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Vitamin D and its analogues are widely used as treatments by clinical nephrologists, especially when treating chronic kidney
disease (CKD) patients with secondary hyperparathyroidism. As CKD progresses, the ability to compensate for elevations in
parathyroid hormone (PTH) andfibroblast growth factor-23 and for decreases in 1,25(OH)

2
D
3
becomes inadequate, which results in

hyperphosphatemia, abnormal bone disorders, and extra-skeletal calcification. In addition to its calciotropic effect on the regulation
of calcium, phosphate, and parathyroid hormone, vitamin D has many other noncalciotropic effects, including controlling cell
differentiation/proliferation and having immunomodulatory effects. There are several immune dysregulations that can be noted
when renal function declines. Physicians need to know well both the classical and nonclassical functions of vitamin D.This review
is an analysis from the nephrologist’s viewpoint and focuses on the relationship between the vitamin D and the immune system,
together with vitamin’s clinical use to treat kidney diseases.

1. Introduction

Chronic kidney disease (CKD) and end-stage renal disease
(ESRD) are diseases that are increasing in the 21st century.
Preventing progressive deterioration in renal function and its
complications remains the main challenge that nephrology
needs to fulfill. CKD is defined according to the glomerular
filtration rate (GFR) and/or the presence of pathological dam-
age to the kidneys or the presence of kidney damagemarkers,
such as proteinuria or hematuria, for 3 months [1]. Many
complications are found in these patients as the GFR decline;
these include fluid overload, anemia, cardiovascular disease,
malnutrition, protein energy-wasting, and mineral bone
disorders (MBD). In the case of MBD, hyperphosphatemia,
hypercalcemia, and hyperparathyroidism contribute to the
development of vascular calcification and cardiovascular
disease. As CKD progresses, compensation for the elevations

in parathyroid hormone (PTH) and fibroblast growth factor-
23 (FGF-23) and for reduced levels of 1,25(OH)

2
D
3
becomes

inadequate, resulting in hyperphosphatemia, abnormal bone
disorders, and extra-skeletal calcification. In the Kidney
Disease Outcomes and Quality Initiative (KDOQI) guideline
[2] and the Kidney Disease: Improving Global Outcomes
(KDIGO) guideline [3], activated vitamin D or its analogues
are frequently used to treat patients with secondary hyper-
parathyroidism and to prevent the renal osteodystrophy.
Therefore, how to use vitamin D and its analogues is an
important aspect of clinical nephrology.

The classical actions of vitamin D are related to mineral
metabolism and skeletal health. Vitamin D regulates blood
calcium, phosphate, and parathyroid hormone concentra-
tions by actions targeting the intestines, bone, parathyroid
glands, and kidneys. In addition, nonclassical roles for
vitamin D, including anticell differentiation and anticell
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proliferative activity with respect to various cell types, have
become more and more important. The anticell differen-
tiation effect has been correlated with cancer epidemiol-
ogy. Recently, serum vitamin D levels have been found to
be inversely associated with many malignancies, including
breast cancer [4], head and neck cancer [5], colon cancer [6],
prostate cancer [7], and pancreatic cancer [8]. In a systemic
review and meta-analysis, it was found that there was a
moderate inverse association between 25-hydroxy vitamin D
[25(OH)D] concentrations and total cancer incidence and
mortality [9]. The antiproliferative properties of vitamin D
have been clinically applied to the treatment of psoriasis.
Using a vitamin D analogue together with steroid [10] or
ultraviolet B (UVB) treatment [11] is useful when treating
psoriasis.

In addition to the above, vitaminDhas another important
role in terms of noncalciotropic activity, its immunomodu-
latory effect. This immunomodulatory effect is based on the
widely expressed vitamin D receptor (VDR) that is present in
the immune system.This reviewwill focus on the relationship
between the vitamin D and immunity and explore current
treatments using vitamin D in the clinical nephrology with
the exception of mineral bone disorders.

