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Neurons and glia respond to acute injury by participating in the CNS innate immune response. This involves the recognition
and clearance of “not self ” pathogens and “altered self ” apoptotic cells. Phagocytic receptors (CD14, CD36, TLR–4) clear “not
self” pathogens; neurons and glia express “death signals” to initiate apoptosis in T cells.The complement opsonins C1q, C3, and
iC3b facilitate the clearance of apoptotic cells by interacting with CR3 and CR4 receptors. Apoptotic cells are also cleared by
the scavenger receptors CD14, Prs-R, TREM expressed by glia. Serpins also expressed by glia counter the neurotoxic effects of
thrombin and other systemic proteins that gain entry to the CNS following injury. Complement pathway and T cell activation
are both regulated by complement regulatory proteins expressed by glia and neurons. CD200 and CD47 are NIRegs expressed
by neurons as “don’t eat me” signals and they inhibit microglial activity preventing host cell attack. Neural stem cells regulate T
cell activation, increase the Treg population, and suppress proinflammatory cytokine expression. Stem cells also interact with
the chemoattractants C3a, C5a, SDF-1, and thrombin to promote stem cell migration into damaged tissue to support tissue
homeostasis.

1. Introduction

Acute ischemic brain infarction and traumatic brain injury
share several pathological features, including the disruption
of the Blood Brain Barrier (BBB) with entry of systemic
inflammatory cells and circulating blood proteins into the
brain parenchyma. The reduced blood flow frequently results
in hypoxia contributing to neuronal ischemia, inflammation,
and apoptosis [1, 2]. The surviving resident brain cells
(neurons and glia) are not “professional” immune cells, but
contribute to the defence of the brain through the expression
of the innate immune response, promoting the clearance
of neurotoxic proteins and apoptotic cells from the Central
Nervous System (CNS). This stimulates both tissue repair
(resolution) and the rapid restoration of tissue homeostasis
[3–6].

This review will examine how the CNS innate immune
response maintains a critical balance between the protective
and potentially harmful effects of activating the innate
immune system following acute brain injury, the so-called
“double-edged sword” effect [7]. The balance between the
destructive and protective effects of the innate immune
response must be precisely regulated in order to promote
conditions that support brain repair and encourage a return
of tissue homeostasis [5, 8, 9].

The CNS innate immune response relies upon the resi-
dent cells (neurons and glia) expressing both phagocytic and
scavenger receptors capable of distinguishing “self” (host)
from “nonself” (neurotoxic proteins, pathogens, apoptotic
cells) and so reduce bystander injury [10–14]. Neurons
and glia also express “death signals” to initiate apoptosis
in damaged neurons and inflammatory cells, transforming
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them into “safe targets” for rapid clearance from the CNS by
glial cells expressing phagocytic receptors [10, 11]. If apop-
totic cells remain undetected and not cleared from inflamed
tissues, they will undergo lysis with the release of neurotoxic
enzymes, contributing to secondary host tissue necrosis [1].
The components of the complement pathways (CP) include
opsonins and chemoattractant proteins that are synthesized
by neurons and glia. These two groups of complement
proteins facilitate pathogen and apoptotic cell phagocytosis,
as well as inflammatory cell migration into areas of tissue
damage [10, 11]. The regulation of the destructive arm of
the “double-edged sword” is vital and relies upon serpins
(selfdefence proteins), regulators of complement activation
(RCAs) (sometimes referred to the complement regulatory
proteins (CRP) and various neuroimmunoregulatory
molecules (NIRegs) such as CD200 and CD47. All these
regulators are expressed by glia and neurons [10, 11]
(Figure 1). Finally, there is increasing evidence that host
stem cells contribute to the immune regulation of tissue
inflammation through their interaction with the same brain
cells responsible for the CNS innate immune system response
[4, 15–17].

2. The Diverse Talents of the CNS Innate
Immune System: Detection and Clearance of
“Nonself ” Cells and Proteins from the Brain

Neurons and glia are not “professional phagocytes”, but
express highly conserved pattern recognition (PRR) and
scavenger receptors (SR) [13, 14, 18–26]. These receptors
distinguish host “self” from apoptotic cells and pathogens
(“nonself”) [14, 18–26] helping to prevent indiscriminate
cell death and uncontrolled tissue damage [24, 25]. For
example, apoptotic cells express apoptotic cell-associated
molecular patterns ACAMPS, such as phosphatidylserine
and carbohydrate molecules on their cell surface, whereas
these molecules are absent from host cells [27]. ACAMPs
represent a group of unique cell surface molecules repre-
senting “nonself” and allow apoptotic cells to be distin-
guished from “self” or host tissues that do not express
ACAMPs [8, 9, 23, 28]. Pathogens express pathogen-
associated molecular patterns (PAMPs) composed of a
lipopolysaccharide (LPS) and other peptidoglycans only
found in bacteria cell walls [25, 26]. The neurotoxic proteins
(α synuclein, mutant prion protein, thrombin, HMGB1,
S100, and A4 β amyloid) are released from damaged
cells and identified as “nonself” because they contain
pathogen protein associated molecular patterns PPAMPS
[10, 11].

A wide range of PRR and SR are expressed by microglia
and astrocytes and contribute to a range of phagocytic
pathways poised to remove apoptotic cells, pathogens,
and neurotoxic proteins from the CNS, contributing to
restoration of tissue homeostasis [10, 11, 14, 22, 29, 30].
The clearance through phagocytosis results in the so-called
“nonphlogistic” response and is associated with a subsequent
reduction of tissue inflammation and promotion of repair
(tissue homeostasis) [8, 10, 11, 30–32].

3. The Complement System Is Vital
for Apoptotic Cell Clearance and
Regulation of CNS Inflammation

The CNS innate immune response also involves two of the
three C pathways; the classical and alternative C pathways
(Figure 2). These two pathways provide the cytolytic mem-
brane attack complex (MAC) and molecules called opsonins
that target pathogens and neurotoxic proteins, both identi-
fied as “nonself”. The opsonin molecules generated by the CP
are able to identify apoptotic cells (altered self), because they
express ACAMPS on their cell surface [25, 32, 33]. Glia and
neurons express a full range of RCAs (sometimes described
as complement regulatory proteins, CRP). These regulators
are capable of preventing excessive complement activation
and they inhibit MAC-related cytolysis of innocent “host”
bystander cells. (For detailed discussion see [32, 34]).

