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Abstract 

Background:  The animal model is a key tool in quantitative genetics and has been used extensively to estimate fun-
damental parameters, such as additive genetic variance or heritability. An implicit assumption of animal models is that 
all founder individuals derive from a single population. This assumption is commonly violated, for instance in cross-
bred livestock or when a meta-population is split into genetically differentiated subpopulations. Ignoring that base 
populations are genetically heterogeneous and thus split into different ‘genetic groups’ may lead to biased parameter 
estimates, especially for additive genetic variance. To avoid such biases, genetic group animal models, which account 
for the presence of more than one genetic group, have been proposed. Unfortunately, the method to date is only 
computationally feasible when the breeding values of the groups are allowed to differ in their means, but not in their 
variances.

Results:  We present an extension of the animal model that permits estimation of group-specific additive genetic 
variances. This is achieved by employing group-specific relatedness matrices for the breeding value components to 
different genetic groups. We derive these matrices by decomposing the full relatedness matrix via the generalized 
Cholesky decomposition, and by scaling the respective matrix components for each group. We propose a computa-
tionally convenient approximation for the matrix component that encodes for the Mendelian sampling variance, and 
show that this approximation is not critical. In addition, we explain why segregation variances are often negligible 
when analyzing the complex polygenic traits that are frequently the focus of evolutionary ecologists and animal 
breeders. Simulations and an example from an insular meta-population of house sparrows in Norway with three 
distinct genetic groups illustrate that the method is successful in estimating group-specific additive genetic variances, 
and that segregation variances are indeed negligible in the empirical example.

Conclusions:  Quantifying differences in additive genetic variance within and among populations is of major biologi-
cal interest in ecology, evolution, and animal and plant breeding. The proposed method allows to estimate such dif-
ferences for subpopulations that form a connected set of populations, and may thus also be useful to study temporal 
or spatial variation of additive genetic variances.
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Background
Quantifying the (causal) relationships between genes and 
observed phenotypic traits is a central task of empiri-
cal studies of adaptive evolution [1, 2] and of plant and 

animal breeding [3]. The animal model [4–6] has become 
a popular statistical approach to disentangle genetic 
effects on a phenotype from other factors that may 
induce phenotypic similarities among relatives, such 
as shared environmental effects [7], inbreeding [8], or 
individual traits such as age or sex [9, 10]. Fundamental 
to the animal model is information on how animals are 
related to each other, information typically obtained from 
pedigree data [11, 12], from genomic data (e.g.[13, 14]), 
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or a combination of both [15]. Pedigrees are still the most 
commonly used source of relatedness information in ani-
mal models (e.g. [16, 17]), in part because the use of pedi-
grees leads to models that are computationally efficient.

All pedigrees necessarily start with a founder generation 
of individuals with unknown parents, so-called ‘phantom 
parents’ [17]. The animal model assumes that all founder 
individuals stem from a single, genetically homogeneous 
baseline population, and that the model estimates addi-
tive genetic variance (denoted as σ 2

A ) of the respective 
base population. When the homogeneity assumption is 
violated, for example in the presence of immigrants from 
another population or in crossbred livestock breeds, 
estimates of σ 2

A may be biased [18, 19]. To address this 
problem, animal breeders developed animal models with 
genetic groups, briefly denoted as genetic group models 
(e.g. [20]), and these are now also receiving attention in 
evolutionary ecology [17, 21, 22]. The main idea behind 
genetic group models is that accounting for differences 
in mean breeding values may reduce or eliminate the 
bias [17]. However, current genetic group models have 
an important key limitation: genetic groups are allowed 
to differ in mean breeding value, but are assumed to have 
the same additive genetic variance. This homogeneity 
assumption is violated in some animal breeding applica-
tions [23–25], and is likely also violated in many natural 
populations, where source populations of immigrants 
may differ in additive genetic variance, for example due to 
differences in effective population size (genetic drift) and 
selection regimes (e.g. [26–28]). In fact, different popu-
lations or ecotypes within the same species have been 
found to differ in their additive genetic (co)variances in 
plants (e.g. [29]), invertebrates (e.g. [30]), and vertebrates 
(e.g. [31]). Because additive genetic variances determine 
the evolutionary potential of phenotypic traits [1, 32], and 
because of the fundamental importance of understanding 
the processes that shape additive genetic variances, as well 
as the consequences that selection will have on the rate 
and direction of evolution within and across populations, 
it is essential to be able to estimate the additive genetic 
variance of each baseline population in the presence of 
interbreeding genetic groups.

Aiming for better predictions of breeding values in 
crossbred populations, animal breeders have suggested 
approaches that account for heterogeneous additive genetic 
variances across genetic groups [19, 24, 33]. One draw-
back of these models is that they rapidly become unfeasi-
bly complex, because variability of the genetic values must 
now be split into components from the pure breeds plus 
components due to segregation terms when breeds are 
mixed, which requires that the respective segregation vari-
ance terms enter the model. Segregation variance refers 
to the increase in variance caused by differences in allele 

combinations, average allelic effects, and linkage disequilib-
rium at and between loci underlying the phenotype in the 
mixing breeds, as in F1 and F2 generations of line crosses 
[34–36]. The respective terms can be large in crossbreed-
ing applications [1, p. 11]. However, as we explain in detail 
below, we expect the segregation variance from crossing 
different genetic groups in wild study populations to be 
small for many traits of interest, so that omitting it from the 
animal model does not lead to significant bias.

Thus, here we use the simplified models without segre-
gation terms to derive genetic group models that allow for 
group-specific additive genetic variances. In order to prop-
erly consider each individual’s genetic contribution to the 
actual population, we additively split the breeding value 
of each individual into group-specific components, simi-
lar to the approach suggested by García-Cortes and Toro 
[33]. For each group, the components that stem from the 
same genetic group covary according to a group-specific 
relatedness matrix. The main challenge is to find these 
matrices. Instead of implementing a recursive procedure 
to calculate the inverse of the additive genetic covariance 
matrix [23, 33], we propose to derive group-specific relat-
edness matrices by first decomposing the full relatedness 
matrix (disregarding genetic groups) via a generalized 
Cholesky decomposition (as described by [12]), and then 
appropriately scaling the respective matrix components 
for each group. This procedure has the advantage that we 
can use the same mathematical approach that Henderson 
and Quaas developed to decompose a single population’s 
relationship matrix [12, 37]. Moreover, by incorporating 
multiple inverse relatedness matrices into a single mixed 
model, existing algorithms for the analysis of single pop-
ulations can easily be extended to genetic group animal 
models with group-specific additive genetic variances.

In the following, we first summarize the current state 
of genetic group models and then give a detailed descrip-
tion of the extension to heterogeneous group-specific addi-
tive genetic variances. We illustrate the performance of our 
method with a simulation study and an application to a 
meta-population of house sparrows (Passer domesticus) in 
Norway, where genetic groups are determined by geographi-
cal properties of the bird’s natal island population. By also 
fitting a model that includes a segregation term to the spar-
row data, we illustrate that omitting segregation variances is 
unproblematic in such applications. We also provide a short 
tutorial including R code for the analysis, and discuss oppor-
tunities and limitations of our extended genetic group model.

