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Anogenital and oropharyngeal cancers caused by human papillomavirus (HPV) infections

account for 4.5% of all cancer cases worldwide. So far, only the initial infection with

selected high-risk types can be prevented by prophylactic vaccination. Already existing

persistent HPV infections, however, can currently only be treated by surgical removal of

resulting lesions. Therapeutic HPV vaccination, promoting cell-based anti-HPV immunity,

would be ideal to eliminate and protect against HPV-induced lesions and tumors.

A multitude of vaccination approaches has been tested to date, many of which

led to high amounts of HPV-specific T cells in vivo. However, growing evidence

suggests that not the induction of systemic but of local immunity is paramount

for tackling mucosal infections and tumors. Therefore, recent therapeutic vaccination

studies have focused on how to induce tissue-resident T cells in the anogenital and

oropharyngeal mucosa. These approaches include direct mucosal vaccinations and

influencing the migration of systemic T cells toward the mucosa. The efficacy of

these new vaccination approaches is best tested in vivo by utilizing orthotopic tumor

models, i.e. HPV-positive tumors being located in the animal’s mucosa. In line with

this, we here review existing HPV tumor models and describe two novel tumorigenic

cell lines for the MHC-humanized mouse model A2.DR1. These were used for the

establishment of an HPV16 E6/E7-positive vaginal tumor model, suitable for testing

therapeutic vaccines containing HLA-A2-restricted HPV16-derived epitopes. The newly

developed MHC-humanized orthotopic HPV16-positive tumor model is likely to improve

the translatability of in vivo findings to the clinical setting.

Keywords: HPV, orthotopic tumor models, therapeutic vaccination, tissue-resident T cells, MHC-humanized mice

INTRODUCTION

Per year, around 4.5% of new infection-related cancer cases are caused by infections with the human
papillomavirus (HPV) (1). While virtually all cervical cancers are caused by HPV-infections, many
other anogenital as well as oropharyngeal cancer cases were found to be linked to persistent HPV
infections (2). The high-risk type HPV16 is the most abundant HPV type found in HPV-related
cancers (3). HPV16 and the second-most frequent high-risk type HPV18 are responsible for 71%
of cervical cancer cases worldwide (2, 4).
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The HPV oncoproteins E6 and E7 are expressed in all infected
cells and are known as the main cause for the induction and
maintenance of the malignant phenotype by disrupting cell cycle
control in the host cell (5). By leading to the inactivation or even
proteasomal degradation of p53 by E6, as well as by inactivation
of the retinoblastoma protein (pRb) through E7 activity, a
constant viral DNA synthesis is facilitated (6). This impact on
infected cells leads to an abnormal cell division, which can result
in the development of HPV-mediated cancer. Although E6 and
E7 are present in both low- and high-risk types, the binding
capacity and effect on cellular signal transduction pathways of
these proteins are much stronger in high-risk types (7).

Since 2006, prophylactic vaccines against several HPV types
have been available, which were designed with the virus-like
particle (VLP) strategy (8, 9). The viral L1 protein self-assembles
into empty capsids, which—when used as vaccines—lead to
the production of neutralizing antibodies and thereby result in
long-lasting protection against the respective HPV types (10).
However, as the induced antibodies prevent infection of the
target cell by the virus, these vaccines are only effective prior
to virus exposure but have no effect against already established
HPV infections (11). Current therapeutic approaches are mainly
surgical methods with complete removal of the affected tissue,
leading to potential severe damages (12). Immunotherapies may
provide a non-invasive treatment of already established HPV
infections and may further prevent possible lesions caused by
new infections. Therapeutic vaccines aim to induce a specific T
cell-mediated immune response against HPV-infected cells by
targeting HPV-derived epitopes presented by human leukocyte
antigen (HLA) molecules on the cell surface (13). Since E6 and
E7 are present on both precancerous and advanced cancer stages,
they are the most promising target antigens for eliminating
infections with high-risk HPV types (4).