2. Vitamin D Metabolism and Deficiency in
Chronic Kidney Disease

Most people derive the bulk of their vitamin D from the
exposure of their skin to UVB light, which is present in
sunshine. The process starts with cholesterol in the skin,
which is enzymatically converted to 7-dehydrocholesterol
and then converted to an unstable compound, previtamin
D, by the action of UVB. Nutritional sources, such as fatty
fish and some types of mushrooms, also contain major
forms of vitamin D, namely, cholecalciferol (vitamin D3)
or ergocalciferol (vitamin D2) [12]. These are subsequently
activated during a sequential 2-step process that first involves
25-hydroxylation in the liver to produce 25(OH)D and
then 1-hydroxylation, which until recently was thought to
occur primarily in the kidney, to produce the active product
1,25(OH)

2
D
3
or calcitriol [13–15]. The key enzyme in this

process is 1𝛼-hydroxylase (CYP27B1), which is expressed pri-
marily in proximal tubular epithelial cells of the kidney [16].
This enzyme is expressed in other parts of the kidney and in
extra-renal tissues and cells aswell [17]. An individual’s serum
25(OH)D level is widely accepted to determine a person’s
vitamin D status [13, 18].Themain plasma carrier for vitamin
D metabolites is vitamin D-binding protein (VBP) [19].
VBP has the highest affinity for 25(OH)D, and virtually all
plasma 25(OH)D is bound to VBP [20]. The 25(OH)D-VBP
complex is taken up by the proximal convoluted tubule via
an endocytic receptor, megalin. The final step in the vitamin
D metabolic pathway is its inactivation, a process catalyzed
by 24-hydroxylase (CYP24A1) that catabolizes the conversion
of both 1,25(OH)

2
D
3
and 25(OH)D into 1,24,25(OH)

3
D and

ultimately into water-soluble calcitroic acid and the inactive
blood metabolite 24,25(OH)

2
D [21, 22].

In patients with CKD, serum 1,25(OH)
2
D
3
levels decline

early in the course of kidney dysfunction, even before any
changes in serum calcium or phosphorus concentrations
occur and prior to any rise in serum PTH levels [23, 24].
Rising FGF-23 levels may play an even greater role in
controlling 1𝛼-hydroxylase activity [25, 26]. Serum values
of FGF-23 are regulated by circulating phosphorus levels
and values increase as CKD progresses, becoming markedly
elevated in individuals with end-stage kidney disease [27].
In patients with CKD, calcitriol levels are inversely related
to levels of circulating FGF-23, suggesting that the hormone
may play a significant role in mineral metabolism. In total,
70% to 85% patients of CKD have low levels of 25(OH)D [28–
30]. As a result of the substrate-dependent process that forms
1,25(OH)

2
D
3
, a low 25(OH)D level contributes to vitamin D

deficiency [31]. Many other factors may also contribute to
vitamin D deficiency, including a lack of sunlight exposure,
a low protein diet (lack of vitamin-D rich food), reduced
1𝛼-hydroxylase activity resulting from a reduction in renal
mass and tubular dysfunction [32], decreased skin synthesis
of 1,25(OH)

2
D
3
in response to sunlight compared with

an individual with normal kidney function [13], loss of
25(OH)D-VBP due to heavy proteinuria [33, 34], chronic
illness, diabetes [35], and various other unknown factors
[36]. On the other hand, an increase in 24-hydroxylase gene
expression and an increase in the clearance of 1,25(OH)

2
D
3

with aging have also been reported [37, 38]. These findings
suggest that the combined effect of a decline in the ability
of the kidney to synthesize 1,25(OH)

2
D
3
and an increase in

renal metabolism of 1,25(OH)
2
D
3
may contribute to the high

prevalence of vitamin D deficiency among CKD patients.

3. Immune Dysregulation in CKD Patients

CKD patients and ESRD on the replacement therapy patients
have significant immune dysregulation as compared with
the general population and, subsequently, have a high sus-
ceptibility to infection and a high incidence of malignancy,
a poorer response to vaccination, and increased levels of
cardiovascular disease [39–42]. Uremia and its treatment
cause immune alterations in hemodialysis patients [43].
Several factors influence the immunity of these patients, such
as uremic toxin,malnutrition, chronic inflammation, vitamin
D-parathyroid hormone axis alternation, and therapeutic
dialysis [44–46]. Many studies have shown that both the
näıve and the acquired immune systems are impaired in these
patients. Due to their immunity dysregulation, these patients
have more vascular calcification, accelerated atherosclerosis,
a loss of appetite, increased insulin resistance, increasedmus-
cle catabolism, renal osteodystrophy, and a high prevalence
of depression [47, 48]. They also have coexisting chronic
immune activation (persisted hypercytokinemia and acute-
phase protein response) and chronic immune suppression (a
poor vaccination response and a high incidence of infection
and malignancy).