A further immunoregulatory strategy employed by the
innate immune system is the expression of “don’t eat me”
inhibitory signals by glia and neurons. These molecular
signals are the so-called Neuroimmunoregulatory proteins
(NIRegs) and include CD200 and CD47 [6, 10, 11, 35–
37]. These two cell surface molecules and their receptors,
CD200R and CD172a, respectively, modulate the activation
of inflammatory cells (lymphocytes and activated microglia),
to reduce the level of tissue inflammation and contribute to
brain tissue repair [38–40] (see Figure 1).

4. The Blood Brain Barrier and CSF/Brain
Barriers; Vital Barriers to Prevent Systemic
Cell Entry and Maintain Immunoprivilege

The mammalian brain is isolated from the systemic circula-
tion by a protective blood brain barrier (BBB) composed of
endothelial cells linked by tight junctions and surrounded by
the end feet of astrocytes [41]. A further layer of ependymal
cells lines the ventricle wall preventing entry of pathogens
and inflammatory cells from the CSF into the brain [42, 43].

Within the peri vascular layer and choroid plexus (CPLx)
are CD163+ and MHC II+ cells with evidence of PRR
expression in the form of CD14 and Toll-like receptors
(TLR). These cells and their receptors are capable of detect-
ing pathogens and apoptotic cells in the CSF [21, 44, 45].
Preservation of these physical barriers under physiological
conditions contributes to the immuno privileged status of
the CNS [41, 46].

5. Neurones and Glia Protect the CNS by
Regulating the Entry of Inflammatory
Systemic Cells into the Brain at the Blood
Brain Barrier

The inhibition of cell adhesion to the endothelium prevents
the entry of myeloid (neutrophils and lymphocytes) derived
cells across the BBB preserving the immuno privileged status
of the brain. Neurons are an important source of TGF-β
[47] and this anti-inflammatory cytokine down regulates
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Figure 1: Shows the consequences of disruption of the blood brain barrier BBB. Thrombin is an example of a protein with pathogen
protein associated molecular pattern (PPAMPS) released into the neuropil and its neurotoxic effects are countered by the expression of
glial “selfdefence” proteins including the serpins (serine protease inhibitors) protease derived glial-nexins PA-1, PN-1. Systemic T cells are
identified and targeted by “Death signals” TNF and CD95L/CD95F as expressed by astrocytes and neurons this initiates apoptosis. Apoptotic
cells defined as “altered self” by cell surface apoptotic cell associated molecular patterns (ACAMPs) are identified by microglia expressing
pattern recognition receptors (PRR) and subsequently cleared from the brain, reducing the severity of the inflammatory response.
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Figure 2: This figure shows a summary of the individual components of the classical and alternative complement pathways (CP), both
converge at the C3/C5 step and share a common terminal pathway with eventual generation of the cytolytic protein, membrane attack
complex MAC. The membrane bound complement regulatory proteins (CRP) CRI (CD35), DAF decay accelerating factor (CD55), MCP
(CD46), CD59 at the sites along the pathway where they inhibit C synthesis. The soluble CRP, C inhib, clusterin, Factor H (FH), Factor I
(FI) are also shown.

both astrocyte and endothelial expression of the C pathways,
Monocyte chemoattractant protein-1 (MCP-1), and Vascular
cell adhesion molecule VACAM-1, preventing lymphocyte
entry into the brain under physiological conditions [48, 49].
Astrocytes are a vital component of the BBB and induce the

expression of leukocyte adhesion molecules by endothelial
cells [41]. VCAM-1 is a member of the Ig super gene family
and a regulator of T lymphocyte transport across the BBB
[50]. Brain injury activates microglia with the increased
expression of the proinflammatory cytokines TNF-α IL-1
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β and IFN-γ which in turn stimulate the expression of
VCAM-1, and MCP-1, both capable of increasing T cell
entry into the CNS [49, 51]. The NIreg molecule, CD47, is
expressed by cerebral endothelium and it regulates the trans-
migration of monocytes across the BBB under inflammatory
conditions [46]. Further protection at the BBB is provided
by the ependymal cell expression of RCA preventing the
excessive activation of complement by neurotoxic proteins
and apoptotic cells in the CSF and on the ventricular surface
of the brain [42].

6. Acute Disruption of the Blood Brain
Barrier Exposes the Brain to Neurotoxic
Systemic Proteins

Acute brain damage includes spontaneous haemorrhage,
ischaemic brain infarction, and raised intracranial pressure
due to cerebral oedema. A feature common to these events is
the disruption of the BBB, permitting entry into the brain of
systemic proteins [10]. One systemic protein that enters the
brain following haemorrhage is thrombin, a serine protease,
vital for blood coagulation. Thrombin is generated in the
systemic circulation by cleavage of prothrombin (PT) by fac-
tor Xa, the fibrinolytic protein plasminogen is converted to
plasmin by the action of tPA (tissue plasminogen activator)
[52].

Under physiological conditions, thrombin is prevented
from entering the CNS by the intact BBB; however, it is also
synthesised in low concentrations by neurons and astrocytes
[52, 53]. At low concentrations [50 pM–100 pM], thrombin
is important for brain repair as it regulates nerve growth
factor synthesis, synaptic outgrowth in adults and tissue
remodelling [54]. It also has neuroprotective effects due to
its modulation of intracellular calcium and is also protective
against both oxygen and glucose deprivation [55–57].

The high concentration (500 nM) of thrombin in the
brain following intracerebral haemorrhage ICH and BBB
disruption is neurotoxic. The presence of a high concen-
tration of brain thrombin activates both NMDA excitotoxic
receptors precipitating seizures and stimulates the protease-
activated receptor-1 (PAR-1) that inhibits neurite extension
by stimulating astrocyte proliferation. The result of these
effects is to prevent neuronal repair [58]. Thrombin is
also neurotoxic through its activation of microglia via the
JAK2-STAT3 signalling pathway promoting TNF-α and NO
expression [59]. The brain responds to the neurotoxic levels
of systemic proteins such as thrombin by neurons and glia
expressing a range of “self-defence proteins”. Amongst them
are the serpins (serine protease inhibitors) that are vital for
the restoration of tissue homeostasis [5, 10].

