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INTRODUCTION 
 

Esophageal cancer (EC) is one of the most prevalent 

malignancies and common causes of cancer-related 

death globally [1]. The main pathological subtypes 

included esophageal adenocarcinoma (EA) and 

esophageal squamous cell carcinoma (ESCC). ESCC  

 

accounts for 90% of EC in Asian countries, including 

China and Japan [2]. Although great advances in 

treatment were achieved in last decades, the prognosis 

of EC is still unsatisfactory [3, 4]. 

 

Cancer is the phonotypic end point of accumulated 

genetic and epigenomic alterations [5]. Many 
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ABSTRACT 
 

Growing evidence highlighted the tumor mutational burden (TMB) as an important feature of 
carcinogenesis and therapeutic efficacy in esophageal cancer (EC). Our study aimed to explore the genomic 
landscape and the correlation between TMB and immune cell infiltration in EC patients with or without 
radiotherapy. The EC patients were categorized into high TMB (TMB-H) and low TMB (TMB-L) groups by the 
ESTIMATE algorithm, and subgroup analysis was performed based on receiving radiotherapy or not. 
Univariate regression analysis indicated TMB and TNM stages as high-risk prognostic factors (Hazard ratio > 
1 and P < 0.05). Multivariate regression analysis suggested TMB as an independent prognostic factor 
(Hazard ratio = 1.051, P = 0.003). Kaplan-Meier analysis showed no significant difference of the overall 
survival (OS) between TMB-H and TMB-L groups (P = 0.082). However, EC patients without radiotherapy in 
the TMB-H group had significantly decreased OS (P = 0.038) and increased Tregs cell infiltration (P = 0.033). 
These results suggested TMB as a prognostic marker for EC patients. Especially for patients who did not 
receive radiotherapy, the prognosis of TMB-H patients was significantly poorer than that of TMB-L patients, 
which might result from the different regulatory T cell infiltration. 
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endogenous and exogenous factors, such as DNA 

damage repair inactivation, DNA erroneous replication, 

microsatellite instability, and carcinogen exposure, lead 

to increased somatic mutations [6]. The total number of 

mutations occurring in a tumor specimen is termed 

tumor mutation burden (TMB), which sketches out the 

status of genomic mutation [6]. Increasing attentions 

have been drawn to the linkage of genomic mutation 

profiling to patient characteristics with clinical outcome 

recently. 

 

Previous evidence suggested that higher TMB was 

likely to harbor more neoantigens as targets for 

activated immune cells [7]. The impacts of the TMB on 

tumor progression or immune infiltration are still to be 

investigated [8]. Many studies revealed the link between 

immunotherapy responses and TMB [9–12]. While not 

all mutations generate immunogenic, only a few 

mutations can be recognized by T cells [13–15]. 

Therefore, understanding the immune cell composition 

and function is critical to effectively manage cancer 

progression and immune response. 

 

In the presented study, we analyzed the difference of 

clinical features, such as ages, genders, tumor grades, 

tumor stages, races and radiation, between high TMB 

(TMB-H) and low TMB (TMB-L) groups. Then, we 

evaluated the genomic landscape of EC patients, and 

their associations with clinical parameters (genders, 

TNM stages, T stage, N stage and M stage) and overall 

survival (OS). Additionally, the correlation between 

TMB and immune cell infiltration was analyzed in EC 

patients with or without radiotherapy. Our analysis 

showed that TMB might be a potential prognostic 

assessment marker. Especially for patients not receiving 

radiotherapy, the prognosis of TMB-H patients was 

significantly poorer than that of TMB-L patients, which 

might result from the different degrees of regulatory T 

cell infiltration. 

 

RESULTS 

 
Mutational genomic landscape  

 
The summary of mutational genomic landscape was 

shown in Figure 1. By calculating the 9 variant 

classifications separately, missense mutation had the 

highest mutation frequency in the total mutation 

frequency (Figure 1A). In addition, single nucleotide 

polymorphism (SNP) was more common than INS and 

DEL (Figure 1B). Single nucleotide variants (SNVs) 

were classified into 6 base substitutions (C > A, C > G, 

C > T, T > A, T > C and T > G), and the results 

indicated C > T had the highest incidence (16511 times, 

Figure 1C). The values of variants varied from 0 to 

1585, with a median value of 87 (Figure 1D). Missense 

mutation had the highest mutation frequency in personal 

mutation frequency (Figure 1E). We calculated the 

genes with the highest mutational rate, and the top 10 

mutated genes were as follows: TP53, TTN, MUC16, 

SYNE1, CSMD3, MUC4, FLG, PCLO, DNAH5 and 

HMCN1 (Figure 1F). The waterfall map summarized 

the high mutated genes and their mutation classification 

(Figure 2). In addition, the proportion of more mutated 

genes was visualized using the genecloud 

(Supplementary Figure 1). Genes with mutation 

frequency ≥ 5 times were presented in the genecloud, 

which was consistent with the results in Figure 1F and 

Figure 2. These high mutated genes might be 

functionally related, therefore, we further studied their 

interaction. The co-occurrence and exclusive 

relationships between these mutant genes were shown 

in Supplementary Figure 2. The co-occurrence 

correlation between RYR2 and FLG was the most 

significant (P < 0.001).  