Methods
The animal model for genetic groups with homogeneous 
variances
The basic animal model for a phenotypic measurement yi 
of an individual i ( 1 ≤ i ≤ n ) is
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with population mean µ , environmental component 
ei ∼ N(0, σ 2

E ) with environmental variance σ 2
E , and breed-

ing values distributed as a⊤ = (a1, . . . , an)
⊤ ∼ N(0, σ 2

AA) 
with additive genetic variance σ 2

A and additive genetic 
relatedness matrix A that represents the relatedness 
among individuals [5, 12]. Model (1) is often extended by 
fixed effects (such as sex or age) and by additional ran-
dom effects that account for permanent environmen-
tal conditions (see e.g. [6]). In all cases, the underlying 
assumption is that all animals in the analysis derive from 
the same genetic population, and that the breeding values 
( ai ) encode for the deviation from the mean of this popu-
lation and thus have a mean of zero.

As noted by animal breeders a long time ago, these 
assumptions are frequently violated, for example in 
crossbred populations from genetically differentiated 
breeds. In such cases it is necessary to allow for differ-
ences in mean breeding values among animals with dif-
ferent genetic origins [18, 20], as otherwise the prediction 
of breeding values or the estimates of the base popula-
tions’ additive genetic variances are biased. Let us denote 
by a founder population a set of animals with unknown 
true parents, whose phantom parents comprise the base 
population, and assume that r base populations exist, 
where each of them corresponds to a different genetic 
group. When animals from different genetic groups mate, 
their genetic contributions are propagated through the 
pedigree following the Mendelian rules of inheritance. 
Offspring in later generations thus inherit different pro-
portions of the genome from the genetic groups. Denote 
by qij the expected proportional contribution of base 
population j to the genome of individual i. The respec-
tive values can be calculated from the pedigree and are 
typically written into a matrix Q with n rows (n = num-
ber of animals) and r columns, such that qij is the value 
in the ith row and jth column (see e.g. Fig. 3 in ref. [17]). 
Following the notation from Wolak and Reid [17], and 
denoting by gj the average genetic effect in group j, the 
basic animal model (1) can be extended to

where the total additive genetic effect of individual i is 
given as ui =

∑r
j=1 qijgj + ai , that is, the weighted sum 

of genetic group-mean effects, plus the breeding value 
ai of the individual that accounts for deviations from the 
weighted group mean. Note that in model (2) the qij val-
ues play the role of known covariate values (they must 
be derived from the pedigree before the model is fitted), 
and the group-specific means gj are the parameters to be 

(1)yi = µ+ ai + ei ,

(2)yi = µ+

r∑

j=1

qijgj + ai + ei ,

estimated. This model is over-parameterized because for 
each i the contributions from the r groups sum up to 1, 
that is, 

∑

j qij = 1 . Similar to ANOVA models or when 
categorical variables are included in regression models, 
the parameters become identifiable when one group is set 
as reference group (e.g. assuming g1 = 0 ), or when addi-
tional constraints are added, such as 

∑

j gj = 0.
Let us illustrate the idea for two genetic groups. 

When using the convenient constraint g1 = 0 , pheno-
types of animals that have ancestors either only from 
group 1 (i.e. qi1 = 1, qi2 = 0 ) or only from group 2 
(i.e. qi1 = 0, qi2 = 1 ) can be described by the following 
models

Thus, members of genetic group 1 have a total additive 
genetic effect of ui = ai and members of genetic group 
2 have ui = g2 + ai , where g2 estimates the difference 
between the mean breeding values of the groups. There-
fore, the respective ui values are distributed around an 
overall mean of 0 and g2 , respectively, but with the same 
σ 2
A and relatedness matrix A . Note that, while the main 

benefit of including group-specific means is that bias 
in the estimates of σ 2

A is reduced, the estimated values 
(e.g. of g2 ) may sometimes be of interest themselves, as 
was pointed out previously [17, 22].

Genetic group models with heterogeneous additive 
genetic variances
Segregation variance for polygenic traits
The key limitation of the genetic group model (2) is that 
the base populations of all genetic groups are assumed 
to have the same additive genetic variance, and animal 
breeders have therefore suggested extensions that allow 
additive genetic variance to differ among groups, e.g. [19, 
24, 33]. However, these methods quickly become com-
putationally demanding because the respective models 
include terms to account for the segregation variance 
between any two genetic groups, thus g(g − 1)/2 seg-
regation variances in the presence of g genetic groups. 
The magnitude of these variances may be considerable 
in artificial breeding scenarios, for example when cross-
ing genetically differentiated pure-bred lines (see e.g. [35, 
Table 3]), and if a trait is determined by one or only a few 
loci. To understand why, let us start by looking at a hypo-
thetical trait that is determined by m loci. The segrega-
tion variance between two genetic groups (e.g. breeds) 
can be computed as:

yi = µ+ ai + ei for i in group 1,

yi = µ+ g2 + ai + ei for i in group 2.

(3)σ 2
S =

1

2

m∑

i=1

(αc
i )

2
,
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[1, equation  9.15], where αc
i  denotes the mean additive 

genetic difference between the groups due to locus i. In 
an extreme example where only one locus determines a 
trait value, and where two populations or breeds differ in 
their mean breeding value by, say, αc = 1 , the segregation 
variance expected in a cross between these breeds is then 
given as σ 2

S = 1/2 · 1 = 0.5 . However, genome-wide asso-
ciation studies (GWAS) suggest that complex (continu-
ous) traits are mostly polygenic, thus the additive genetic 
component is not determined by a single locus (e.g. [38–
41]). In fact, it is a fundamental assumption of quantita-
tive genetics that phenotypic traits are determined by 
many genes that each contribute a small effect to trait 
variation, known as the “infinitesimal model” [42, 43]. If, 
for example, 100 loci each contribute the same propor-
tion of 1/100 to the overall group difference of 1 in the 
above example, the segregation variance reduces to

which is exactly 1/100 of the segregational variance for 
a single-locus trait. Thus for any number of loci m, the 
segregation variance is 1  /  m of what it would be for a 
single locus, given that each locus contributes the same 
proportion of the effect. Even when considering that the 
locus-specific effect sizes are typically heterogeneous, the 
most influential loci often only explain a small propor-
tion of the phenotypic variance [44–46]. Consequently, 
the segregation variance σ 2

S  for complex continuous traits 
is expected to be small compared to the total phenotypic 
variance in many study systems [36]. Thus, in the follow-
ing extension of the animal model, we ignore the segre-
gation variance, and illustrate in our application to the 
house sparrows that omitting it from the animal model is 
indeed not critical.

Animal model for heterogeneous additive genetic variances
To allow the animal model to account for potentially 
heterogeneous additive genetic variances of different 
base populations, we extend model (2) that accounts for 
group-specific means gj by splitting the breeding value 
ai of each individual i into group-specific contributions, 
similar to [33], such that

with a⊤j = (a1j , . . . , anj)
⊤ ∼ N(0, σ 2

Aj
Aj) for all groups 

j = 1, . . . , r , where σ 2
Aj

 is the additive genetic variance in 
group j, and Aj is a group-specific relatedness matrix. We 
denote aij as the partial breeding value, because it repre-
sents the contribution to the breeding value of individual 

σ 2
S =

1

2
· 100 · (1/100)2 = 0.005 ,

(4)yi = µ+

r∑

j=1

qijgj +

r∑

j=1

aij + ei,

i that is inherited from group j. Consequently, Aj contains 
the relatedness at the genes that have come from that 
group for each pair of individuals. We assume that the 
contributions aij of the same individual i are independent 
of each other, because they differ in genetic origin. 
Importantly, while the proportion of founder genomes qij 
are known quantities from the pedigree, the partial 
breeding values aij are unknown and must be estimated, 
which is possible thanks to differences between the Aj 
matrices. In practice, model (4) may also include fixed 
effects, like sex or age. We note that the model could eas-
ily be extended further to allow for group- or birthplace-
specific residual variances, or for group-specific 
dependencies of the phenotype on fixed effects, namely 
when the respective effects are expected to differ between 
environments or genetic groups.

