results indicate potential for the development of more refined targeted 
methods for the detection of resistance. Additionally, whilst the micro-
organisms assessed in this study demonstrated resistance to many clas-
ses of antibiotics, the strains selected were all susceptible to 
carbapenems. Given the current crisis and the consequence of CR within 
multidrug resistant organisms, further analysis is warranted that in-
cludes analysis of CR bacteria. 

The ability to sample directly from biological fluids holds significant 
clinical applicability. There is minimal literature surrounding metab-
olomics analysis of CR in the context of biological samples. To the best of 
our knowledge, the only such study to date investigated the metabolome 
of CR K. pneumoniae infected patients using a GCxGC-TOF-MS method 
for plasma analysis [110]. Differential expression of 58 metabolites was 
observed in patients with and without CR K. pneumoniae. Interestingly, 
the metabolites exhibiting the greatest differential change were related 
to bacterial metabolism rather than host. Results suggest that key 
components of bacterial metabolism, which may also be implicated in 
resistance, can be detected within biological matrices with sufficient 

Fig. 3. Bacterial cellular processes and their relation to the omics fields based on the central dogma model. The environment exerts influence on gene expression, 
resulting in alterations in transcription and, thereby, the abundance of mRNA transcripts. Transcripts are translated into polypeptides, which undergo post- 
translational modifications to form functional proteins. Proteins mediate cellular biochemical processes, which alter the uptake and secretion of metabolites. 
Some of these secreted compounds are by-products, whilst others act as building blocks for macromolecules, such as lipids, that are required by the cell. 
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sensitivity despite the complex nature of these samples. However, the 
study contained several limitations. It was not clear whether the CR 
negative group was also infected with K. pneumoniae or an alternative 
microorganism, and thus whether the detected metabolites were in fact 
resistance-related or arose from species-level differences in metabolism. 
The challenge associated with translational studies is highlighted here, 
with false positives easily obtained when proper consideration has not 
been given to alternative factors. For this reason, it is desirable to start 
analysis within a controlled laboratory environment prior to performing 
analyses on biological samples. Furthermore, there were inconsistencies 
in the method for susceptibility characterisation. The carbapenem 
minimum inhibitory concentration (MIC) was determined to be ≤4 µg/ 
mL in just as many CR-positive as CR-negative strains (n = 15), with just 
5 positive strains displaying a MIC >4 µg/mL compared to 3 negative 
strains. In addition, VIM-1 carbapenemase production was observed in 
several strains in the CR-negative group. Lastly, the use of GCxGC-TOF- 
MS is highly complex and requires expertise for both sample preparation 
and data analysis. Such instrumentation is, therefore, unfit for use in 
routine clinical practice. However, its use as a highly sensitive analytical 
method within initial exploratory studies supports future work 
employing alternative methods once target molecules have been 
identified. 

One growing area of interest surrounds the microbial volatile 
metabolome. It has been demonstrated that bacteria exhibit character-
istic volatile metabolic footprints, and there is a body of literature 
centring on the analysis of volatile organic compounds (VOCs) for 
pathogen identification in infections [112–115]. Several MS methods 
have been proposed for the analysis of antibiotic susceptibility and 
resistance using VOC analysis, including selected ion flow tube (SIFT)- 
MS and secondary electrospray ionisation (SESI)-MS [116–118]. How-
ever, whilst these methods allow online sampling, it is more challenging 
to identify compounds as the dimensionality of retention time is missing. 
More recently, a metal oxide sensor (MOS) was proposed for the 
detection of VOC signatures associated with AMR [119]. The MOS 
demonstrated superior sensitivity for several VOCs compared to MS, at 
the cost of losing sensitivity to prominent bacterial VOCs, such as sul-
fides. Statistical analysis permitted the construction of a successful 
model for the identification of resistance after just 2 h of incubation 
using MOS compared to the 4 h required by MS. However, as MOS 
detection is based on changes in electrical resistance, it is not possible to 
identify compounds unless the sensor is trained prior to analysis or 
performed simultaneously with a method that can, e.g. MS [116]. 
Consequently, whilst the MOS can detect signals where the MS cannot, 
the compounds giving rise to these cannot be directly identified. Using 
unidentified signals as biomarkers presents several problems, with 
identification based on pattern recognition rather than direct confir-
mation. Only a handful of research groups have investigated AMR VOC 
profiles using GC–MS methods [114,119,120]. All groups employed 
different methods of headspace sampling, including the use of solid 
phase micro extraction (SPME) fibres for the sampling of both cell su-
pernatant and cell culture headspace, or via active pumping of collected 
headspace onto adsorbent material. Smart et al. reported differences 
between the VOC profiles of susceptible and resistant bacteria, and Rees 
et al. demonstrated that volatile metabolic fingerprints could be used to 
discriminate between CR and susceptible strains [114,120]. However, 
the protocol of Rees et al. involved a 12 h incubation step and 
GCxGC–MS, excluding it from application in the clinical setting as a 
rapid and simple detection method [120]. Further investigation into the 
VOC profiles and metabolic pathways found to be associated with 
resistance using GC–MS is warranted to identify potential compounds of 
interest. Direct detection and validation of these compounds will be key 
to developing a method with high confidence. In addition, the use of 
stable isotope tracers may aid in uncovering the endogenous origin of 
VOCs and other metabolites through temporal metabolite tracing [121]. 