7. Serpins Are a Family of “Selfdefence”
Proteins Expressed by Resident Brain Cells to
Defend against Neurotoxic Proteins

The serpins include the antithrombin colligin (Hsp47)
located in microglia and astrocytes; the plasminogen acti-

vator inhibitor (PAI-1) and protease glial derived nexin-
1 (PN-1) both expressed by astrocytes and neurons [52,
53, 60–62]. A nonserpin thrombomodulin (CD141) is
expressed by microglia and-endothelium after injury. This
molecule reduces thrombin induced neuronal death, under-
lining the potential of CD141 as a therapeutic agent
[63, 64].

The serpin, Pigment epithelium derived factor (PEDEF),
is selectively trophic for motor neurons, protecting them in
vitro against glutamate toxicity and also blocking microglial
proliferation [65, 66]. PAI-1 and PN-1 are serpins expressed
by neurons and astrocytes; both inhibit neurotoxic thrombin
formation [62]. Ischaemic brain injury increases TGF-β
expression and its neuroprotective properties are mediated
by a serine protease released from astrocytes. In vitro TGF-
α and TGF-β stimulate astrocyte expression of PAI-1 which
is responsible for their neuroprotective effects observed fol-
lowing excitotoxic acid injection into the CNS and cerebral
ischaemia [6, 67, 68]. The level of glial PN-1 also rises
following hippocampal ischaemia and this provides a degree
of neuroprotection [69]. In a rat model of stroke, the expres-
sion of neuroserpin, an inhibitor of plasminogen, (tPA) is
restricted to neurons and astrocytes localised around the
penumbra [52, 58, 67, 70]. The experimental administration
of neuroserpin reduced infarct volume by inhibiting throm-
bin synthesis and promoting a neuron survival [70, 71];
see Figure 1.

8. Neurons and Glia Provide
“Self-Defence” against the Detrimental
Effects of Brain Inflammation

The regulation of microglial activation and inflammatory
cytokine synthesis following brain injury is vital, in order to
prevent further tissue damage [4, 8, 10, 11]. Neurons and glia
are in close communication through a number of signalling
pathways and are capable of regulating proinflammatory
cytokine expression following brain injury and inflammation
[72].

A detailed review of cytokine regulation and tissue
repair is not attempted here, but briefly microglia and
astrocytes respond to pathological stimuli by adopting a
characteristic activated phenotype. This is associated with
the expression of a wide range of proinflammatory cytokines
including complement (C), tumour necrosis factor (TNF-
α), the interleukins (IL-5, IL-6, IL-12, IL-1α, IL-1β), NO
(nitrous oxide), and free oxygen radicals (For review see
[6]).

One source of the anti-inflammatory regulatory
cytokines, IL-10 and TGF-β is local astrocytes and neurons
[48, 70, 73, 74]. In vitro, IL-10 inhibits LPS stimulated
microglial synthesis of IL-2, IL-6, and TNF-α by inhibiting
expression of the NF kappa B complex, the predominate
transcription factor for IL-6 [75, 76]. Similarly, neuronal
IL-10 inhibited LPS-activated microglial expression of IL-12,
TNF-α, and Nitrous Oxide (NO), as well as complement
synthesis [48]. Evidence for neurons having an inhibitory
effect upon microglial phagocytosis was demonstrated by
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showing increased apoptosis of microglia after exposure to
neuron conditioned media [77]. The increased expression of
the semaphorin Sema3A, by neurons, induced apoptosis in
activated microglia preventing them attacking neighbouring
neurons [78]. Furthermore, the expression by neurons of
both CD45 and CD22 was found to inhibit expression of
inflammatory cytokines by microglia and provided further
evidence for neuronal regulation of the innate immune
response [78, 79]. A direct immunoregulatory effect of
neurons upon microglia is also shown by the up regulation of
MHC II expression after local neuronal activity was blocked
[80, 81].

9. The “Death Signal Response” of
the Innate Immune System Is Protective
Because It Initiates Apoptosis and
Promotes Tissue Homeostasis

Acute brain damage due to ischemic infarction results in
both primary necrotic cell death and the formation of
apoptotic cells [12, 82, 83]. If apoptotic cells are not rapidly
cleared, they will accumulate and release neurotoxic proteins
into the host tissue to produce the so-called secondary cell
death and further tissue damage [11, 84, 85].

The induction of apoptosis in infiltrating T cells and
damaged neurons is a protective component of the “double-
edged sword”. This renders apoptotic cells safe and provides
the brain with a degree of immunosurveillance, by down
regulating inflammation and promoting their clearance [86,
87]. The rapid clearance of apoptotic cells from areas of
damage is therefore essential to promote tissue homeostasis
[5, 11, 88].

Active apoptosis of infiltrating T lymphocytes is induced
by neurons and glia utilising the “death signalling path-
ways” based upon members of the TNF super family and
include CD95(FasL)/CD95 (Fas) and the TNF-lymphotoxin
receptor-TNF receptor-1 (TNRF-1) [89–93]. The role of
TNF/TNFR death signalling pathway is more related to
inflammatory signalling, whereas the CD95(Fas)/CD95Fas
L pathway is considered to be more closely involved with
induction of apoptosis [94, 95].

The initiator of apoptosis, CD95L, is expressed by
neurons, astrocytes, and oligodendroglia and transmits
an apoptotic signal to target T cells following ligation
by either an agonistic antibody or ligands CD95L and
TNF-related apoptosis inducing ligand (TRAIL) [89, 96,
97]. Under hypoxic conditions, the death signalling path-
way Fas/CD95/apo-1 functions as a death receptor and
is responsible for triggering apoptosis in ischaemic neu-
rons, transforming them into “safe” targets for phago-
cytic clearance [92]. The interaction at the cell surface
between CD95/CD95L induces the activation of caspases
and subsequent apoptosis of the target cell. For example,
apoptosis is initiated in activated T lymphocytes, resulting
in their subsequent engulfment and clearance by microglia,
leading to a down regulation of the inflammatory response
[98].