For testing the efficacy of a vaccine, a suitable in vivo model
is required. Papillomaviruses are species-specific, thus HPV
does not infect animal cells (14). Most HPV immunotherapy
studies were performed in mice with transplantable TC-1
tumor cells. These cells were generated by transduction of
C57BL/6 lung cells with HPV16 E6 and E7 as well as H-ras
carrying the activating mutation G12V (15, 16). Other tumor
models include the C3 cell line (C57BL/6 mouse embryonic
cells expressing the HPV16 genome and activated ras) (17),
transgenic mouse strains developing tumors (18) and mouse
xenograft models (19). The most widely used TC-1 cells only
express murine MHC molecules, thus, this model is not suited
for testing therapeutic vaccines based on epitopes restricted
by HLA molecules. The same applies for the mouse strain
C57BL/6. Additionally, although this model can be used for
proof of concept studies with murine MHC-restricted HPV16
epitopes, further limitations need to be considered. The TC-1
cell line carries the murine MHC class I molecule H-2Db, which
presents a highly immunodominant HPV16 epitope (E749−57)
(20). Therefore, high frequencies of specific cytotoxic T cells
against E749−57 were observed to be induced upon various
vaccination approaches, leading to highly efficient killing of
TC-1-derived tumors (16, 21). These limitations have been
tried to be circumvented with the generation of TC-1/A2

cells, which carry the chimeric HLA-A2 (AAD) molecule (a
combination of the epitope-binding α1 and α2 domains of
HLA-A∗0201 with the α3 domain of H-2Dd) in addition to
the murine MHC molecules; and by the use of E7-based
vaccines where the immunodominant murine epitope has been
mutated (22). To be able to examine HLA-restricted peptides
without interference of any epitopes presented on murine MHC
molecules, completely HLA-humanized mice were developed.
The mouse strain A2.DR1, which expresses the HHD molecule
(epitope-binding α1 and α2 domains of HLA-A∗0201 with the
α3 domain of H-2Db, covalently bound to human β2m) as
well as HLA-DR1, is a humanized mouse model expressing the
HLA molecules most frequent among Caucasians. Furthermore,
all murine MHC genes have been knocked out or rendered
inexpressible (23–26).

Another aspect hampering translatability of in vivo results is
that most HPV16-positive tumor models in mice mainly rely on
subcutaneous (s.c.) tumors, but HPV infections occur at mucosal
sites with focus on the female genital mucosa. This body site
displays a unique immunity which is under the influence of
hormonal changes, needs to protect from sexually transmitted
infections but must be tolerant to sperm and to a growing fetus
(27). Its cell composition differs from that in the peripheral blood
(28), and the mucosa is typically not accessed by systemically
induced T cells (29). As HPV infections only occur in mucosal
epithelia, this is where vaccination-primed specific T cells have
to migrate and enter to execute their functions. Thus, in the
following, we review current strategies of inducing local anti-
HPV immunity at mucosal sites, as well as the development of
orthotopic murine HPV tumor models that will allow to assess
the anti-tumor efficacy of these vaccination approaches.

INDUCING ANTI-HPV IMMUNITY:
SYSTEMIC VS. MUCOSAL

In the search for a potent, therapeutic HPV vaccine, a multitude
of different formulations has been tested. These include, among
others, vaccinations with viral vectors, peptide-based vaccines
(minimal epitopes as well as long peptides), whole-protein based
vaccines and nucleic acid-based vaccines utilizing RNA as well
as DNA (4). Additionally, adoptive cell transfers are under
examination (30–32).

These vaccine formulations have been administered in
different locations; s.c., intramuscularly (i.m.), as well as
intravenously (i.v.). However, most of the studies failed upon
their translation to the clinical situation (33). One of the most
promising therapeutic HPV vaccinations tested in humans so
far has been VGX-3100, which induced high levels of activated
CD8+ T cells, as well as high antibody titers against the encoded
HPV16 and 18 epitopes (34, 35). One possible reason for the
observed poor clinical effect probably was the location of the
induced immune response, mostly the CD8+ T cell-mediated
response, which was only assessed systemically.