 

An overview of the clinical implications associated 

with TMB 

 

These 182 patients included in this study were consisted 

of 95 ESCC and 87 EA. The general characteristics of 

patients with EC were shown in Table 1. To determine 

the critical value of TMB, population was divided into 2 

groups by mean values. The clinical factors, such as 

ages, genders, tumor grades, tumor stages, races and 

radiation, were not associated with TMB levels (P > 

0.05). In addition, the level of TMB in EA was 

significantly higher than that in ESCC, but there was no 

significant difference of OS between the 2 tumor 

subtypes (Supplementary Figure 3). 

 

After integrating TMB and clinical information 

(genders, TNM stages, T stage, N stage and M stage), 

univariate and multivariate regression analysis on the 

impacts of prognosis were performed. The univariate 

regression analysis indicated that TMB, TNM stages, T 

stage, N stage and M stage were high-risk prognostic 

factors (hazard ratio > 1 and P < 0.05, Figure 3A). 

Multivariate regression analysis suggested TMB as the 

independent prognostic factor (hazard ratio = 1.051, P = 

0.003, Figure 3B). Then, we further studied the 

relationship between TMB and TNM stages, and found 

that there was no significant correlation between TMB 

and TNM stages (TNM stage: P = 0.808, Figure 3C; T 

stage: P = 0.396, Figure 3D; N stage: P = 0.963, Figure 

3E and M stage: P = 0.811, Figure 3F). 

 

Kaplan-Meier analysis indicated that there was no 

significant difference of OS between the TMB-H group 

and TMB-L groups (P = 0.082, Figure 4A). Considering 

the effects of radiotherapy on TMB and prognosis, we 

performed a subgroup analysis based on whether they 
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Figure 1. Summary of the mutation information with statistical calculations. (A–C) Classification of mutation types according to 

different categories, in which missense mutation accounts for the most fraction, SNP showed more frequency than insertion or deletion, and 
C>T was the most common of SNV; (D, E) TMB in specific samples; (F) the top 10 mutated genes in EC.  

 

 
 

Figure 2. Landscape of mutation profiles in EC samples. Mutation information of each gene in each sample was shown in the waterfall 

plot, in which various colors with annotations at the bottom represented the different mutation types. The barplot above the legend 
exhibited the mutational burden.  
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Table 1. General characteristics of patients with esophageal cancer. 

Characteristics TMB-L group (n = 134) TMB-H group (n = 48) ES P value 

Age (years) 62.95 (28.01-90.06) 68.61 (44.02-90.06) -2.265 0.605 

Gender   0.179 0.677 

Male (%) 115 (85.82%) 40 (83.33%)   

Tumor grade (n)   4.431 0.219 

G1 13 6   

G2 60 15   

G3 36 12   

unknow 25 15   

Stage (n)   1.945 0.746 

I 15 3   

II 57 21   

III 37 17   

IV 7 2   

unknow 18 5   

Race   7.712 0.052 

White 79 33   

Asian 39 7   

Black or African 

American 
5 0   

Unknown 11 8   

Radiation   1.288 0.525 

Yes 15 3   

No 96 38   

unknow 23 7   

TMB: tumor mutation burden; TMB-H: high TMB; TMB-L: low TMB; ES: effect size. 
 

received radiotherapy or not. There was no significant 

difference of OS between the TMB-H and TMB-L 

group in EC patients receiving radiotherapy (P = 

0.165, Figure 4B), however, OS of the TMB-H group 

decreased significantly in EC patients who did not 

receive radiotherapy (P = 0.038, Figure 4C). 

 

Immune infiltration between the TMB-H group and 

TMB-L group 

 

Prior to the immune infiltration, differences of gene 

expression between the TMB-H and TMB-L groups 

were calculated and visualized by “limma” package 

(Radiotherapy: Figure 4D and 4E; without 

Radiotherapy: Figure 4F and 4G). Based on this 

differentially expressed data, we used the 

deconvolution method to calculate the difference of 

immune cell infiltration between the TMB-H and 

TMB-L groups. The TMB-H group had significantly 

increased Tregs cell infiltration in EC patients who 

did not receive radiotherapy (P = 0.033), while there 

was no significantly different infiltration of 22 kinds 

of immune cells among patients receiving 

radiotherapy (Figure 5). 