10. Apoptotic Cell Clearance:
An Anti- Inflammatory and Protective Role
for the CNS Innate Immune System

The clearance of apoptotic cells expressing ACAMPs by
phagocytes of the innate immune system (predominantly
microglia) is vital to prevent their accumulation and subse-
quent release of neurotoxic molecules [11]. The phagocytosis
of apoptotic cells by glia is regarded as “nonphlogistic”
because it is associated with inhibition of proinflammatory
cytokine expression and down regulation of inflammation
[99–101]. Phagocytosis of apoptotic cells is associated with
the release of TGF-β, IL-10 and tissue growth factors such
as VEGF. All these molecules are capable of stimulating
tissue repair and regulating CNS inflammation [100–103].
Recovery from EAE is increased through induction of
apoptosis in inflammatory T cells by the TNFR signalling
pathway [86, 87]. In TNFR knockout mice, T cell apoptosis
is reduced by fifty percent in the periphery of demyelinating
plaques [94].

Apoptotic cells are recognized as “altered self” because
they express surface molecules termed apoptotic-associated
molecular patterns (ACAMPS) [8, 28, 104, 105]. Mannose
sugars, oxidized low-density lipoproteins, and electrical
charge have all been proposed as ACAMPS; however, the best
characterised to date is the phosphatidylserine lipid molecule
(PS) [104]. Glia and macrophages express a range of
phagocytic receptors (PR) that recognize ACAMPS including
the PS-R, CD 14, CD36, milk fat globulin (MFG-EGF 8), and
triggering receptor expressed by myeloid cells-2 (TREM-2)
[30, 84, 104–111].

Activation of the classical C pathway through the first
C component, C1q, recognizing ACAMPS, initiates the
generation of opsonins C3 and C3b [112, 113]. These two
opsonins enhance phagocytic clearance of apoptotic cells,
because they are recognized by microglia expressing the CR3
and CR4 receptors [29, 33, 114, 115]. The detection and
clearance of apoptotic cells by the innate immune system
is therefore vital for the promotion of tissue homeostasis
as it regulates the protective component of the CNS innate
immune response [86, 87].

11. The Complement Pathway Has a Pivotal
Regulatory Role in the CNS Innate Immune
Systems “Double-edged Sword” Response

The complement system is an integral part of CNS innate
immune system and comprises of three pathways, the classi-
cal (CP), alternative (AP), and lectin pathway. Each pathway
is composed of soluble and surface proteins expressed by
almost all cell types with both neurons and glia expressing
the full range of complement pathway proteins [31] (see
Figure 2). The classical pathway is activated by hypoxic
neurons, myelin debris, DNA, various neurotoxic proteins,
and apoptotic cells all binding to the first C component C1q
[33, 116, 117]. C1q represents a PRR and is closely involved
with the clearance of apoptotic cells and toxic debris from
injured CNS. Microbes activate the alternative pathway by
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binding to C3 to promote C5 formation and subsequent
membrane attack complex (MAC) formation. The lectin
pathway is not regarded as an important factor in CNS
inflammation (see Figure 2).

Activation of the CP and AP pathways generates
C3 with subsequent production of C3b and iC3b, two
opsonins that target apoptotic cells and promote their
clearance by macrophages and microglia expressing the CR3
(CD11b/CD18) and CR4 (CD11c/CD18) receptors [8, 114,
115]. These two receptors are also located on activated
microglia and the Kolmer cells of the choroid plexus [118].
These two cell types are responsible for clearing neurotoxic
debris and apoptotic cells from the CSF, emphasizing the
importance of the innate immune system for removal of
debris and apoptotic cells from the ventricle in the acutely
injured brain [29, 33, 115].

Both alternative and classical CP converge to produce the
cytolytic terminal membrane complex C5-9(MAC) which
produces cell lysis and tissue injury. Brain cells are particu-
larly vulnerable to C attack and express a wide range of RCAs
to inhibit local C3 and MAC synthesis in order to maintain
tissue homeostasis [118–121].

Activation of the CP results in the formation of two
anaphylotoxins C3a and C5a that are capable of acting
as chemoattractants to glial and myeloid cells expressing
the receptors, C3aR and C5aR [31, 32]. However, C3a
has recently been shown to have an immune-regulatory
function by inhibiting proinflammatory cytokines and by
its capacity to reduce NMDA-induced neuronal death [122,
123]. Further evidence, discussed below, describes how the
generation of C3a contributes to stem cell chemotaxis into
areas of inflammation, potentially enhancing tissue repair
[124].

12. The Regulators of Complement Activation
Proteins (RCAs) Have Multiple Protective
Roles Preventing Inappropriate
Complement Attack

To prevent “self -destruction” and reduce tissue injury, the
CP are regulated by proteins described as regulators of
complement activation (RCAs). These regulators are divided
broadly into membrane and fluid phase proteins (for detailed
review see [119]). The membrane-related RCAs include
CR1(CD35), DAF (CD55), and CD46 (MCP). These three
regulators block the classical and alternative pathways at
the C3/C5 convertase stage. CD59 blocks formation of the
MAC at the common terminal pathway stage of both the
CP and AP pathways [125–127]. The fluid-phase RCAs
include C1inhb, the inhibitor that regulates C1 activation
in the classical pathway Factor H (FH) prevents factor B
from binding to C3b and this inhibits the C3/C5 convertase
step in the classical pathway. Clusterin and protein S both
prevent C5b-7 formation in the terminal pathway, reducing
the extent of MAC driven inflammation [31, 32, 119]; see
Figure 2. Not only do the RCA regulate C pathway activation,
but they also have multiple protective roles as defined in the
following 4 subsections.

12.1. RCA Regulate the CNS Innate Immune Response and
Reduce Brain Inflammation. Transduction of complement
and neurotoxic proteins through the disrupted BBB will
contribute to the activation of the potentially cytolytic C
components on the cell membranes of neurons and glia.
Following head injury and ischemic stroke complement
mediated neuronal damage has been reported and this
corresponds to local C synthesis by neurons and glia [31,
32]. Deficiency of the RCAs CD55, CD59 and FH have
all been shown exacerbate the severity of inflammation in
Experimental Autoimmune Encephalomyelitis (EAE) [128,
129].

Neurons and neuronal cell lines activate the C pathway
resulting in MAC-induced cytolysis because in vitro they
express low levels of the RCAs (CD59, CD46, DAF, and CR1)
and (CD55) [120, 121, 130]. Factor H was the main neuronal
regulator for C, but was present at low levels, as were the
other fluid phase regulators Sp, clusterin, and Ci inhibitor
[128–132]. In vivo, however, van Beek found that CD55 was
in fact an effective “neuroprotective RCA” in chronic, but not
in acute CNS inflammation [121].