Upon infection of keratinocytes with HPV, local innate and
adaptive immune cells start to produce interferon-γ (IFN-γ).
This in turn leads to the production of various IFN-γ-induced
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chemokines by keratinocytes, including IP-10 (CXCL10) and
MIG (CXCL9) (36). Pulled by these chemoattractants, T cells
with the respective chemokine receptor, CXCR3 (37), will migrate
into the mucosa, where some start to express the integrin CD103.
Memory T cells expressing this marker, along with other homing
molecules (e.g., CD69), will be retained on-site and are called
tissue-resident memory T cells (TRM) (38). TRM cells are a vital
defense against subsequent reinfections whereupon a rapid T
cell response can be initiated. In contrast, circulatory memory T
cells will either not enter the mucosae (central memory T cells)
or will pass through them without staying (effector memory T
cells) (39).

The goal of a therapeutic vaccine against HPV-induced
malignancies is the induction of an HPV-specific T cell
response, which additionally results in a long-lasting memory
response. However, the mucosal localization of the infection
hinders activated, circulatory T cells to enter the affected tissue.
Therefore, an effective therapeutic immunization against HPV
should preferably induce a local immune response in the mucosa,
generating TRM, rather than systemic immunity to HPV. With
this in mind, several approaches have been tested to induce
mucosal immunity.

Local Vaccination
The induction of immunity against HPV in mucosal epithelia
can be achieved by directly vaccinating at the site of viral
entry. As HPV-derived tumors occur anogenitally, as well as
oropharyngeally, vaccination research is focusing on intravaginal,
oral and nasal vaccination protocols, checking for induction of
local HPV-specific CD8+ T cells.

Studies in Lausanne with attenuated Salmonella enterica
strains expressing HPV16 L1 (40) and later with HPV16
polypeptide vaccines, which induced regression of s.c.
tumors (41), showed that the route of delivery influences
the type of the induced immune response. Intranasal
vaccinations with either vaccine were able to lead to s.c.
tumor regression. However, intranasal vaccination with the
polypeptide was only able to protect a quarter of tested
mice from genital tumors (40, 42). Intravaginal instillation
of the S. enterica vaccine induced an inflammatory state
in the cervicovaginal tract of immunized mice while the
adjuvanted peptide vaccination was able to induce a high
amount of HPV16-specific CD8+ T cells in the cervicovaginal
mucosa (42).

When mice were intravaginally inoculated with HPV
pseudoviruses consisting of L1, L2 and a pseudogenome
expressing amodel antigen, the female genital tract was protected
from a subsequent challenge with HPV pseudovirus infectious
units (IUs) (43). Furthermore, a boost vaccination increased
the measured epitope-specific immune response about 10 times.
Remarkably, the vaccination also increased the total amount of
CD8+ T cells in the cervicovaginal tract, with mock-immunized
animals not showing this influx of CD8+ T cells. Most of the
intravaginal T cells were tested positive for the TRM marker
CD103 and the protection from infection proved to be long-
lasting (43).

The importance of localized immunization was also seen by
the induction of a specific T cell response in the oropharyngeal
mucosa, where intranasal but not intramuscular vaccination
with a non-replicative B unit of Shiga toxin vector (StxB-
E7) managed to protect mice from E7-positive head-and-neck
tumors. This was shown in both, prophylactic as well as
therapeutic immunization settings. The intranasal vaccinations
enhanced the amount of HPV16 E7-specific CD8+ T cells in
the tumormicroenvironment of head-and-neck tumors (44). Not
only intranasal but also intra-cheek immunizations led to an
accumulation of T cells in the local mucosa but not the respective
draining lymph node (45).

Systemic Vaccination
Rather than directly injecting the vaccines into the local tissue,
the induction of a systemic T cell response via “classical”
routes like s.c., i.m. or i.v. is another possibility to prime
the immune system against HPV. These methods, however,
must be complemented by directing the T cell migration
to the desired location. Over the years, different immune-
modulating substances such as Toll-like receptor (TLR)-agonists
or chemoattractants have been used not only in HPV research but
for several mucosal diseases. The goal is to utilize or induce the
expression of mucosa-associated homing molecules on activated
T cells.