We illustrate the idea of model (4) by again using two 
genetic groups and assuming g1 = 0 for identifiability 
reasons. Animals in genetic group 1 (i.e. qi1 = 1 ) then 
have a total additive genetic effect ui = ai1 and animals in 
genetic group 2 (i.e. qi2 = 1 ) have ui = g2 + ai2 , whereas 
the breeding values are distributed as

While it is relatively straightforward to formulate such a 
model, it is less obvious what the group-specific related-
ness matrices Aj are. It is, for example, not valid to use 
A for Aj , because the within-group relatedness structure 
is different from the overall relatedness. In addition, the 
breeding values are now split into the sum ai =

∑

j aij , 
thus Var(aij) ≤ Var(ai) , and aij equals ai only if an ani-
mal has qij = 1 for group j. On the other hand, aij = 0 if 
the animal’s genome contains no contribution from the 
respective group j (thus if qij = 0 ). We now turn to the 
issue of how to obtain the Aj matrices.

Group‑specific relatedness matrices
Decomposition of the relatedness matrix To understand 
how to specify the group-specific relatedness matrices 
Aj , we will first need to look a little bit deeper into the 
technical details of how (inverse) relatedness matrices 
can be efficiently computed. We recall the mathematical 
approach that Henderson and Quaas proposed to decom-
pose a single population’s relationship matrix A [12, 37], 
because by understanding the principle, we can derive 
the group-specific matrices. Henderson and Quaas sug-
gested to decompose A by a generalized Cholesky decom-
position into

(a11, . . . , an1)
⊤ ∼ N(0, σ 2

A1
A1),

(a12, . . . , an2)
⊤ ∼ N(0, σ 2

A2
A2).

(5)A = TDT′,
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where T is lower triangular matrix with transposed T′ , 
and D = Diag(d11, . . . , dnn) is a diagonal matrix with 
entries d11, . . . , dnn . A useful property of the decom-
position (5) is that the matrices T and D have elegant 
interpretations: T traces the flow of alleles from one gen-
eration to the other, and the diagonal entries of D scale 
the Mendelian sampling variance [47, p. 27].

Let us illustrate these properties with an example that 
we adapted from Mrode [47, Table  2.1], starting with-
out genetic groups. The pedigree is given in Fig. 1a, with 
a corresponding graphical representation of parent-
offspring relations (Fig.  1b) and matrices A , T and D 
(Fig. 1c–e), where the generalized Cholesky decomposi-
tion to obtain T and D was calculated with the function 
gchol() that is available in the bdsmatrix package in 
R [48, 49]. In this example, animals 1, 2 and 3 have phan-
tom parents and are denoted as founders of the popula-
tion. Each off-diagonal entry in T corresponds to the 
relatedness coefficient (expected relatedness) of individu-
als with their direct descendants (i.e. children, grand-
children etc.), where columns represent ancestors and 
rows descendants. For example, individual 1 is the par-
ent of animals 4 and 5, thus the entries (4,1) and (5,1) in 
the matrix are 0.5. In addition, animal 6 is the offspring 

of animals 4 and 5, thus the relatedness of 1 with 6 is 
also 0.5. Finally, the relatedness of 1 and 7 is 0.25. These 
considerations can be repeated for each column in the 
matrix, where all diagonal elements are 1 and all ele-
ments below the diagonal in the respective column cor-
respond to the expected proportion of the genome that 
is transmitted from the respective ancestor to its direct 
descendants.

On the other hand, the diagonal entry dii for animal i in 
D is calculated as

where Fp , Fs and Fd are the pedigree-based inbreeding 
coefficients of the known parent(s) [47, p. 28]. We do 
not index the inbreeding coefficients with the animal 
identity (i) purely for notational simplicity. For later use 
we note that, in the absence of inbreeding, the diagonal 
entry is (1− 0.5pi) , with pi corresponding to the pro-
portion of i’s parental genome that is known. Possible 
values are pi = 0, 0.5 or 1 if no, one or two parents are 
known, respectively. This can be understood as follows: 
if, for example, one parent of an animal i is unknown, its 

dii =







1, if no parent is known,

1− 0.25− 0.25(Fp), if one parent p is known,

1− 0.5− 0.25(Fs + Fd), if both parents s and d are known,

a ID Dam Sire
1 (g1) NA NA
2 (g1) NA NA
3 (g2) NA NA
4 1 2
5 1 3
6 5 4
7 6 3

b
12 3

4 5

6

7
c

A =












1 0 0 0.5 0.5 0.5 0.25
0 1 0 0.5 0 0.25 0.125
0 0 1 0 0.5 0.25 0.625
0.5 0.5 0 1 0.25 0.625 0.3125
0.5 0 0.5 0.25 1 0.625 0.5625
0.5 0.25 0.25 0.625 0.625 1.125 0.6875
0.25 0.125 0.625 0.3125 0.5625 0.6875 1.125












d

T =












1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0.5 0.5 0 1 0 0 0
0.5 0 0.5 0 1 0 0
0.5 0.25 0.25 0.5 0.5 1 0
0.25 0.125 0.625 0.25 0.25 0.5 1












e

D =












1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.46875












Fig. 1  Pedigree example, adapted from Table 2.1 in [47] (a). Graphical representation of the pedigree (b) with the corresponding relatedness matrix 
A (c). The matrices from the decomposition A = TDT′ for the genetic groups described in the text are given in (d) and (e). In the genetic group 
example, animals 1 and 2 are founders of genetic group 1, and animal 3 of genetic group 2
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predicted breeding value is 0.5 times the breeding value 
of the known parent, but the other half of its breed-
ing value is unknown. The deviation from the predicted 
breeding value that could be obtained if both parents 
were known is absorbed by the Mendelian sampling devi-
ation. The respective variance thus contains the Mende-
lian sampling variance plus a variance that is due to the 
unknown parent [50]. The more parents are unknown, 
the larger is this variance.

T and D for genetic groups In the presence of genetic 
groups, each phantom (i.e. unknown) parent of an 
observed animal is assigned to one of the groups, and 
expected proportions of individual’s genomes that origi-
nate from the respective genetic groups can be calculated 
from the pedigree [17, 51]. For simplicity, we again con-
sider the case with two groups, and denote by A1 and A2 
the respective relatedness matrices. These can be decom-
posed in the same way as A into:

with matrices T1 and T2 describing the transmission of 
alleles through the generations, and Mendelian sampling 
variance matrices D1 and D2 . The generalization to more 
than two groups is straightforward.