Astrocytes and microglia express a full range of RCAs
(CD46, CD59, DAF, FH, and clusterin), effectively protecting
themselves against bystander C attack in areas of tissue dam-
age and inflammation [125, 127, 128, 133–136]. However,
in human oligodendroglioma cell lines CD59, MCP and
DAF(CD55) are all expressed, together with the regulators
of the alternative C pathway C1inhb, FH, S protein, and
clusterin [136, 137]. Overall, neurons express low levels of
RCAs and are vulnerable to C attack, whereas astrocytes,
microglia, and oligodendrocytes are better placed to support
tissue repair, because they are protected by a range of RCAs
against attack by C activation. This property increases glial
survival in areas of tissue damage, together with glial pro-
viding important support for neuronal sprouting through
the expression of clusterin [138]. These data emphasis the
therapeutic potential of manipulating glial expression of
RCA in order to minimise neuronal injury by regulating the
hosts’ inflammatory response.

12.2. RCAs Have Immunoregulatory Functions in the Adaptive
Immune System Reducing Brain Inflammation. The range of
immunoregulation provided by the RCA has recently been
extended to include the down regulation of systemic B and
T cell activity. This regulatory property of RCAs coordinates
the regulation of both the innate and adaptive arms of the
immune response reducing the inflammatory response in the
CNS [139–141].

The membrane bound RCA, CD46, binds to C3b and
this in turn stimulates Treg that inhibit the activity of other
T cells [141, 142]. CD55 and CD59a also regulate T cells by
reducing the stimulatory effects of C on both T cells, antigen
presenting cells (APC) and B cells [139, 142]. The exact
mechanism responsible for RCA regulation of T cell activity
is not yet understood, but CD59a has a postulated direct
inhibitory effect upon APC independently of complement.
Conversely in EAE, DAF (CD55) suppression of T cell
activity was dependent upon C pathway integrity which was
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responsible for reducing the expression of the inflammatory
cytokines IFN-γ and IL-2 [140]. Therefore, the presence
of RCAs in acutely injured and inflamed tissues not only
reduces C activation, but also regulates the adaptive immune
response by inhibiting T cell proliferation and reducing
inflammatory cytokine expression. Despite this evidence for
the inhibitory effects of the individual CRP regulators on T
cell activity, the exact mechanism responsible for this effect is
yet to be determined [142].

12.3. RCAs Are “don’t eat me” Signals Indicating “Self” and
They Are Lost during Apoptosis. One strategy for evading
detection by microglia and preservation of tissue homeosta-
sis is the expression of a group of molecules that define
self by acting as “don’t eat me” signals, the so-called “self-
associated molecular patterns” (SAMPS) [8, 9]. A universal
example of a “don’t eat me” signal (SAMP) is MHC-I
which is present on host cells helping to define “self” and
preventing their detection by natural killer cells [143]. The
expression of “don’t eat me” signals by host cells is therefore
crucial for maintaining tissue homeostasis. For example,
the RCA, CD46, represents “don’t eat me” signal on host
cells, but it is down regulated on the surface of apoptotic
cells (“altered self”). This loss of CD46 on apoptotic cells
promotes opsonisation with C3 and iC3b and facilitates their
phagocytic clearance [144]. Furthermore, the presence of the
RCAs FH, CD46 and CD55, all act as “don’t eat me” signals
on host cells. The presence of these “don’t eat me” molecules
prevents inappropriate attack by microglia against host cells
with the preservation of tissue homeostasis [8, 11, 128, 144].

12.4. RCAs Interact with Sialic Acids Representing “Self” and
This Inhibits Microglial Phagocytosis. An important marker
of normal or host cells is glycoproteins that terminate with
sialic acids and represent markers of “self” [145]. These sialic
rich molecules are recognized by FH as representing a “don’t
eat me” signal and this interaction prevents phagocytosis of
host cells by microglia [8, 9, 128]. One group of receptors
known as siglecs also bind to the sialylated glycoproteins
and contain the immuno receptor tyrosine-based inhibitory
motifs (ITIMS) that inhibit microglial function again pre-
venting inappropriate destruction of host tissue [145, 146].
The absence of sialic acids on pathogens and apoptotic
cells represents a missing “self-signal” and promotes the
phagocytosis and clearance of pathogens and apoptotic cells
with reduction of proinflammatory cytokine expression [28,
84, 98, 146].

13. Neurons Express Neuroimmunoregulatory
Molecules (NIRegs) to Preserve Tissue
Homeostasis and Promote Survival
during Inflammation

To help neurons and other host cells evade detection by
activated microglia and macrophages, they express a group
of “don’t eat me” signals termed neuroimmunoregulatory
molecules (NIRegs) [6, 8, 10, 24, 25]. These molecules reduce
the severity of any inflammatory response by inhibiting

microglial phagocytosis. The range of NIRegs regulating
microglia activity is expanding and includes CD200 (and
its receptor CD200R), the integrin CD47 with its receptor
CD172, together with the semaphorin Sema 3A and CD22
[37, 39, 40, 78, 79]. The down regulation of the expression
of NIRegs, CD200 and CD47, promotes microglial activity
as found in demyelinating plaques from cases of multiple
sclerosis [37]. See Figure 3.

14. CD200-CD200R: An NIReg Pathway

CD200 is a 41–47 kd surface molecule and a member of
the Ig supergene (IgSF) family characterised by two IgSF
domains that represent the most commonly found domain
type in the leucocyte membrane [40]. The presence of two
IgSF domains suggests that this molecule is related to cell
adhesion and regulation. As a glycoprotein, CD200 is located
on the membrane of myeloid cells, cerebellar neurons, retinal
neurons, and vascular endothelium [35, 37–40, 147]. The
counter receptor to CD200, CD200R, also contains two IgSF
domains and is expressed by myeloid cells and rodent brain
microglia [36, 147, 148].