Shin and Iwasaki first described the so-called “Prime-Pull”
method, which mimics the natural occurring immune response
(46). Upon infection of vaginal epithelium, effector CD4+ T
cells enter the tissue and secrete IFN-γ, which in turn leads
to the epithelial production of CXCL9 and CXCL10, which
attract T cells expressing the homing receptor CXCR3 (47). If
administered manually to the vaginal mucosa, these chemokines
redirected adoptively transferred, specific CD8+ T cells to the
mucosa. Mice immunized in this way were protected from a
genital herpes simplex 2 infection, whereas mice that received
the transferred T cells but were not administered CXCL9 and
CXCL10 survived in only 40% of cases (46). Another way of
pulling CD8+ T cells toward themucosa is the local application of
aminoglycosides such as neomycin. This method is more potent
than the chemokine pull and was able to establish a long-lived
population of CD69+ CD103+ positive T cells (48).

Other studies used CpG-ODN (TLR9 agonist) or
polyinosinic:polycytidylic acid (poly(I:C), TLR3 agonist) to
influence T cell trafficking. The application of either substance
led to an increase of the total amount as well as the amount of
E7-specific CD8+ T cell numbers in the cervicovaginal mucosa of
mice after s.c. vaccination with an HPV16 E7 polypeptide vaccine
(49). The TLR7 agonist imiquimod was also shown to increase
the amount of specific CD8+ T cells in the cercivovaginal
tract by stimulating the production of IFN-γ and therefore of
the chemokines CXCL9 and CXCL10. The accumulation of
activated T cells in the mucosa in turn led to further attraction
of more CD8+ T cells with varying specificity (50). The effect of
imiquimod was also replicated in guinea pigs (51).

Another tested compound, all-trans retinoic acid (ATRA) is
known to facilitate T cell trafficking to the gut. It has been shown
to increase the expression of mucosal homing molecules on T
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cells as well as leading to an enrichment of functional, specific
T cells in the vagina of mice (52).

Rather than pulling with immunomodulators, the vaginal
population of epitope-specific T cells can also be enriched
by priming the cells systemically and boosting locally. For
example, intranasal vaccination with vectors carrying human
immunodeficiency virus (HIV) epitopes, followed by a second,
vaginal vaccination led to an enlarged population of HIV-specific
CD8+ CD103+ T cells in the vaginal epithelium in mice (53).
Similarly, follow-up studies to the HPV pseudovirus vaccinations
mentioned above, with adenovirus vectors encoding HPV16 E6
and E7, showed that an i.m. prime vaccination with a subsequent
vaginal boost was more effective in inducing HPV-specific CD8+

T cells and their trafficking to the cervicovaginal tract than only
vaginal vaccination (54, 55).

ORTHOTOPIC HPV TUMOR MODELS

Existing Orthotopic HPV Tumor Models
Several orthotopic HPV tumor models have been developed to
study the vaccination methods mentioned above. The established

transplantable HPV16 tumor model TC-1 (C57BL/6 lung cells
expressing E6, E7, and H-ras G12V) (15) has been modified
for usage in orthotopic studies. Importantly, the cells needed
to be transduced with luciferase, to allow monitoring of tumors
at body-internal sites, not accessible for caliper measurements.
After the transduction with luciferase, the new TC-1-luc cells
(56, 57) were used to establish a tumor model in the vagina
of C57BL/6 mice. These tumors were monitored in vivo via
bioluminescence measurements and have been used to test
several different vaccination approaches (42, 49, 50, 58, 59). Apart
from approaches targeting the induction of local immunity,
vaccines inducing systemic immune responses have also been
tested using the TC-1-luc model. Interestingly, Bialkowski et al.
showed that an intralymphatic vaccine protected mice harboring
s.c. or lung tumors better than animals with tumors in the genital
tract. This underlines the need to test therapeutic vaccines in
orthotopic models that possess a similar microenvironment to
naturally occurring tumors in the affected tissue (58). Regression
of genital tract TC-1-luc tumors was also induced by vaccination
with an i.v. HPV16 RNA-LPX vaccine (59). The cell line has
furthermore been used as a model for oropharyngeal cancers and

FIGURE 1 | Generation of the two A2.DR1-transplantable HPV16 E6+/E7+ tumor cell lines PAP-A2-luc and E6/7-lucA2. The A2.DR1-derived sarcoma cell line