Let us assume in the pedigree example of Fig.  1 that 
the phantom parents of founder animals 1 and 2 belong 
to genetic group 1, and the phantom parents of animal 
3 to genetic group 2. This leads to proportional con-
tributions of each genetic group to the genomes of 
the descending individuals as given by the matrix Q 
(Fig.  2a), with column vectors q1 = (q11, q21, . . . , qn1) 
and q2 = (q12, q22, . . . , qn2) that contain the respective 
proportions of genetic origin from groups 1 and 2 for 

(6)A1 = T1D1T1
′ and

(7)A2 = T2D2T2
′,

each individual. The transmission of alleles within each 
group is represented by the matrices Tj ( j = 1, 2 ). They 
are designed such that animals with a certain proportion 
of genetic origin can only pass on the respective frac-
tion of alleles. This means, for example, that an animal i 
with qi1 = 0.5 passes only a proportion of 0.25 (and not 
0.5) of alleles to its offspring as part of genetic group 1, 
while another expected proportion of 0.25 is passed on 
to its offspring within group 2. The matrices Tj are thus 
obtained by scaling the respective entries in T by the 
respective group-proportions. This is achieved by multi-
plying each row of T by qj or, equivalently, by

where Diag(qj) denotes a diagonal matrix with diagonal 
equal to qj . The matrices T1 and T2 for our example are 
given in Fig.  2b, c. Note that the diagonal of Tj corre-
sponds to qj , which is the respective expected fraction of 
the genome that belongs to group j, and all entries in the 
respective column are scaled (i.e. multiplied) with that 
same value. Animal 5, for example, has q15 = 0.5 , thus 
the fifth column in T is multiplied by 0.5 to obtain the 
respective column in T1.

Next, we need to find appropriate versions of D1 and 
D2 . We noted in the previous subsection that, in the 
absence of inbreeding, dii = 1− 0.5pi with pi repre-
senting the proportion of the ancestral genome that is 
known. To calculate the respective entries d(1)ii  and d(2)ii  
in the group-specific matrices, we have to multiply pi 
by the proportions of genetic origin qi1 and qi2 , because 
the respective product then corresponds to the ancestral 
proportions that are known within the respective group. 
In the case where only one parent is known, multiplica-
tion must be with the genetic proportion of the known 
parent, denoted here as q(p)ij  , because only this respective 

(8)Tj = T · Diag(qj),

Q =













1 0
1 0
0 1
1 0
0.5 0.5
0.75 0.25
0.375 0.625













= q1 q2
)

T1 =












1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0.5 0.5 0 1 0 0 0
0.5 0 0 0 0.5 0 0
0.5 0.25 0 0.5 0.25 0.75 0
0.25 0.125 0 0.25 0.125 0.375 0.375












T2 =












0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0.25 0 0.25 0.25 0
0 0 0.625 0 0.125 0.125 0.625












a

b c

Fig. 2  Genetic group matrix Q (a), and Tj matrices (b, c) for the pedigree example. Group-specific proportions of the genome are stored in the Q 
matrix. The columns of Q can be used to derive the group-wise matrices T1 and T2 by appropriate multiplication with T
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part of the ancestral genome within group j is then 
known. This leads to:

Let us now also account for inbreeding, which may influ-
ence d(j)ii  for individuals with at least one parent known. 
Starting with animals that have both parents known, and 
rearranging the entries dii = 1− 0.5− 0.25(Fs + Fd) in 
the original matrix D , leads to

The knowledge of (Fs + Fd) for each animal is useful 
to derive the entries d(j)ii  for group j in the presence of 
inbreeding. By scaling the effect of inbreeding with the 
group-specific proportions qij of an animal’s genome, the 
entries are given as:

where the third line is an algebraic simplification of the 
second line. The same calculation for animals with only 
one parent known, using dii = 1− 0.25− 0.25(Fp) and 
solving for Fp , leads to the same formula with qij replaced 
by q(p)ij  from the known parent. Finally, if both parents are 
unknown (i.e. for dii = 1 ), the formula also leads to the 
correct value of d(j)ii = 1 . Applying formula (10) to the 
above pedigree example yields D1 and D2 (Fig. 3a, b).

Formula (10) is simple and convenient. However, it 
provides only an approximation of the correct matrix 

d
(j)
ii =







1, if no parent is known,

1− 0.25 · q
(p)
ij , if one parent is known,

1− 0.5 · qij , if both parents are known.

(Fs + Fd) = 2− 4dii .

(9)d
(j)
ii = 1− 0.5 · qij − 0.25 · qij(Fs + Fd)

(10)
= 1− 0.5 · qij − 0.25 · qij(2− 4dii)

= 1− qij(1− dii),

entries, because in (9) we assumed that parental inbreed-
ing can simply be scaled by the genetic group propor-
tions qij (for two known parents) or q(p)ij  (for one known 
parent). Instead, the theoretically correct way to deal 
with parental inbreeding coefficients to derive d(j)ii  would 
be to use the actual partial (i.e. group-specific) parental 
inbreeding coefficients, denoted e.g. as F (j)

s  or F (j)
d  for par-

ents s and d. These group-specific inbreeding coefficients 
contain only the inbreeding that emerges due to inbreed-
ing within genetic group j, that is, they measure the prob-
ability that an individual is identical by descent for an 
allele that descended from founders within group j [52]. 
The correct way to calculate d(j)ii  is thus given by:

(11)d
(j)
ii =







1, if no parent is known,

1− 0.25 · q
(p)
ij − 0.25(F

(j)
p ), if one parent p i sknown,

1− 0.5 · qij − 0.25(F
(j)
s + F

(j)
d ), if both parents s and d are known.

D1 =












1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0.5 0 0 0
0 0 0 0 0.75 0 0
0 0 0 0 0 0.625 0
0 0 0 0 0 0 0.801












D2 =












1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0.75 0 0
0 0 0 0 0 0.875 0
0 0 0 0 0 0 0.668












a b

Fig. 3  Group-specific matrices D1 and D2 for the example pedigree, derived using the approximation of Eq. (10)

Obviously, this formula requires the calculation of group-
specific inbreeding coefficients, which is computation-
ally cumbersome. One way to obtain these coefficients 
is by first calculating founder-specific inbreeding coef-
ficients that partition the total inbreeding coefficient 
Fi into the additive components Fik from each founder 
animal k, as proposed by Lacy et  al. [52]. Because par-
tial contributions for all founders sum up to Fi (e.g. 
[52, 53]), we can sum only over founders from genetic 
group j to obtain group-specific inbreeding coefficients 
F
(j)
i =

∑

k∈group j Fik.
Let us illustrate the difference between the approxi-

mate method suggested in Eq.  (10) and the correct for-
mula for d(j)ii  given in Eq. (11) for our example from Fig. 1. 
Animal 6 is the only parent in the pedigree with a non-
zero inbreeding coefficient, which is F6 = 0.125 . How-
ever, because animals 1 and 2 are founders of group 1 and 
animal 3 is a founder of group 2, the pedigree reveals that 
inbreeding originates only from matings within group 1. 
Therefore, F6 is split into group-specific inbreeding coef-
ficients as F (1)

6 = 0.125 and F (2)
6 = 0 . By plugging these 

values into Eq. (11) to estimate the respective values for 
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animal 7 (which is the only animal that is affected by this 
change), we obtain d(1)7,7 = 0.812 and d(2)7,7 = 0.656 , which 
are quite close to the approximate values d(1)7,7 = 0.801 
and d(2)7,7 = 0.668 from Fig. 3a, b. Note that, in this paper, 
we will continue to use the convenient and computation-
ally efficient approximation of Eq. (10) to scale the entries 
in Dj , but we will illustrate the consequences of this 
approximation in Additional file 1.

Properties of group-specific relatedness matrices Once 
the components Tj and Dj for each group j are known, 
a simple matrix multiplication yields the group-specific 
relatedness matrices Aj = TjDjT

′
j . Remembering that 

Tj = T · Diag(q1j , . . . , qnj) , Dj = Diag(d
(j)
11 , . . . , d

(j)
nn) with 

entries derived from Eqs. (10) or (11), and that the prod-
uct of diagonal matrices is obtained by component-wise 
multiplication of the diagonal entries, this expression can 
be simplified to

with D̃j representing the diagonal matrix with entries 
q2ijd

(j)
ii  for i = 1, . . . , n . Consequently, the population-

specific T can be used for each group, and we only need 
to calculate the group-specific diagonal elements of D̃j to 
derive Aj for each group j.