Monocytes andmonocyte-derived dendritic cells of CKD
patients are impaired with respect to endocytosis and mat-
uration [49], while, in parallel, uremia suppresses immune
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Figure 1: Several factors are related to immune dysregulation when renal function declines and when a patient is on renal replacement
therapy.

signal-induced CYP27B1 (encoding for 1𝛼-hydroxylase)
expression in human monocytes [50]. CKD patients have
a lower percentages of peripheral CD4+ T lymphocytes,
CD8+ T lymphocytes, and B lymphocytes in the blood [51].
Further, soluble B lymphocyte markers are increased in
CKD patients [52], while other studies have also shown that
there is an increased incidence of B cell apoptosis in these
patients [53]. ESRD patients show increased apoptosis and
a diminished populations of naı̈ve and central memory T
cells [54], together with impaired antigen-specific memory
CD4+ T cells [55]. In dialysis patients,Th1 lymphocytes show
decreased expression of the antiapoptotic molecule Bcl-2,
which makes the Th1 cells more susceptible to apoptosis
[56]. A similar decline in Th1 cell population and the
enhancement in Th2 differentiation have also been noted in
CKD and dialysis patients [30, 57, 58]. In addition, we have
recently shown that Th17 cells are increased in chronic HD
patients, whereas Treg cells are decreased (submitted). This
Th17/Treg functional imbalance exists in uremic patients and
is associated with the development of acute cardiovascular

events including myocardial injury and microinflammation
[59, 60].

Preactivated monocytes overproduce cytokines such as
tumor necrosis factor-𝛼 (TNF-𝛼), interleukin- (IL-)1, IL-6,
and IL-10 [61, 62]. TNF-𝛼 and IL-1 are the major cytokines
produced by activation of the Toll-like receptor (TLR) sig-
naling pathway; this is the key receptor that recognizes
lipopolysaccharides (LPS) [63]. In addition, IL-6, the proin-
flammatory cytokine, which has been shown to play a key
role in atherosclerosis and protein-energywasting, is elevated
in the CKD patients [64–66]. Serum levels of IL-12 and
IL-18 are both increased in CKD patients, and both of
them are correlated with the inflammatory process [67, 68].
Moreover, high proinflammatory cytokine (IL-1, IL-6, and
TNF-𝛼) levels and low anti-inflammatory cytokine (IL-4, IL-
5, and CH50) levels have also been found in hemodialysis
patients [69].

In addition to uremic toxin, dialysis-related factors such
as bioincompatibility of the hemodialysis dialyzer, the pres-
ence of endotoxins in the water, access-related infection,
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the presence of glucose degradation products in peritoneal
dialysis solution, and the presence of advanced glycation
end products are important; all of the above are able to
induce chronic inflammation and will activate the immune
response. Together, these findings indicate that, in general,
CKD patients have immune dysregulation that includes both
the cellular part and hypercytokinemia (Figure 1).

4. Vitamin D and the Innate Immune System

The innate immune response, which includes natural killer
cells, macrophages, and their monocyte precursors, plays
a central role in initial responses to pathogenic organisms
and/or tissue damage. Their role is to engulf pathogens and
cell debris by phagocytosis and then eliminate or assimilate
the resulting waste material. The earliest evidence of vitamin
D effect on innate immunity came from the treatment of
tuberculosis treatment with cod liver oil, which is a major
source of vitamin D [70]. The action of vitamin D on
macrophages includes the ability to stimulate the differen-
tiation of precursor monocytes into more mature phago-
cytic macrophages [71–73]. Macrophages have their own 1𝛼-
hydroxylase and require sufficient ambient levels of 25(OH)D
substrate in order to generate internal 1,25(OH)