2277NS, which was generated by treating mice with methylcholanthrene (MCA) (66), was transduced with a vector carrying the proteins E6 and E7 of HPV16,

resulting in the cell line PAP-A2 (65). These cells were transfected with a vector carrying the gene for firefly luciferase, resulting in luminescent PAP-A2-luc cells. The

E6/7-lucA2 cell line was generated from isolated murine A2.DR1 lung cells that were transduced with HPV16 E6 and E7, leading to their immortalization and resulting

in the expression of the vaccination target antigens. Subsequently, the cells were transfected with mutated H-ras to render them tumorigenic and firefly luciferase to

allow tumor monitoring in vivo.
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vaccinations by establishing tumors in the submucosal area of
the tongue (44) or the submucosal lining of the cheek (45). The
HPV16 E6 and E7-positive mEERL95 cell line can also be used as
a model for head and neck squamous cell carcinoma (HNSCC) in
C57BL/6mice. It has so far been used to study disease progression
after surgical removal of tumors (60). Another transplantable
cell line is the C3H-derived AT-84, which was induced to stably
express HPV16 E7 and luciferase (61). Therapeutic vaccination
with DNA- or plant-based formulations resulted in slowed oral
tumor growth of these AT-84 E7-Luc cells.

Other commonly used mouse models are transgenic mice that
are engineered to express the HPV proteins of interest, mainly
HPV16 and HPV18 E6 and E7 [reviewed in Santos et al. (18)].
If expressed under the cytokeratin 14 promotor, HPV proteins
will only be expressed in basal keratinocytes (62). Transgenic
models can be used for both, anogenital and oropharyngeal
disease modeling (18). However, mice transgenically altered to
express HPV proteins may be tolerant to the proteins, leading to
the ineffectiveness of therapeutic vaccinations (63).

Recently, newly generated mouse strains were presented
whose transgenic expression of HPV16 E6 and E7, as well as
mutant K-ras and/or Pten can be induced by instillation of
adenoCre virus to vaginal tissue. The genetic modifications led
to the development of mucosal tumors which were amenable

to endoscopic monitoring, including serial punch biopsies (64).
This mouse model can not only be used to track the development
of HPV-positive tumors in vivo but could also help in developing
therapeutic vaccines in the future.

Development of a Novel Orthotopic HPV16
Tumor Model in MHC-Humanized Mice
The above mentioned orthotopic tumor models can so far only
be used for the examination of vaccinations against murine T
cell epitopes. Therefore, the translatability from animal model to
the clinical stage is limited. To improve the preclinical modeling
of HPV16-induced cancers, we established an orthotopic tumor
model in the MHC-humanized A2.DR1 mouse model.

The first HPV16 E6+/E7+ tumor model in A2.DR1 mice
(25) was described by our group in 2019 (65) as a target for
novel therapeutic HPV vaccination approaches. We generated
the E6+/E7+ cell line PAP-A2 by transduction of the A2.DR1
sarcoma cell line 2277NS with HPV16 E6 and E7. Importantly,
E6 and E7 only serve as target antigens in this cell line, which
is already immortal and tumorigenic because of its sarcoma
origin. In this first study, we worked with s.c. tumors. For the
establishment of an orthotopic tumor model we pursued two
approaches (Figure 1): one was the further development of the
PAP-A2 cell line. It was transfected with the firefly luciferase

FIGURE 2 | Establishment of E6/7-lucA2 as a novel HPV16 E6+/E7+ cell line for orthotopic tumor modeling in MHC-humanized A2.DR1 mice. (A) Intravaginal tumor

growth of E6/7-lucA2 cells. Picture taken 20 days after tumor cell instillation, 7min after D-luciferin injection i.p. (B) Intravaginal tumor growth of mice shown in (A)

shown by luminescence over time of instilled E6/7-lucA2 cells. Mice received 1 × 106 cells. (C) Magnetic resonance image of a vaginal tumor of a mouse that had

received 50,000 E6/7-lucA2 cells intravaginally 22 days prior to imaging, frontal view. (D) Orthotopic titration of cell number required for stable tumor formation by

intravaginally instilled E6/7-lucA2 cells. Growth shown by luminescence over time. Mean ± SD is shown of 5 mice which received the indicated amounts of cells. (E)