In CD200-deficient mice, the number of activated
microglia and macrophages was more numerous after an
experimental lesion, as compared with the wild type ani-
mal. This evidence demonstrated that the CD200-CD200R
interaction regulated microglial activation and inflammatory
cell trafficking across the BBB [36, 147]. This observation
is consistent with the finding that CD200−/− mice have
spontaneously activated microglia and are highly suscep-
tible to induction of experimental allergic uveitis [147].
Expression of CD200, but not CD200R, was reduced in
and around demyelinating plaques in multiple sclerosis
(MS) allowing unrestrained microglial activation, although
individual astrocytes expressing CD200 have recently been
demonstrated in MS and are regarded as neuroprotective
[37, 148]. Overall, the CD200 level was reduced in MS tissue
as compared with normal tissue, indicating a failure of the
CD200-CD200R pathway in this inflammatory CNS disease
[37, 148].

The expression of CD200 is an important immunoregu-
latory signal during apoptosis because it is under the con-
trol of both P53 and caspase-dependent pathways. CD200
expression is increased on the surface of apoptotic cells and
because of its immunosuppressive properties this inhibited
proinflammatory cytokine expression by apoptotic dendritic
cells in vitro. The presence of CD200 on apoptotic cells
also reduced the severity of tissue damage because of its
inhibitory interaction with microglia expressing its counter
receptor CD200R [149].

15. CD47-CD172 a Further NIReg Pathway
Present in the CNS

As a member of the IgSF protein family, CD47 is consti-
tutively expressed by endothelium, neurons, macrophages,
and dendritic cells [39, 46, 150, 151]. CD47 has five
trans-membrane regions with alternatively spliced isoforms
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of CD47 having a tissue specific expression; isoform 2
is present in bone marrow, whereas isoform 4 is highly
expressed in brain [151]. The counter receptor for CD47
is signal regulatory protein SIRP alpha (CD172), a plasma
membrane protein with three Ig domains in its extra cellular
component; it is expressed by myeloid cells and neurons
[39]. The interaction between CD47 on a host cell with
a myeloid cell expressing CD172a recruits the tyrosine
phosphatases SHP-1 and SHIP-2 resulting in the down
regulation of macrophage phagocytosis, the prevention of
neutrophils migrating across the BBB, an increase of TGF-
β, expression and a reduction of interferon α levels all
contributing to the reduction of the severity of any inflam-
matory response [46, 151, 152]. CD47 also interacts with
a further counter receptor, thrombospondin TSP, expressed
by microglia, astrocytes, and smooth muscle cells [153].
The TSP molecule acts as a bridge between the apoptotic
cells and the phagocyte. TSP binds to CD47 expressed on
neurons and T cells and this interaction promotes apoptosis
through the death signal CD95/Fas pathway. In the case of
TSP binding with CD47 located on activated T cells, the
severity of tissue inflammation is reduced by this interac-
tion, because it promotes T cell apoptosis and clearance
[153].

Cells deficient in CD47 are rapidly cleared from the
systemic circulation by the spleen indicating the presence
of CD47 represents a “don’t eat me” signal and prevents
phagocytosis of host cells [154]. For example, apoptotic cells
loose surface CD47 which reduces their ability to phospho-
rylate CD172a, removing their inhibitory effect upon local
microglia and enhancing their own clearance from areas of
tissue damage by phagocytosis [155]. The immunoregulatory

role of CD47 is emphasised in human disease because this
NIReg is lost at the edge of a demyelinating plaque in
multiple sclerosis, removing the immunoregulation of local
microglia and increasing disease progression [37, 148].

16. The Interaction between Brain
Stem Cells and the Innate Immune
Response to Brain Injury

Neural stem/precursor cells (NPCs) have not only a well-
defined role providing replacement for damaged neurons,
but also a range of beneficial properties termed “therapeutic
plasticity” which include the expression of neuroprotectants
and immunoregulatory molecules [156]. Stem cells differen-
tiate into a glial-like cell with inherent regulatory and protec-
tive activities capable of rescuing dying neurons and oligo-
dendrocytes [4, 157, 158]. The range of protective properties
(therapeutic plasticity) includes the expression of neuropro-
tective and immunoregulatory molecules, a concept termed
the “bystander or chaperone” effect [156, 159]. Amongst the
protective effects expressed by stem cells is the potential to
regulate the local innate immune and adaptive systems and
as a consequence promote tissue homeostasis [5, 156, 160].

17. Stems Cells Down Regulate Local
Inflammation to Promote Their
Restorative Properties

Neural stem cells (NSC) are located in the subventricular
zone (SVZ) and renew to produce neurons and glia [161,
162]. NSC introduced into the systemic circulation are
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remarkably resilient to destruction by inflammatory cells
of the adaptive immune system. However, NSC are suscep-
tible to T cell-mediated killing because they express both
costimulatory molecules CD80 and CD86 [163]. Stem cells
are also able to divide into glial-like cells with “regulatory”
and “protective” activities that support dying neurons and
oligodendroglia, a function mediated by the expression
of growth factors and immunoregulatory molecules that
control the local innate immune response, a characteristic
described as “therapeutic plasticity” [15].

18. Stem Cells Are Able to
Immunoregulate T Cells

The concept of a “regulatory” glial stem cell controlling
the local CNS innate immune response shares similarities
with the same role carried out by the T regulatory cells
(CD4+CD25+FoxP3+) in the adaptive immune system [8,
15]. This small population of T cells known as T regs
suppress the T lymphocyte response by expressing TGF-β
and IL-10, both of which can expand the Treg population
and also inhibit the proinflammatory cytokine expression by
microglia [73–75, 164–166]. The mechanism responsible for
T cell-based neuroprotection is not entirely clear, although
lymphocytes express a range of neurotrophic growth factors,
including brain-derived neurotrophic factor and ciliary
trophic growth factor, as do astrocytes and macrophages [73–
75, 167–171]. See Figure 4.