2
D
3
. Striking

evidence of macrophage 1𝛼-hydroxylase activity is found in
granulomatous conditions such as tuberculosis, sarcoidosis,
and inflammatory bowel disease, where 1,25(OH)

2
D
3
levels

may be markedly elevated [74]. In sarcoidosis patients there
is increased production of 1,25(OH)

2
D
3
despite hypercal-

cemia. The disordered calcium homeostasis in sarcoidosis is
due to dysregulation of the production of 1,25(OH)

2
D
3
by

activated macrophages [75]. Unlike renal 1𝛼-hydroxylase, the
1𝛼-hydroxylase produced by macrophages is not suppressed
by elevated calcium or by 1,25(OH)

2
D
3
and is upregulated by

immune stimuli such as interferon gamma (IFN-𝛾) and LPS
[76, 77].

Vitamin D, vitamin D receptor, and retinoid X recep-
tor directly activate the transcription of antimicrobial pep-
tides such as defensin 𝛽2 and cathelicidin [78–80]. When
monocytes are exposed to a pathogen, this will induce 1𝛼-
hydroxylase and the vitamin D receptor after the pathogen is
recognized by the TLR, which results in production of cathe-
licidin [81].This cathelicidinwill cleavemicrobialmembranes
and is upregulated in response to infections in humans; it acts
against bacteria, viruses, and fungi [82–84]. In some critical
sepsis patients, significantly lower serum 25(OH)D and
cathelicidin levels have been identified [85]. The association
between a low level of cathelicidin and death from an infec-
tious cause has also been observed in hemodialysis patients
[86]. In addition, our previous study also indicated that the
presence of the C allele of −1237T/C in the TLR-9 gene
increases susceptibility towards development of ESRD.Thus,
patients with this functional TLR-9 promoter polymorphism
had a higher mean plasma IL-6 level than those carrying
−1237TT [87]. Inmacrophages, vitamin D suppresses nuclear
factor- (NF-)𝜅B activity by upregulating expression of I𝜅B
through stabilization of I𝜅B-mRNA and a reduction in

its phosphorylation [88, 89]. Decreased macrophage func-
tion under conditions of vitamin D deficiency has been
noted in sera from patients who are vitamin-D deficient;
this resulted in a lower bactericidal response compared to
vitamin-D replete individuals [85]. Although vitamin D has
an antimicrobial effect, it also provides feedback regula-
tion of the immune activation pathways. 1,25(OH)

2
D
3
has

been shown to potently downregulate expression of mono-
cytes TLR2 and TLR4, thereby suppressing inflammatory
responses that are normally activated by these receptors
[90].

Apart from macrophages/monocytes, some other anti-
gen presenting cells, such as dendritic cells (DCs), also
express VDR and the vitamin D metabolizing enzymes, 1𝛼-
hydroxylase and 24-hydroxylase. Vitamin D may have an
important role in promoting dendritic cell tolerogenicity via
alterations in their function and morphology [91, 92]. In
the presence of 1,25(OH)

2
D
3
, DCs exhibit reduced expres-

sion of major histocompatibility complex (MHC) class II
molecules and various adhesion molecules (CD40, CD80,
and CD86) [93–95]. This leads to reduced antigen pre-
sentation that is accompanied by a lower IL-12 secretion
but an increased production of the tolerogenic IL-10; this
then promotes development of Th2 lymphocyte differen-
tiation [91]. Therefore, vitamin D inhibits the maturation
and differentiation of dendritic cells; thus it might be
expected that treatment with vitamin D or its analogues may
reduce the immune response. Overall, 1,25(OH)

2
D
3
is able to

enhance the innate antibacterial defense capacity and create
a more tolerogenic profile toward autoimmune phenomena
(Figure 2).

5. Vitamin D and the Adaptive
Immune System

Early studies demonstrated that there is expression of VDR
in both T and B cells [96]. VDR expression by these
cells is very low in resting conditions, but upon activa-
tion and proliferation, T cells and B cells upregulate VDR
expression significantly, which influences the differentiation
and proliferation of these cells [12]. Vitamin D exerts an
inhibitory action on this area of the adaptive immune
system.