The Aj matrices for the two groups considered in our 
example are given in Fig. 4. An important aspect is that 
both A1 and A2 contain columns and rows with all vari-
ances and covariances equal to zero, namely for animals i 
without a contribution from group j ( qij = 0 ). While this 
is theoretically correct, because the respective breeding 
value is then aij = 0 , the resulting matrices are singular. 
When it comes to implementation, the problem can be 
solved by replacing zeros on the diagonal by very small 
values, for example 10−6 or even 10−12 . The choice is not 
critical in our experience, but for deeper pedigrees we 
recommend smaller values, because the relatedness of 
the most distant relatives in the pedigree may then also 
become very small. In any case, it would be prudent to 
check the robustness of the results to different values.

Scaling the inverse relatedness matrix In practice, it 
is usually the inverse relatedness matrix, not A , that is 
required to fit the models, thus A−1 is typically calculated 
and stored directly from the pedigree. Consequently, 

(12)Aj = TD̃jT
′,

we also need to derive the inverse group-specific matri-
ces A−1

j  . From Eq.  (5) it follows that the inverse of A 
can be decomposed into A−1 = (T−1)′D−1T−1 , where 
D−1 = Diag(1/d11, . . . , 1/dnn) . Using Eq. (12), we see 
that

thus it is sufficient to derive T−1 and D−1 directly from 
the pedigree, and to calculate D̃−1

j  with diagonal entries 
1/(d

(j)
ii q

2
ij) for each group (see Additional file 2 for a coded 

R example). Alternatively, if A−1 is already known, T−1 
and D−1 can be obtained from a generalized Cholesky 
decomposition, although this might be computationally 
less convenient. Again, entries with qij = 0 are replaced 
by very small values, e.g. 10−12 , to avoid singularities.

Simulation
Generating data
To illustrate the performance of genetic group models 
with group-specific additive genetic variances, we simu-
lated data using the simGG() function from the R pack-
age nadiv [54]. The function allows the generation of 
pedigrees and phenotypes for a focal population (group 
1) that receives a specified number of immigrants from 
another population in each generation (group 2). Group-
specific mean breeding values and additive genetic vari-
ances can be set by the user, and breeding values for the 
founder animals of both genetic groups are sampled from 
the respective distributions. Offspring breeding values 
are calculated from the parental mean, plus a Mendelian 
sampling deviation that depends on the additive genetic 
variance of the resident population, but there is no addi-
tional term that induces a segregation variance (for more 
details see [54]). The simulation assumes random mating 
among individuals that currently live in the same popula-
tion, thus offspring may inherit genetic components from 
both genetic groups due to immigration. The contribu-
tions qij from group j for animal i were calculated with 
the ggcontrib() function from the nadiv package. 
For data generated with group-specific mean breeding 
values and additive genetic variances, the appropriate 
underlying model for the analysis is:

(13)A−1
j = (T−1)′D̃−1

j T−1,

A1 =












1 0 0 0.5 0.5 0.5 0.25
0 1 0 0.5 0 0.25 0.12
0 0 0 0 0 0 0
0.5 0.5 0 1 0.25 0.62 0.31
0.5 0 0 0.25 0.44 0.34 0.17
0.5 0.25 0 0.62 0.34 0.84 0.42
0.25 0.12 0 0.31 0.17 0.42 0.32












A2 =












0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0.5 0.25 0.62
0 0 0 0 0 0 0
0 0 0.5 0 0.44 0.22 0.36
0 0 0.25 0 0.22 0.16 0.21
0 0 0.62 0 0.36 0.21 0.68












a b

Fig. 4  Group-specific relatedness matrices for the example pedigree with entries rounded to two digits
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where we used the same notation as in Eq. (4) and fixed 
the focal group mean g1 = 0 for identifiability reasons 
[thus the term qi1g1 is omitted from Eq.  (14)]. We sim-
ulated data according to three different scenarios, but 
always setting the population mean µ = 10 , group means 
g1 = 0 , g2 = 2 , group-specific additive genetic variances 
σ 2
A1

= 2 and σ 2
A2

= 3 and residual variance σ 2
E = 1 . Each 

scenario encompassed 10 non-overlapping generations.
Scenario 1 The carrying capacity of the population was 

set to 300 individuals. In each generation, 100 mating 
pairs were created by random sampling with replacement 
from the adults, and each pair contributed 4 offspring 
to the next generation. In addition, 30 immigrants were 
added to the focal population in each (except the first) 
generation. Finally, a subset of the offspring was ran-
domly selected such that the population size always cor-
responded exactly to its carrying capacity.

Scenario 2 This scenario was the same as scenario 
1, except that only 5 (instead of 30) immigrants were 
allowed in each of the non-overlapping generations, so 
that animals of the immigrant group were rare.

Scenario 3 In this scenario we used the same carry-
ing capacity as above, 20 immigrants per generation, but 
we only allowed for 5 breeding pairs per generation that 
produced 60 offspring each. While this scenario has an 
immigration rate that lies between scenarios 1 and 2, the 
small number of breeding pairs induces higher inbreed-
ing levels. This scenario is therefore suitable to illustrate 
the consequence of using approximation (10) to scale the 
group-specific Mendelian sampling variance matrices Dj , 
because the approximation affects the scaling of parental 
inbreeding coefficients and is thus most relevant in the 
presence of inbreeding.

For each scenario, we generated 100 datasets, and each 
of them was analyzed with the genetic group animal 
model that accounted for heterogeneous additive genetic 
variances σ 2

A1
 and σ 2

A2
 , as given in Eq.  (14). In addition, 

we compared the results to the outcome of the standard 
genetic groups model that allowed for different mean 
breeding values, but only a single (homogeneous) vari-
ance in both groups, given as:

For scenario 3 we also investigated how close the group-
specific Mendelian sampling variance approximations 
for d(j)ii  from Eq.  (10) are in comparison to the correct 

(14)

yi = µ+ qi2g2 + ai1 + ai2 + ei,

a⊤1 ∼ N(0, σ 2
A1
A1), a⊤2 ∼ N(0, σ 2

A2
A2),

ei ∼ N(0, σ 2
E ),

(15)
yi = µ+ qi2g2 + ai + ei,

a⊤ ∼ N(0, σ 2
AA), ei ∼ N(0, σ 2

E ) .

version given in Eq.  (11). The group-specific inbreeding 
coefficients present in the correct formula were calcu-
lated with the software GRain [55] (details are given in 
Additional file 1). Correlation coefficients ρ between the 
(correct) d(j)ii  values from Eq.  (11) and the approximated 
values from formula (10) were calculated, and all simula-
tions were analyzed with both versions for comparison.

Following the recommendation by He and Hodges [56], 
we stored posterior modes (and not posterior means) 
of the variance components in each iteration. All mod-
els were fitted with integrated nested Laplace approxi-
mations (INLA, version from June 20, 2017) using the 
R interface R-INLA, which provides a fast and accurate 
alternative to MCMC [57], although it has so far only 
rarely been used for animal models (but see e.g. [58, 59]). 
All variance components were given penalized complex-
ity (PC) priors [60], which were suggested as robust alter-
natives to the popular but criticized gamma priors [61]. 
The PC(u,α) prior has an intuitive parameterization: The 
prior probability for the standard deviation σ is given as 
Pr(σ > u) = α (with 0 < α < 1 ). More information and 
plots that compare various gamma to PC priors can be 
found in Additional file 1. Here we used PC(1, 0.05) pri-
ors for all variances (thus Pr(σ > 1) = 0.05 a priori), but 
results were insensitive to this choice. All fixed effect 
parameters were assigned independent N(0, 104) priors. 
A short tutorial including R code to generate and ana-
lyze data using integrated nested Laplace approximations 
(INLA) and MCMCglmm [62] for the models used here 
can be found in Additional file 2.