Emerging data indicate that mesenchymal stem cells
(MSC) are capable of immunoregulating inflammation
through T cell suppression. In acute experimental cerebral
ischaemia and EAE, MSC inhibited activated T cells and
stimulated the expansion of T regs as demonstrated in
chronic inflammatory diseases such as rheumatoid arthritis
and colitis [7, 17, 172, 173]. The mechanism responsible
for this immunosuppressive effect of MSC upon T cell
proliferation is not clear, but the cytokines IFN-γ, TNF-
α ILI-α, and IL-β2 were all implicated in a complicated
regulatory pathway between T cells and MSC. In vitro
studies have found that MSC do not suppress activated
T cells unless the T cells are themselves producing the
key proinflammatory cytokine IFN-γ. Low levels of this
cytokine in combination with TNF-α IL-Iα and IL-β2
promote MSC-related T cell suppression as confirmed by
MSC from mice deficient in IFN-1 receptor being unable
to inhibit T cell proliferation [174, 175]. This data indicate
that an initial low level of T cell IFN-γ expression is
required before the MSC can inhibit T cell proliferation.
The proinflammatory cytokines IFN-γ, TNF-α IL-Iα, and
IL-β2 are responsible for T cell inhibition, because they
promote iNOS (inducible primarily in macrophage nitric
acid oxidase) and eventually NO expression by MSC. Both
NO and the proinflammatory cytokines expressed by MSC
are postulated as molecules that mediate the suppression
of T cells. The central effect of NO in this regulatory
pathway is confirmed in mice lacking iNOS, because MSC
from these animals are not able to immunosupress T cells
[174, 175].

19. Stem Cells Are Able to Migrate into Areas of
Tissue Injury and Inflammation Where They
Regulate T Cell Activity

A further immunoregulatory property of MSC is dependent
upon their ability to migrate into areas of tissue damage
and express the leukocyte chemokines CXCL9, CXCL10, and
CXCL11. All of which are ligands for the T cell-specific
chemokine receptor CXCR3 [175]. The close proximity of
MSC to T cells is vital for NO to have its immunosuppressive
effect, because NO is only effective over short intercellular
distances. If the CXCR3 receptor is inhibited, the immuno-
suppressive effect of MSC is lost, because these stem cells will
not be able to migrate into tissues containing T cells [175].
In addition, an important immunoregulatory characteristic
of MSC is the initiation of T cell apoptosis; this effect is
absent when MSC from either iNOS−/− or IFNγ−/− mice are
cocultured with activated T cells [174, 175].

Further evidence for stem cell regulation of T cell
proliferation has been shown by mesenchymal stem cell
inhibition of the T cell cycle at the G0/G1 phase, preventing
the clonal expansion of activated T cells. [176] More recently,
the NIReg CD 200 which has been located on both normal
human cancer stem cells (including malignant brain tumors
such as the glioblastoma) provides a signalling pathway to
allow stem cells present within inflammation and tumours to
evade immunodetection and consequently thrive [177]. See
Figure 4.

20. Stromal Cells, Niche Formation
and the Regulation of the CNS
Innate Immune System

In the systemic organs, stem cell renewal and progenitor
differentiation are regulated by stromal cells located in
specialized microenvironment termed a “niche” [4, 161,
178]. Stromal cells express a range of markers including
vimentin, laminin, fibronection, osteopontin, and variably
STRO-1, VCAM-1, endoglin, and MUC-18/CD146. Soluble
factors such as Stroma-derived factor 1 (SDF-1) that signal
between stromal and stem cells and are capable of regulating
stem cell renewal and differentiation within the niche [178].

In the adult mouse, brain stem cells, with a characteristic
of astrocytes, are located in two discrete niche areas, the
subventricular zone (SVZ) of the lateral ventricle and sub-
granular area of the hippocampus (SGZ) [4, 161, 162, 179].
Outside of these two areas, astrocytes do not appear to have
neurogenic properties. The stromal cells in the mouse stem
cell niche SVZ have endothelial and potentially ependymal
charcteristics as indicated by their expression of SHH, Notch,
Wnt, TGF-α, FGF and VECF molecules [4, 178, 180].

In the brain, fibroblasts, surrounding blood vessel walls
and ependymal cells are both regarded as stromal cells,
because they provide a niche to control adult neurogenesis
and are immunoregulatory cells [162, 181]. Ependymal
cells are present in the SVZ, but following injury they
switch to the radial or chaperone phenotype and migrate
into sites of injury and inflammation in order to prepare
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the ground for the migration of “protective” NSC [4, 6].
Ependymal cells also express a range of molecules Notch I,
bone morphogenic proteins, GPCR for the C anaphylotoxin
C3a that increased their response to the protein SDF-1. This
protein is expressed by ependymal cells and responsible for
regulating neuro- and gliogenesis [162, 182, 183]. SDF-1
is also increased in areas of tissue damage and functions
as a chemoattractant to a variety of stem cells that express
the G protein-coupled, transmembrane, cytokine receptor
CXCR4 [87]. CXCR4 is positively regulated by the tissue
hypoxia inducible factor (HIF-1), TGF-β, IL-4, and IL-7:
all of these molecules are present in damaged or inflamed
tissues [183]. SDF-1 is also increased in myocardial and brain
ischaemic infarction, underlying the possibility that the SDF-
1—CXCR4 pathway is important for attracting stem cells
into areas of damage to promote tissue repair [184, 185].
Interestingly, SDF-1 is down regulated by two well-defined
anti-inflammatory molecules TGF-β and steroids, whereas
thrombin, fibrinogen, and C3a are all found in areas of
inflammation and increase the chemotaxis of CXCR4+ stem
cells to low dose SDF-1 [183, 186]; see Figure 4.

Recent evidence has also underlined the importance of
the C pathway for the trafficking of haemopoietic stem cells
from bone marrow into blood and damaged tissue [183].
Activation of C results in the formation of C3a and this
functions as a target to sensitise CXCR4+ stem cells to
high levels of SDF-1, as found in areas of inflammation

and promotes stem cell entry into these areas of tissue
damage [183, 187]. This stem cell chemoattractant response
to C3a and C5a was blocked by C3aR and C5aR inhibitors,
respectively [124]. A further relationship between the C
pathway and regeneration is the protective effect of CD55,
an RCA, promoting neuronal sprouting [121, 188].

21. Stem Cells Regulate the Severity
of CNS Inflammation by
Systemic Immunosuppression

Stem cells have been shown to contribute to both
immunoregulation and neuronal protection in both chronic
and acute CNS infection and ischemia [17, 172, 189–192].
The immunoregulatory effect of NCS was observed in one
study involving the initiation of EAE. The administration
of intravenous NSC inhibited the peripheral T cells within
lymph nodes and as a consequence reduced the severity of
EAE [15]. A similar experiment with mesenchymal stem
cells MSC also reduced the severity of chronic EAE through
peripheral immuno suppression [192].