In the T cells, 1,25(OH)
2
D
3
plays an important role in

proliferation and differentiation. Currently, four potential
mechanisms by which vitamin D influences T cell function
have been proposed.These are, firstly, direct endocrine effects
via systemic 1,25(OH)

2
D
3
, secondly, direct intracrine conver-

sion of 25(OH)D to 1,25(OH)
2
D
3
by T cells itself, thirdly,

direct paracrine effects following conversion of 25(OH)D
to 1,25(OH)

2
D
3
by local monocytes or dendritic cells, and

finally, an indirect effect on antigen presentation to T cells
which is mediated via localized APC and is affected by
calcitriol [97]. Vitamin D promotes a T cell shift from Th1
to Th2, which might help to limit potential tissue damage
associated with Th1 cellular immune responses. Treatment
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Figure 2: Vitamin D and innate immune system. 1,25(OH)
2
D
3
promotes innate immunity when macrophage (M

Φ
) is activated by TLRs;

CYP27B1 is induced enabling the macrophage to produce 1,25(OH)
2
D
3
, which subsequently gives rise to cathelicidin. On the other hand,

1,25(OH)
2
D
3
inhibits the expression of costimulatory molecules (DC40, CD80/86) and major histocompatibility complex class II (MHC II)

on the surface of monocyte-derived dendritic cell (DC) and inhibits the production of inflammatory cytokines, such as interleukin-12 (IL-12).

of T cells with calcitriol or analogues inhibits the secre-
tion of the proinflammatory Th1 (IL-2, IFN-𝛾, and TNF-
𝛼), Th9 (IL-9), and Th22 (IL-22) cytokines [98–101] but
promotes the production of more anti-inflammatory Th2
cytokines (IL-3, IL-4, IL-5, and IL-10) [30, 102, 103]. Active
vitamin D can modulate Th2-cell responses both indirectly,
through suppression of IFN-𝛾 and IL-2 in Th1 cells, and
directly by influencing expression of Th2 cytokines such as
IL-4.

1,25(OH)
2
D
3
reduces expression of IL-17 [104]. IL-17-

producing Th17 cells play a crucial role in the induction of
autoimmune disease and inflammation [105]. T cell exposed
to 1,25(OH)

2
D
3
produced significantly decreased levels of IL-

17, IFN-𝛾, and IL-21 and has significantly increased expres-
sion of genes typical for regulatory T cells (Tregs) [3].
The Treg cells have an anti-inflammatory role and control
autoimmune diseases by releasing IL-10 and TGF-𝛽 [106]; in
addition, Treg cells are able to be induced and stimulated by
1,25(OH)

2
D
3
though an indirect pathway, via APCs andDCs,

or through a direct pathway, via an endocrine effect or the

intracrine conversion of 25(OH)D to 1,25(OH)
2
D
3
by Treg

cells themselves [107–109].Thus, 1,25(OH)
2
D
3
exerts a broad

range of effects on inflammation and autoimmune disease by
reducing Th17 cell numbers and by having effects that are
beneficial in terms of autoimmune and host-graft rejection;
these events occur by enhancing Treg cell numbers. However,
the regulation of T cells may come at a price because it leads
to a decreased response to pathogens and to a reduction
in immune surveillance. 1,25(OH)

2
D
3
is able to significantly

alter the behavior of the T cells, favoring the development of
tolerance via an increase in Th2 and Treg cell activity and
a reduction in proinflammatory Th1 and Th17 cell activity
(Figure 3).

VDR is also expressed in inactivated B cells [110]. In B
cells, 1,25(OH)

2
D
3
plays an antiproliferative role involving

an inhibition of cell differentiation, an inhibition of cell
proliferation, reduced initiation of apoptosis, and decreased
immunoglobulin production.These effects are probably indi-
rectly mediated by T cells [111, 112]. This control of B cell
activation and proliferation is important in autoimmune
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Figure 3: Vitamin D and adaptive immune system. The adaptive
immune system is like Tai-Chi, namely, that it separates the Yin
and the Yang. 1,25(OH)

2
D
3
directly modulates T cell responses and

polarization related to the inflammatory molecules Th1 and Th17
in order to give rise to protective Th2 and Treg cells. In addition,
1,25(OH)

2
D
3
also inhibits the inflammatoryTh1 andTh17 cytokines

and upregulates the protective Th2 and Treg cytokines. When these
effects are integrated, the adaptive immune system may produce
lower levels of inflammation, atherosclerosis, and autoimmunity.

diseases due to the fact that B cells producing autoantibodies
that play a major role in the pathophysiology of autoimmune
disease, such as systemic lupus nephritis, type 1 diabetes,
inflammatory bowel disease, and multiple sclerosis.