Simulation results
Estimates from model (14) with correctly specified het-
erogeneous group variances were close to the variances 
used to generate the data in scenarios 1 and 3, while the 
model estimates in scenario 2 suffer from large uncer-
tainty (Fig.  5, left). In particular the variance σ 2

A2
 of the 

underrepresented immigrant population in scenario 2 
was difficult to identify and biased towards σ 2

A1
 (Fig. 5c). 

Thus, the results indicate that the genetic group model 
(14) is able to isolate approximately correct group-spe-
cific additive genetic variances, but that some caution 
is required if representatives of a genetic group are rare 
in the dataset. When the data were analyzed with the 
genetic group model (15) that included a single variance 
σ 2
A , the variance estimate usually laid between the two 

simulated group-specific variances (Fig.  5, right). In the 
presence of only few immigrants, the estimate tended to 
be close to σ 2

A1
 (scenario 2), while more immigration (sce-

narios 1 and 3) caused the estimate of σ 2
A to be intermedi-

ate between σ 2
A1

 and σ 2
A2

 , although still closer to σ 2
A1

 . This 
is as expected, and illustrates that genetic group mod-
els with a single, homogeneous variance will estimate a 
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value in between the true group-specific additive genetic 
variances, with a tendency towards the variance of the 
more numerous group. These patterns were qualitatively 
similar when the additive genetic variances of the immi-
grant and resident population were switched, such that 
residents had larger additive genetic variance than immi-
grants (results not shown).

Simulation scenario 3 led to datasets with a mean 
inbreeding coefficient of F = 0.10 . Interestingly, the 
comparison between the approximate versus the cor-
rect values in the D1 and D2 matrices shows that the 
approximation suggested in Eq.  (10) leads to d(j)ii  values 
that are highly correlated with the correct values from 
Eq. (11). As an example, we found correlation coefficients 
ρ ≥ 0.988 in three randomly selected simulation runs. In 

addition, using the correct Dj matrices led to distribu-
tions of estimated variances that are indistinguishable 
from the results when the approximations were used (see 
Additional file 1: Figures S1 and S2 ).

Application: house sparrow data
Study population
As a proof of concept, we applied our method to empiri-
cal data from a long-term study of an insular house 
sparrow meta-population off the Helgeland coast in 
northern Norway. The study has been running continu-
ously since 1993, and is used as a model system to exam-
ine ecological and evolutionary processes in fragmented 
vertebrate populations, e.g. [63–65]. The islands in the 
meta-population differ in characteristics related to envi-
ronmental conditions, habitat type and population size, 
with considerably larger and more stable populations on 
the five islands that are located closer to the mainland 
(denoted as inner islands) compared to the three islands 
located further away (denoted as outer islands). The ten 
remaining islands are summarized as other islands (see in 
Additional file 1: Figure S4 for an overview of the island 
system).

Small blood samples were collected from all captured 
birds on the eight inner and outer islands to provide DNA 
for single nucleotide polymorphism (SNP) genotyping on 
a 200K SNP array, see [41]. Only successfully genotyped 
birds that were also measured for body mass and/or wing 
length were included in our animal model analyses. For 
inner and other islands, the dataset included phenotypic 
measurements taken during the breeding seasons since 
1993 and 1995, respectively. Due to strong population 
bottlenecks on the outer islands in 2000 [65], only meas-
urements taken since 2002 were used for the populations 
in the outer group. Details on how morphological meas-
urements of wing length and body mass were obtained 
on adult birds are given by e.g. [63, 66].

Parentage analyses for the eight island populations in 
this study were carried out with the R package SEQUOIA 
[67]. Briefly, SNP genotype data of all adults recorded as 
present on any of the eight inner or outer islands during 
the years 1998-2013 (the inner group) or 2003-2013 (the 
outer group) were used in the parentage analyses. This 
resulted in a “meta-population pedigree” ( N = 3116 ) 
spanning up to 14 generations (Niskanen et al., personal 
communication), where both parents were known for 
52.7%, one parent was known for 25.0%, and no parent 
was known for 22.3% of the individuals. Since SEQUOIA 
introduces dummy parents to preserve known relation-
ships, e.g. sibling relationships, even when parents are 
not genotyped, a higher percentage of individuals had 
“known” parentages (81.0%, 5.5% and 13.5% with two, 
one or no parents known, respectively).
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Fig. 5  Results from 100 iterations for simulation scenarios 1–3. The 
boxplots represent the distributions of estimated variances (posterior 
modes) from a model with genetic groups and heterogeneous 
additive genetic variances σ 2

A1
 and σ 2

A2
 (left panel), compared to the 

results from a model that only allowed for a single homogeneous 
variance σ 2

A (right panel). Dashed lines indicate the reference values 
that were used to generate the data (black: σ 2

A1
 , red: σ 2

A2
 , green: σ 2

E )
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The genetic group analysis that we carry out here 
requires that each unknown (i.e. phantom) parent must 
be assigned to one of the base populations, that is, we 
must attribute phantom parents to the inner, outer or 
other island group to determine their genetic origin. This 
was done here by first identifying the natal (hatch) island 
of all individuals, either from ecological data or, if una-
vailable, by using genetic assignment procedures based 
on the SNP genotype data (Saatoglu et al., personal com-
munication). Of all individuals in our dataset, 2012, 640, 
and 93 individuals were assigned to a natal island in the 
inner, outer and other group, respectively. This infor-
mation was then used to assign phantom parents to the 
genetic group to which the hatch island of the respective 
individual belonged. As an example, if an individual with 
phantom parents is known to be born on one of the inner 
islands, the respective phantom parents were assumed to 
belong to the base population of the inner island group, 
and so on. The relatively high connectivity of the local 
pedigrees on the islands, with a total of 22.5% migrants 
between islands, and 8.9% migrants between the island 
groups (i.e. between inner, outer and other islands, Saa-
toglu et al., personal communication), helps minimizing 
bias due to common environment effects in our analyses. 
Finally, because inbreeding depression is known to occur 
in our study system [68], we accounted for any inbreed-
ing effects on body mass and wing length by including 
each individual’s genomic inbreeding coefficient FGRM [8, 
69] as a covariate in all models fitted here.

Analysis of wing length and body mass
With all phantom parents assigned to one of the genetic 
groups (inner, outer, other), each individual i obtained 
expected proportions of genetic origin qij from the three 
groups j by propagating the founder individual’s genome 
through the pedigree using the ggcontrib() func-
tion. Note that the different groups are very unequal in 
sample size, which can be seen from the summation of 
genetic proportions over all animals within a group j, 

that is, nj =
∑

i qij , which corresponds to equivalents 
of full animal genomes (Table  1). This is not surprising 
given the smaller population sizes [65], lower recapture 
rates [70], and shorter time-series for populations in the 
outer island group, and considering that there were no 
systematic genotyping efforts on the other islands. Thus, 
we only see genomes from the other islands if they were 
introduced via immigration events to one of the inner or 
outer islands.