More recently in an experimental model of acute cerebral
stroke, intravenous injection of neural/stem cell precur-
sor (NPC) produced a profound antiapoptotic and anti-
inflammatory effects. This included the down regulation of
TNF-α and IL-6 in both CNS and lymph tissue resulting
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in a reduced volume of brain haemorrhage. [156]. These
data show that peripheral stem cells reduce the severity of
CNS inflammation by regulating entry of systemic anti-
inflammatory cytokines through the open BBB following
haemorrhage [156]. Alternatively, NPC enter the CNS as
in the EAE model to express their own anti-inflammatory
cytokines to stimulate immuno-regulation and increase their
own survival [15, 156, 190, 191].

Rather than differentiating into the terminal stage to
replace damaged neurons, NPC promote tissue repair by
acting as bystanders expressing their “therapeutic plasticity”
phenotype by producing anti-inflammatory cytokines and
immuno regulators of T cells. These data indicate that
peripherally administered stem cells can also regulate the
CNS innate immune response through effects upon the
systemic lymphoid system [156, 193].

22. Inflammation Can Have Protective Effects
by Stimulating Bone Marrow Cell
Survival in the CNS

Recent evidence has found that bone marrow cells gain
access to the brain following disruption of the BBB and are
capable of differentiating into microglia but not astrocytes
[194]. The survival of bone marrow cells (BMS) when
transplanted into brains with an acute meningitis due to S.
pneumoniae infection was greatly enhanced and they rapidly
differentiated into functional microglia contributing to the
clearance of debris and apoptotic cells [195, 196]. Similarly,
transplanted oligodendroglial precursors exposed to tissue
inflammation were effective at remyelination [197, 198].
The presence of proinflammatory cytokines and activated
microglia in host tissue with ischemic infarction, infection,
and metabolic diseases has been shown capable of promoting
BMS survival together with increasing microglial differen-
tiation from the transplanted monocytes [6]. Therefore,
successful colonization of CNS tissue by BMS cannot be
assumed to always require down regulation of the innate
immune system. The absence of tissue damage can prevent
activation of the innate immune system which can under
some circumstances act as a positive signal for tissue repair
[198]. This interaction between host CNS inflammation
and the enhanced survival of BMS provides an interesting
therapeutic opportunity [6].

23. Conclusion

The balance between the protective and destructive effects
of the innate immune response against pathogens and brain
injury has been termed “a double-edged sword”. (Wryss
coray 2002). This balance must be critically regulated in
order to promote conditions supportive of brain repair
and allow the damaged brain to return to normal function
(homeostasis).

The disruption of the BBB exposes neurons to potentially
neurotoxic proteins from the systemic circulation. These
proteins are recognized as “nonself” because they contain
PPAMPS. This stimulates the CNS innate immune system to

express “selfdefence” proteins including the defence proteins
called serpins in order to counter the neurotoxic effects of
the systemic proteins upon the brain. In acute brain injury,
the presence of these “selfdefence” proteins acting rapidly to
promote repair is of potential therapeutic importance.

The CNS innate immune system is capable of expressing
“death signals” (CD95L/FAS/CD95FAS-L) to initiate apopto-
sis in damaged neurons and infiltrating T cells and rendering
them safe targets for removal by the innate immune system.
Therapeutic stimulation of these pathways represents a route
to remove infiltrating T cells with reduction in the severity of
CNS inflammation.

The clearance of apoptotic cells is enhanced by the C
opsonins C3band iC3b providing targets for clearance by
phagocytic glial cells expressing various PRR that recognize
these opsonins. The exact PRR responsible for the removal
of apoptotic T cells, damaged neurons, and neurotoxic
proteins is not yet known. The stimulus responsible for the
selective expression of specific PRR by the individual cellular
populations in the CNS innate immune system is therefore,
an important future topic for research.

Glia expression of C is closely self-regulated by RCA
preventing bystander cell damage due to MAC attack of host
and “nonself” targets. RCAs are not only regulators of C
expression, but also suppress T cell activity reducing brain
inflammation. However, the exact pathway responsible for
this immunoregulatory effect remains unclear, but under-
lines the range of multiple immunoregulatory roles provided
by this group of molecules.

Host neurons and glia also express “don’t eat me”
signals and their presence prevents microglial attack; this
is exemplified by a group of “don’t eat me” signals called
the NIRegs including the semaphorins, CD22, CD200, and
CD47. The selective expression of these NIRegs provides
several potential pathways for host cells and stem cells to
evade the destructive effects of the innate immune response
by reducing microglial attack of neurons and stem cells.

Stem cell replacement of damaged neurons represents a
definitive response to acute brain injury, but recent evidence
has shown that stem cells also exhibit “therapeutic plasticity”.
This protective response includes the capacity to immuno-
regulate tissue inflammation through anti-inflammatory
cytokine expression, T cell inhibition, and expression of the
NIReg CD200 that inhibits potentially destructive microglial
activity.

Brain stem cells expressing the CXCR4 cytokine receptor
migrate into areas of inflammation and ischemia in response
to the chemoattractant thrombin and the anaphylotoxins
C3a and C5a. These two anaphylotoxins are expressed by glia
and this underlines the potentially important relationship
between stem cell survival and the protective component
of the CNS innate immune system. It is likely that further
molecules, expressed by the innate immune system, will be
shown to have trophic properties towards stem cells, enhanc-
ing their survival in areas of tissue damage. Interestingly,
the administration of peripheral stem cells into the systemic
circulation has been shown to have immunoregulatory
properties by reducing CNS injury and inflammation. These
observations imply that the interaction between stem cells,
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T cells, and APC within local lymph node reduces the
severity of CNS inflammation providing an accessible site,
in the periphery, for the therapeutic manipulation of this
neuroprotective effect.

Although many of these CNS immunoregulatory path-
ways are shared with systemic organs, they, nevertheless,
represent potential therapeutic targets capable of regulat-
ing CNS inflammation and promoting stem cell survival.
The elucidation of the immunoregulatory pathways shared
between the CNS innate immune system and brain stem cells
represents an important challenge, but one that is of great
therapeutic potential, relevant to both acute brain repair and
the restoration of tissue homeostasis.
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