 

DISCUSSION 
 

With the rapid development of microarray sequencing, 

researchers are increasingly exploring new targets and 

performing external validations using statistical 

algorithms in cancer. However, most current studies 

have not effectively classified and analyzed the 
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components of immune cells and the TMB, which may 

markedly affect the characteristics of cancer treatment 

response, especially precision radiotherapy. The 

CheckMate 227 trial recently established a TMB of ≥10 

mutations per 106 bases as a robust and independent 

biomarker of response [16]. These data recently led 

radiation oncologists to speculate whether the improved 

efficacy was caused by radiation-induced TMB. As a 

tumor with high mutational loads, EC was estimated to 

have 3,000 to 300,000 mutations per tumor [17, 18]. 

Therefore, we attempted to explore immune cell 

components and degrees of TMB, extracting significant 

biomarkers of large prognostic value to understand 

tumor progression in EC patients with or without 

radiotherapy. 

 

We constructed a model based on the TMB status and 

classified EC patients into TMB-H and TMB-L 

groups by the mean of population TMB. Patients with 

less TMB had a better prognosis, suggesting that 

TMB as a risk-independent prognostic factor. 

Cigarette smoking was identified as an important 

pathogenic factor for ESCC [19]. The TMB-H group 

was composed of smoking, aging and other cancer 

risk factors related patients, which accorded with the 

results of adverse prognosis. Our study suggested that 

TMB was an important prognostic factor for EC, 

however, there was no difference of survival analysis 

results. To explain this contradiction, subgroup 

analysis was performed based on whether patients 

received radiotherapy or not. 

 

Our study is the first to analyze the correlation between 

radiotherapy and TMB in EC patients. For EC patients 

who did not receive radiotherapy, the OS of the TMB-L 

group was significantly prolonged. Excluding the 

interference of radiotherapy, TMB was a prognostic 

factor. Radiotherapy might improve the impact of TMB 

on EC via regulating immune infiltration. Treg cell 

infiltration was induced in the TMB-H group of EC 

patients who did not receive radiotherapy. Treg cell plays 

a central role for maintenance of immune homeostasis and 

 

 
 

Figure 3. The clinical implications associated with TMB. (A) The univariate regression analysis of TMB and clinical information. (B) The 

multivariate regression analysis of TMB and clinical information. (C–F) The relationship between TMB and TNM stages. 
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self-tolerance [20–23]. It was well recognized that the 

immunosuppression caused by the accumulation of Treg 

cells in the tumor microenvironment led to poor prognosis 

in cancer patients [24–27]. In addition, Treg cells were 

also important prognostic variables in patients receiving 

radiotherapy [28]. Previous studies reported that the 

numbers of Treg cells and their immunosuppressive 

functions were both increased after radiotherapy [29–32]. 

Treg cells were reported to weaken the clearance of 

cancer cells by radiotherapy and induce resistance to 

radiotherapy [33].  

 

TMB is associated with the abundance of neoantigens 

and increased immunogenicity [34, 35], as well as 

increased immunogenicity [36]. High TMB reflects the 

presence of mutation-associated neoantigens, with 

consequent increased lymphocyte infiltration in the 

tumor microenvironment [37, 38]. Treg cell infiltration 

in the TMB-H group was significantly higher than that 

in the TMB-L group for EC patients without 

radiotherapy, while there was no difference of Treg cell 

infiltration in EC patients receiving radiotherapy. 

Whether radiotherapy balanced the Treg cell infiltration, 

or Treg cell infiltration was affected by other 

characteristics of EC patients receiving radiotherapy 

still needs to be further explored.  

 

It should be noted that the correlation between the 

infiltration of immune cells and the level of TMB was 

not consistent in different tumors. For example, most of 

the immune signatures were upregulated in the TMB-L 

subtype, while downregulated in the TMB-L subtype of 

cervical squamous cell carcinoma. The Treg cells were 

inclined to be upregulated in the TMB-L subtype of 

various cancer types, however, we found that high TMB 

was associated with elevated Treg cell infiltration in EC 

patients without radiotherapy. Some studies suggested 

that high TMB resulted in numerous neoantigens that

 

 
 

Figure 4. The subgroup analysis in patients receiving radiotherapy or not. (A) Survival analysis to explore the OS of EC patients 

between the TMB-H and TMB-L group. (B) OS between the TMB-H and TMB-L group of patients receiving radiotherapy. (C) OS of the TMB-H 
group decreased significantly in EC patients with radiotherapy. (D–G) The different gene expression between the TMB-H and TMB-L groups in 
EC patients receiving radiotherapy or not. 
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incited anti-tumor immune responses [11], and that high 

TMB was associated with genomic instability, resulting 

in induced anti-tumor immune responses [39]. Another 

reason behind the discrepancy could be that most of the 

TCGA patients were not treated with immunotherapy. 