As observed with other -omics disciplines, the use of LC over GC can 
be advantageous. In the current context, there is broader metabolome 

coverage with less complex sample preparation since derivatisation is 
not usually required. However, integration of data from both platforms 
remains the most credible means of achieving near-global coverage. 
Extraction methods for intra- and extracellular metabolites of E. coli 
have been adapted for use with both LC-MS and GC–MS [90,122]. LC-MS 
for metabolomic analysis has not been extensively utilised in examina-
tion of resistant phenotypes, with methods such as Fourier transform 
infrared spectroscopy (FTIR) or nuclear magnetic resonance (NMR) 
being more commonly employed to date [90,123,124]. Direct infusion- 
MS followed by targeted LC-MS/MS has been used for the assessment of 
drug susceptibility based on metabolic profile in Mycobacterium tuber-
culosis, with strains being grouped as susceptible, multidrug resistant or 
extensively drug resistant [111]. This study introduces the concept of 
modelling antibiotic susceptibility rather than simply detecting a marker 
of resistance. Whilst results could not confirm complete association 
between grouped resistant phenotype and metabolic profile, clear dif-
ferences could be seen when just two strains were compared, suggesting 
that molecular phenotype may be more specific to the mechanism of 
resistance than initially thought. 

5. Future perspectives 

Measures routinely utilised in clinical practice for the detection of CR 
involve subjective antibiotic susceptibility testing methods that fail to 
exploit underlying molecular mechanisms. In addition, current proced-
ures are time-intensive with detrimental consequences for the identifi-
cation of infections caused by resistant pathogens both in terms of 
patient outcomes and in mitigating the spread of resistance. Establishing 
the molecular phenotype associated with CR establishes a precedent for 
the development of highly specific methods that permit its detection. 
Functional analysis of molecules linked to the resistant phenotype 
within each of the -omics disciplines may be utilised to investigate 
system-wide alterations and to explore the mechanisms surrounding 
resistance. This greater breadth of knowledge will provide a more 
complete picture of the mechanisms involved in resistant phenotypes 
and will facilitate the development of detection methods that are more 
direct, reliable, and rapid than those currently in place. It is likely that 
machine learning models will play a central role in future predictions of 
resistance. As biology-based disciplines become more reliant on bioin-
formatics and machine learning approaches, the use of predictive 
models based on MS data for a panel of analytes seems the most plau-
sible diagnostic assay for detecting resistance. The ability to distinguish 
CR K. pneumoniae from its susceptible counterparts by machine learning 
methods using whole cell MALDI-TOF MS data has already been 
demonstrated [125]. Consideration should be given towards incorpo-
rating both detection of resistance and susceptibility into such models, 
as whilst detection of resistance is of great importance, prediction of 
susceptibility is pertinent to implementing an effective treatment 
regimen. 

It is inherently challenging to achieve controlled conditions within 
the clinical setting. Patients are often treated with several antibiotics 
prior to and throughout hospitalisation [110]. In addition, many are 
prescribed other medications for comorbidities. The identification of 
prospective biomarkers for the detection of CR, therefore, hinges on 
several factors. It is imperative than any prospective biomarkers are 
either present in all conditions (including basal), or, if they are induced 
by a specific drug stress, they are not influenced negatively by the 
presence of factors such as other antibiotics/medications. Whilst initial 
work in this area is likely to focus on laboratory strains cultured in 
growth media, future studies should assess clinical strains and biological 
samples in order to develop methodologies that may be translated into 
clinical practice. Given the prevalence of CRO within the clinical setting, 
and the critical priority assigned to this issue by the World Health 
Organisation, there is a dire need to develop methodologies for the rapid 
detection of CR that are suitable and applicable to the clinical laboratory 
[3]. Whilst previous studies have aided in expanding our current 
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understanding of resistance, a bench-to-bedside approach should be 
considered in future work whereby results from the laboratory are 
translatable to the clinical setting for the direct benefit of patients. 
However, it is important that sufficient time is spent within the 
exploratory stage, such that translated analysis solutions provide 
meaningful results. 