Cumulative survival curves of groups shown in (D). Survival is defined as the time until mice needed to be sacrificed because reaching one of the pre-specified

humane endpoint criteria.
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gene, allowing us to track tumor development in vivo. This new
cell line was named PAP-A2-luc. The second approach was the
establishment of a novel, E6+/E7+-dependent cell line. To this
end, A2.DR1-derived lung cells were transduced with HPV16 E6
and E7. This led to immortalization as well as presence of the
desired target antigens. Furthermore, and analogous to TC-1, the
cells were transfected with the activated oncoprotein H-ras G12V
to render them tumorigenic. Finally, they also received firefly
luciferase for in vivo detection by luminometers. This cell line was
named E6/7-lucA2.

After the expression of the desired proteins HPV16 E6 and
E7, H-ras G12V (if applicable) and luciferase was validated by
Western blots and luminescence measurements, both cell lines
were tested in vivo for s.c. tumor growth. Methods are described
in Supplementary Table 1. Each cell line was able to form
growing s.c. tumors in all tested mice. After re-isolation of the
tumor cells, both cell lines were instilled intravaginally into mice
that were previously synchronized to a diestrus-like state. PAP-
A2-luc tumors grew in 2 of 3 mice (Supplementary Figure 1),
while E6/7-lucA2 cells were able to form vaginal tumors in
all 3 mice (Figures 2A–C). Because of this and the fact that
PAP-A2-luc cells do not depend on the expression of E6 and
E7 for survival, we chose to focus on E6/7-lucA2 for further
experiments. Therefore, these cells were used to establish the
minimal cell number ensuring stable tumor formation and
growth. As can be seen in Figures 2D,E, 100,000 cells were
sufficient to elicit orthotopic tumor growth, and necessary
to achieve this in all animals. This novel orthotopic HPV16
tumor model can now be used to test therapeutic HPV16
vaccination strategies.

SUMMARY AND CONCLUSION

Therapeutic vaccinations against HPV16-induced lesions and
tumors have so far only rarely been effective in clinical trials.
One major reason are the shortcomings of preclinical models
of HPV-positive tumors, regarding both murine restriction of T
cell epitopes and tumor site. As has been shown in recent years,
local mucosal immunity, provided by TRM cells, is crucial to fight
HPV infection-related malignancies that occur in the anogenital
and oropharyngeal mucosa. Therefore, tumor models have to
be established at the orthotopic, i.e., naturally occurring, tumor
site. Several different orthotopic mouse tumor models have been
established, however, they only provide insight into murine
immune responses. Our newly developed HPV16 E6+/E7+

luminescent tumor cell lines, PAP-A2-luc and E6/7-lucA2, for
the MHC-humanized mouse model A2.DR1 were shown to be
tumorigenic s.c. as well as intravaginally. As the cell line PAP-A2-
luc does not rely on the transduced HPV16 proteins for survival
and expresses only low levels of these proteins, the E6/E7-
dependent cell line E6/7-lucA2 was generated and represents the
preferred cell line for future orthotopic tumor experiments in
A2.DR1 mice. The advantage of the A2.DR1 mouse strain lies
in the exclusive expression of human MHC molecules and can

therefore be directly used for vaccination in vivo. Regardless of
which therapeutic HPV16 vaccinations will be tested in future,
our new transplantable tumor cell lines will help to examine their
efficacy in a mouse model closely mirroring the clinical setting
of HLA-A2-carrying patients. However, a transplantable tumor
model cannot depict cancer development and progression. For
therapeutic intervention at different stages, other tumor models
need to be utilized.

Orthotopic tumor models provide the opportunity to test
different vaccination approaches for the induction of tissue-
specific immunity. As outlined above, HPV-specific CD8+ T cells
can either be directly induced in the mucosa by local vaccination
or systemically induced T cells can be redirected toward the
mucosa by applying appropriate stimuli. In our opinion, the
newly developed MHC-humanized orthotopic HPV16-positive
tumor model is likely to improve the translatability of in vivo
findings to the clinical setting.
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