Indeed, for the TCGA cases likely with immunotherapy 

such as melanoma, higher TMB was associated with 

better prognosis. 

There were some limitations in our research that could 

not be ignored. First, the number of patients receiving 

radiotherapy reported in the TCGA database was small. 

The limited sample size led to instability of statistical 

results. Second, we did not exclude the extreme value of 

poor prognosis (such as OS < 90 days). The existence of 

these data would most likely interfere with the outcome 

of survival analysis. 

 

 
 

Figure 5. Comparisons of 22 important immune fractions between the TMB-H and TMB-L groups. (A) No significant difference of 

the 22 important immune cell infiltration between the TMB-H and TMB-L groups in EC patients with radiotherapy; (B) The levels of Tregs cell 
infiltration in the TMB-L group were lower compared with those in the TMB-H group of EC patients without radiotherapy.  



 

www.aging-us.com 4610 AGING 

Together, we performed a comprehensive analysis on 

TMB in EC, and our results suggested that TMB could 

be considered as a prognostic marker in the patients 

who did not receive radiotherapy. The prognosis of the 

TMB-H patients was significantly lower than that of 

TMB-L, which might be related to the difference in 

Treg cell infiltration. Further studies are needed to 

characterize molecular subtyping based on TMB and to 

explore potential relationships between Treg cell 

infiltration and TMB. 

 

MATERIALS AND METHODS 
 

Data extraction from dataset 

 

All the EC patients’ somatic mutations data, 

transcriptome sequencing data, and clinical information 

were downloaded and collected from The Cancer 

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). 

TMB was defined by the number of somatic mutations 

per genomic area for target sequencing. Specifically, 

TMB is calculated by the total number of somatic 

mutations / total covered bases. 

 

Mutation signature analysis 

 

Mutation signature analysis was performed to devolve 

cancer somatic mutation counts, stratified by mutation 

contexts or biologically meaningful subgroups, into a set 

of characteristic signatures and to infer the pattern of each 

discovered signatures across samples. All SNVs were 

classified into 96 possible mutation categories based on 

the 6 base substitutions (C > A, C > G, C > T, T > A, T > 

C and T > G) and 16 possible combinations of 

neighboring bases within the trinucleotide sequence 

context. In order to compare the eigenvalues of the TBM-

L group and TMB-H group, Wilcoxon test was used to 

identify the difference of mutation characteristics. 

 

Gene expression analysis 

 
The raw biological data of DNA microarray were 

preprocessed and normalized to remove bias and ensure 

the uniformity and integrity. Background correction, 

propensity analysis, normalization and visualization 

output of probe data were then performed with robust 

multi-array average analysis algorithm in “limma” 

package. Differential expression genes (DEGs) were 

determined between the TBM-L and TMB-H group. 

The cut-offs were (|log2(FC)| > 1 and P value < 0.05. 

 

Analysis of the correlation between TMB and 

clinical data 

 

Clinicopathological parameters including TNM stages 

in EC patients were analyzed and displayed according 

the TMB scores. The Wilcox test (gender, M stage and 

TMB) or Kruskal test (TNM stages, T stage and N 

stage) was utilized to measure statistically significance. 

The primary end point of survival comparison for EC 

patients was OS, which was evaluated from the date of 

first therapy to the date of death or last follow-up. The 

EC patients were divided into 2 subgroups based on 

whether they received radiotherapy or not. The 

prognosis of the 2 subgroups was then analyzed 

separately. The follow-up duration was estimated using 

the Kaplan-Meier method and log-rank test in distinct 

curves. All hypothetical tests were two-sided and P 

value < 0.05 was considered significant in all tests. 

 

Immune infiltration 

 

The relative levels of distinct immune cell types were 

quantified using CIBERSORT within a complex gene 

expression mixture. Each immune cell subtype was 

characterized and quantified using gene expression 

signatures consistent of ~500 genes in CIBERSORT. 

Here, gene expression datasets were prepared using 

standard annotation files and data uploaded to the 

CIBERSORT web portal (http://cibersort.stanford.edu/), 

with the algorithm run using the default signature 

matrix at 1,000 permutations. 

 

Abbreviations 
 

TMB: tumor mutational burden; EC: esophageal cancer; 

EA: esophageal adenocarcinoma; ESCC: esophageal 

squamous cell carcinoma; SNVs: single nucleotide 

variants; DEGs: differential expression genes; OS: 

overall survival. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Gene cloudmap. The size of the gene symbol represents the frequency of mutations. 
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Supplementary Figure 2. The coincident and exclusive associations across mutated genes. 
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Supplementary Figure 3. The TMB level in different EC subtypes. (A) The level of TMB in EA was significantly higher than that in ESCC; 

(B, C) There was no significant difference of OS between the 2 tumor subtypes. 

 