Lastly, whilst studies into the molecular phenotype and metabolism 
of CR pathogens may centre around developing methods for the detec-
tion of resistance, it is highly probable that insight gained from such 
studies will inadvertently facilitate developments in associated fields. 
There is an urgent need to develop novel antimicrobials that may 
overcome resistant bacteria, especially those identified as being resis-
tant to last-resort therapies, such as carbapenems. Expanding the 
knowledge surrounding the mechanisms of CR at the molecular level 
using MS is likely to reveal information pertinent to the development of 
novel therapeutics and treatment strategies, such as the identification of 
potential drug targets. 

6. Conclusion 

Multi-omics approaches are facilitating integrated insights into bio-
logical phenomena that cannot be entirely explained by a singular 
-omics field alone. This ‘whole-cell’ approach demonstrates the inter-
connectedness between the various -omics disciplines. The imple-
mentation of complementary omics approaches using high resolution 
MS to assess whole and sub- proteomes/lipidomes/metabolomes 
coupled with bioinformatics is more likely to provide insight into 
mechanisms of resistance than analysis of single components. Whilst the 
specific mechanisms of CR are well characterised, the molecular 
phenotype associated with resistance is poorly understood. Under-
standing just how the acquisition of CR affects cellular physiology and 
cell metabolism through molecular phenotyping is a necessary step to-
wards detecting resistance by diagnostic means. Ideally, this will facil-
itate the implementation of effective methods to tackle the current AMR 
crisis by means of detection, surveillance, and the development of effi-
cacious antimicrobials. Targeted measures using high-resolution mass 
spectrometry show considerable promise for the identification of mo-
lecular signatures and the development of a rapid diagnostic assay for 
the detection of CR. However, whether future clinical methods will 
utilise such platforms is unclear. Whilst these instruments show 
considerable promise for biomarker discovery, their translational 
applicability for the clinical setting is debated. Nonetheless, use of these 
platforms in this current age of discovery is likely to play an important 
role in advancing the field towards clinical translation. 
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[60] I. Barák, K. Muchová, The role of lipid domains in bacterial cell processes, Int. J. 
Mol. Sci. 14 (2) (2013) 4050–4065, https://doi.org/10.3390/ijms14024050. 

[61] M. Manna, T. Nieminen, I. Vattulainen, Understanding the role of lipids in 
signaling through atomistic and multiscale simulations of cell membranes, Annu. 
Rev. Biophys. 48 (1) (2019) 421–439, https://doi.org/10.1146/annurev-biophys- 
052118-115553. 

[62] D. Casares, P.V. Escriba, C.A. Rosello, Membrane lipid composition: Effect on 
membrane and organelle structure, dunction and compartmentalization and 
therapeutic avenues, Int. J. Mol. Sci. 20 (2167) (2019), https://doi.org/10.3390/ 
ijms20092167. 

[63] C. Sohlenkamp, O. Geiger, F. Narberhaus, Bacterial membrane lipids: Diversity in 
structures and pathways, FEMS Microbiol. Rev. 40 (1) (2016) 133–159. 

[64] I. Lerouge, J. Vanderleyden, O-antigen structural variation: Mechanisms and 
possible roles in animal/plant-microbe interactions, FEMS Microbiol. Rev. 26 (1) 
(2002) 17–47, https://doi.org/10.1016/S0168-6445(01)00070-5. 

[65] M.F. Siliakus, J. van der Oost, S.W.M. Kengen, Adaptations of archaeal and 
bacterial membranes to variations in temperature, pH and pressure, 
Extremophiles 21 (4) (2017) 651–670, https://doi.org/10.1007/s00792-017- 
0939-x. 

[66] A. Segura, E. Duque, G. Mosqueda, J.L. Ramos, F. Junker, Multiple responses of 
Gram-negative bacteria to organic solvents, Environ. Microbiol. 1 (3) (1999) 
191–198, https://doi.org/10.1046/j.1462-2920.1999.00033.x. 

[67] V.W. Rowlett, et al., The impact of membrane phospholipid alterations in 
Escherichia coli on cellular function, J. Bacteriol. 199 (13) (2017) 1–22, https:// 
doi.org/10.1128/JB.00849-16. 
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