For the two traits investigated here, mass (in g) and 
wing length (in mm), we fitted separate models that 
accounted for sex (0 = males, 1 = females), inbreeding 
( FGRM ), month of measurement (numeric with values 5, 
6, 7, and 8) and age (in years) as fixed effects that were 
stored in matrix X . Furthermore, current island of resi-
dence where the measurement was taken (island), hatch 
year (year), animal (id) and an independent residual 
term (e) were included as random factors. An individual 
i was included in the model if it had at least one recorded 
observation k of the respective trait. The model with 
group-specific mean and variances of the breeding values 
is thus given as:

where the total genetic contribution ui is the sum of 
the weighted means gj and the variability from the dif-
ferent genetic groups, as introduced in Eq.  (4), and β is 
the vector of fixed effects. The three genetic groups 
inner, outer and other are encoded as groups 1, 2 and 3, 
respectively, where the mean of the inner group was set 
to g1 = 0 for identifiability reasons. Thus, the estimates 
g2 and g3 reflect differences in group means with respect 
to the inner populations. The components ai1 , ai2 and ai3 
are distributed with mean zero and heterogeneous σ 2

A1
 , 

σ 2
A2

 and σ 2
A3

 , with dependency structures given by the 

(16)

yik = µ+ Xiβ+

3∑

j=2

qijgj +

3∑

j=1

aij

︸ ︷︷ ︸
ui

+ islandik + yeari + idi + eik ,

Table 1  Estimates (posterior modes; posterior means) and  95% CI (defined as  the  2.5  to  97.5% quantile intervals, 
given  in  parentheses) of  the  three group-specific additive genetic variances ( ̂σ 2

A
 ) for  inner, outer and  other genetic 

groups, as well as for a single homogeneous variance across groups (total) for body mass and wing length

The sample sizes denote the equivalent of full animal genomes that are present in the three genetic groups ( nj , for the model with heterogeneous variances) or in the 
total dataset for the respective trait (n, for the homogeneous model). For comparison, the phenotypic variances ( ̂σ 2

P  ) of the total population and the three groups are 
given, where the group-specific versions were calculated only from the 992, 144 and 50 pure-bred animals in the inner, outer and other groups

Body mass Wing length

σ̂
2
A

nj or n σ̂
2
P

σ̂
2
A

nj or n σ̂
2
P

Inner 1.41; 1.47 (1.07, 1.98) 1490.4 5.77 1.76; 1.83 (1.53, 2.23) 1487.3 5.30

Outer 2.10; 2.21 (1.32, 3.32) 352.6 7.92 1.96; 2.20 (1.56, 3.24) 349.1 6.85

Other 0.34; 0.76 (0.12, 2.17) 128.0 3.98 1.28; 1.54 (0.79, 2.80) 126.6 5.69

Total 1.56; 1.59 (1.21, 2.05) 1971 5.53 1.79; 1.86 (1.59, 2.21) 1963 5.41
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group-specific relatedness matrices A1 , A2 and A3 that 
were calculated as explained in the Methods section.

The results from fitting model (16) were compared to 
the standard genetic group model that only accounts 
for differences in group means, but with homogeneous 
σ 2
A and dependency structure defined through the relat-

edness matrix A . Both models were fitted to the data 
using INLA. All variances were given PC(1, 0.05) priors, 
and fixed effects parameters were assigned independent 
N(0, 104) priors. Interestingly, the results indicate that 
the outer group has a somewhat larger estimated addi-
tive genetic variance than the inner group for both traits 
(Table 1), although the respective 95% credible intervals 
(CI) are large and overlap. We therefore also calculated 
the posterior distribution of the differences between 
these variances by relying on an R-INLA specific func-
tion inla.hyperpar.sample() that allows to effi-
ciently draw a large number of samples from the joint 
posterior distribution of a model. For body mass, the 
difference σ 2

A1
− σ 2

A2
 between inner and outer additive 

genetic variances obtained from 100, 000 samples had 
a mode of −0.67 , with a 95% CI ranging from −1.81 to 
0.22, whereas for wing length the mode was −0.31 , with a 
95% CI ranging from −1.50 to 0.27 (the full distributions 
of the differences are given in Additional file 1: Figure S5 
). Thus, there is some weak indication that the additive 
genetic variances for wing length and body mass might 
actually differ between the two island groups.

While it is not possible to draw strong conclusions 
about group-specific differences in the additive genetic 
variances from the data at hand, the results could still 
indicate that animals living on distinct island groups dif-
fer in the level of variation in the genes that affect some 
phenotypic traits, e.g. due to different allele frequen-
cies. Although additional shared environmental effects 
might also be confounded with estimates of group-
specific additive genetic variances [7], dispersal among 
local sparrow populations helps minimizing (yet cannot 
fully eliminate) such problems. In both cases, the addi-
tive genetic variance estimates from the homogeneous 
model are rather close to the estimates for the inner base 
population, which is expected because the latter is by far 
the largest genetic group. For comparison, we also cal-
culated the observed phenotypic variance σ̂ 2

P of the two 
traits, where the respective group-specific phenotypic 
variances were only calculated using the pure-bred ani-
mals (i.e. those with qij = 1 ) in each group (Table 1). In 
addition, the estimates for g2 indicate that animals on the 
outer islands have, on average, a lower additive genetic 
value, although the evidence is weak in the case of wing 
length (Table 2). The direction of these effects is in agree-
ment with earlier findings regarding the phenotype of the 
birds, which indicate that individuals on the outer islands 

are lighter and have shorter wings than individuals on 
the inner islands [71, 72]. The residual variance estimates 
are not of primary interest, and they are all very similar 
between the models with heterogeneous and homogene-
ous additive genetic variances. The respective results are 
therefore given in Additional file 1: Table S3 .

All results presented here involved the approximate 
approach from formula (10) to scale the group-specific 
Dj matrices. To illustrate that this approximation is 
unproblematic, we repeated all calculations with the cor-
rect versions as given in Eq.  (11), which again involved 
the gene dropping method provided by the GRain pro-
gram. Details are given in Additional file 1, and all results 
remain essentially unchanged (see in Additional file  1: 
Figure S3 and Tables S1 and S2). Finally, it is worth reit-
erating that model (16) does not account for the three 
segregation variances that would occur between any 
pair of groups, because these are expected to be negligi-
bly small, but also because estimating these three addi-
tional variances would impose unrealistic requirements 
on these data. To illustrate that ignoring segregation 
variances is not critical, we also fitted a model with a 
segregation term for the sparrow example with only two 
genetic groups (inner and outer). Details on how to esti-
mate segregation variances are given in Additional file 1. 
Importantly, Table S4 confirms that the segregation term 
between these two groups is indeed very small (with pos-
terior modes < 0.001 for both traits), and that its inclu-
sion only leads to irrelevant changes in the results.

Discussion
We have introduced an extension of the animal model 
that allows for unequal additive genetic variances in the 
presence of multiple interbreeding genetic groups. Our 
method decomposes the breeding value ai of each indi-
vidual i into contributions aij from each group j. These 
so-called partial breeding values are assumed to covary 
according to group-specific relatedness matrices Aj . To 
understand how the respective matrices are constructed, 
we rely on the Cholesky decomposition of the full relat-
edness matrix A into components T and D [12], and show 
how simple algebraic scaling operations can be used to 
derive the group-specific versions Tj and Dj , which are 
then again multiplied to obtain Aj . We also discuss how, 
in practice, the inverses A−1

j  can be derived using the 
same theoretical framework. The method is computa-
tionally efficient, in particular when an (accurate) approx-
imation for the group-specific Mendelian sampling 
variance matrices Dj is used, and because we omit any 
segregation variance terms from the models. Although 
genetic group animal models have been used before, in 
particular in animal and plant breeding setups, modeling 
heterogeneous additive genetic variances has so far been 
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considered unfeasible for natural study systems [17]. 
Therefore, while natural populations have previously 
(although still rarely) been analyzed with genetic group 
models that account for mean differences in additive 
genetic effects [21, 22], to the best of our knowledge such 
populations have never been analyzed with animal mod-
els that account for heterogeneous variances. In princi-
ple, the variance estimates could also be used to assess 
group-specific versions of heritability [3] or evolvability 
[73], where σ 2

A is replaced by the group-specific version 
σ 2
Aj

.
We have assumed that segregation variances are 

often negligible for polygenic traits. How often will this 
assumption hold? The segregation variance from formula 
(3) approximates zero whenever the infinitesimal model, 
which underlies the animal model and which posits that 
traits are determined by a large number of genes with 
small effects, holds approximately. This is likely the case 
for many polygenic, complex traits [74]. Our estimates of 
the segregation variance in the empirical house sparrow 
dataset support the view that segregation variance may 
often be negligible. This result is mirrored in GWAS of 
the genetic architectures of body mass, wing length and 
other morphological traits in house sparrows and other 
passerines, which revealed a polygenic basis, where any 
significant genomic region explains only a very small 
proportion of the phenotypic variance [40, 41]. Taken 
together, these results suggest that segregation variances 
can often be neglected in genetic group models, provided 
the traits of interest are truly very polygenic. When focal 
traits have a genetic architecture with only few causal 
genes with a large effect, omitting the segregational vari-
ance may however introduce a non-negligible bias in 

the estimated additive genetic variances. In such a case, 
it is still possible to formulate a model that accounts for 
segregation variances, as explained in Additional file  1, 
although such models may quickly impose unrealistic 
demands on the data.

Estimating and disentangling individual variance 
components is generally known to be difficult, and it is 
particularly challenging for genetic group models with 
group-specific additive genetic variances. The problem 
is that the group-specific covariance matrices Aj are the 
sole sources of information for the discrimination of the 
variance components, yet these matrices may be simi-
lar in the presence of many animals with mixed group 
ancestry. The results from the house sparrow example in 
Table  1 illustrate that group-specific variance estimates 
suffer from larger uncertainty than a single homogeneous 
variance, especially when group sizes are relatively small, 
as is the case for the outer and other groups. On the other 
hand, computation remains feasible thanks to the small 
size of the groups and the total size of the pedigree. We 
thus face an intrinsic trade-off of many estimation proce-
dures, where more data are needed to fit more complex 
models reliably, but the latter may in turn become com-
putationally prohibitive.

An obvious “objective” way to decide whether extend-
ing the animal model to heterogeneous additive genetic 
variances is needed might be via the use of information 
criteria, such as the deviance information criterion for 
Bayesian models [75]. However, we do not recommend 
to rely on the DIC (for some DIC criticism see e.g. [76]), 
nor on any other “automatic” way to do model selection. 
A particular difficulty with model selection in our con-
text is that the heterogeneous and homogeneous models 

Table 2  Posterior means and 95% CI of the fixed effects for the animal models used for body mass and wing length

The estimates were extracted from models with either group-specific (heterogeneous) or a single (homogeneous) additive genetic variance

Body mass Wing length

Heterogeneous Homogeneous Heterogeneous Homogeneous

Sex (females) 0.47 0.48 −2.76 −2.77

(0.29, 0.64) (0.30, 0.65) (−2.89 , −2.63) (−2.90 , −2.63)

FGRM − 1.13 −1.27 −1.35 −1.38

(−3.00 , 0.73) (−3.12 , 0.58) (−2.73 , 0.02) (−2.75 , −0.01)

Month −0.30 −0.30 −0.19 −0.19

(− 0.36, − 0.24) (−0.36 , −0.24) (−0.22 , −0.15) (−0.22 , −0.15)

Age 0.08 0.08 0.47 0.47

(0.02, 0.14) (0.02, 0.14) (0.43, 0.50) (0.43, 0.50)

g2 (outer) −0.45 −0.43 −0.15 −0.26

(−0.84 , −0.06) (−0.87 , 0.02) (−0.48 , 0.18) (−0.65 , 0.14)

g3 (other) −0.36 −0.32 −0.18 −0.22

(−0.83 , 0.10) (−0.89 , 0.26) (−0.55 , 0.18) (−0.70 , 0.27)
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are linearly equivalent [77], that is, both models lead 
to the same marginal model and therefore to the same 
log-likelihood. Consequently, it is not possible to distin-
guish between model fits in a likelihood framework (e.g. 
using an AIC criterion), and differences in DIC may sim-
ply stem from the estimation of the effective number of 
parameters, which depends on the priors. Therefore, the 
decision to model heterogeneous additive genetic vari-
ances should be based on biological knowledge, and in 
particular when interest explicitly centers around group-
specific variances. Posteriors of the differences among 
additive genetic variances, which we have calculated for 
the sparrow application, may inform about the biological 
relevance of these differences.

The reason why additive genetic variances of the spar-
rows’ body mass and wing length tend to be larger for 
the outer group compared to those for the inner group 
is not directly obvious, but assuming the pattern is real, 
one can speculate whether some kind of interaction 
between genetic drift and dispersal is involved. Low 
effective population size ( Ne ) is expected to increase the 
rate of genetic drift and reduce σ 2

A [78]. Because popula-
tions in the outer group have lower Ne than populations 
in the inner group [65], the outer populations could be 
expected to have a smaller additive genetic variance than 
the inner populations. However, two processes may have 
counteracted this loss of additive genetic variance due to 
genetic drift. First, the population bottlenecks and sub-
sequent inbreeding that occurred on the outer islands 
around 2000 may actually have increased additive genetic 
variance [79] in the outer compared to the inner popula-
tions. And second, because the outer populations expe-
rience higher dispersal rates than the inner populations, 
outer populations consist of a larger proportion of immi-
grants from the inner populations than vice versa ([64] 
and Saatoglu et  al., personal communication), and dis-
persal among populations may increase additive genetic 
variance in the direction of divergence [80], this could 
have resulted in a tendency for larger additive genetic 
variance in the outer group compared to the inner group. 
However, further studies are needed to tease apart these 
alternative explanations.

A general limitation of genetic group models is that 
parent-offspring relations are needed to propagate 
genetic contributions from founder individuals through 
the pedigree to determine Q . Despite the optimism of 
letting genomic relatedness matrices take over for pedi-
grees [14], these alone are unfortunately not sufficient to 
fit genetic group models. A combination of genomic and 
pedigree information, the latter possibly inferred from 
genetic data [67, 81], may however provide a powerful 
basis to overcome this limitation. In addition, genomic 

data can provide valuable information about the ancestry 
of founder individuals, and enable (proportional) genetic 
assignment of these individuals to different genetic 
groups, e.g. [82, 83].

Conclusions
The proposed extension of genetic group models will be 
useful for any study population that is structured into 
subpopulations, given that sufficient information on dis-
persal or crossbreeding events is available. In particular, 
the fact that group-specific additive genetic variances 
can be estimated for subpopulations that are not com-
pletely isolated might also be useful when interest centers 
around the dependency of additive genetic variance on 
the effective population size, a relation that is of pivotal 
interest in evolutionary and conservation biology. Finally, 
the method may provide a starting point to assess tem-
poral or spatial variation of additive genetic variance, for 
example by defining populations at certain time points as 
base populations.
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