6. Vitamin D Alters Immunity in Clinical
Nephrology Patients

Thecalciotropic action of vitaminD is itsmajor use in clinical
nephrology. As CKD progresses, compensation for the ele-
vations of PTH and FGF-23 as well as the decreased levels
of 1,25(OH)

2
D
3
becomes inadequate, resulting in hyper-

phosphatemia, hypocalcemia, abnormal bone disorders, and
extra-skeletal calcification. Recent studies have unraveled
some of the complications that are present in ESRD patients,
including anemia [113, 114], lipid and insulin abnormalities,
cardiovascular risk [115, 116], and overall mortality [117–
119]; these are able to be improved by correcting for the
patient’s vitamin D deficiency. 1,25(OH)

2
D
3
has been proven

to have an antiproteinuric effect and to interfere with the
renin-angiotensin-aldosterone system (RAAS). 1,25(OH)

2
D
3

is able to maintain the structural and functional integrity
of podocytes [120–123] and also suppresses directly renin
expression at the transcriptional level [124–126]. Studies

have shown that a combination of vitamin D or its ana-
logue with RAAS blockade agents is able to ameliorate
renal fibrosis [127]. The renoprotective effects of vitamin
D and its analogues include suppression of the RAAS and
a reduction in proteinuria; these may occur either directly
through the protection of podocytes or via negative reg-
ulation of the RAAS. The anti-inflammatory properties of
1,25(OH)

2
D
3
may be attributed to a suppression of the NF-

𝜅B pathway. The NF-𝜅B pathway plays an important role
in the progression of renal disease because it promotes
both inflammation and fibrogenesis via regulation of var-
ious inflammatory cytokines (MCP-1, TNF-𝛼, and PAI-1)
[128].

Many studies have focused on treatment with
1,25(OH)

2
D
3

to alter immune function in CKD and
ESRD patients. 1,25(OH)

2
D
3
, when used in HD patients

with secondary hyperparathyroidism, is able to enhance
Th2 cell differentiation [30] and decrease IL-6 expression
[129]. It also can attenuate inflammatory and oxidative
stress in HD patients [130]. Among dialysis patients, a low
serum level of 25(OH)D is correlated with a high panel of
reactive T cell values, which means that vitamin D deficiency
is related to a poor posttransplant outcome [131]. When
there is acute kidney injury, vitamin D deficiency seems to
predispose individuals towards an increased risk of sepsis,
endothelial dysfunction and also prevents the healing of
renal ischemia-reperfusion injury via the TLR, NF-𝜅B,
and the RAAS pathway [132]. In HD patients, treatment
with vitamin D and its analogues is able to reduce platelet
activating factor/thrombin activity and metabolism as well
as lower serum IL-6, IL-8, IL-1𝛽, and TNF-𝛼 levels, all of
which are inflammatory markers [133, 134]. In terms of its
noncalciotropic effects, 1,25(OH)

2
D
3
is able to significantly

alter the behavior of T cells; this favors the development of
tolerance and a reduction in proinflammatory activity,
while at the same time ameliorating renal fibrosis
and slowing down the development of proteinuria
(Figure 4).

7. Conclusions

As nephrologists, we are continually looking for ways to
improve the immune system of patients and patient outcome.
The broad tissue distribution of 1𝛼-hydroxylase and vitamin
D receptor has established a role for 1,25(OH)

2
D
3
in the

pathophysiology of many diseases and this has provided
a therapeutic role for the 1,25(OH)

2
D
3
. Growing evidence

indicates that the usefulness of vitamin D extends beyond
its classical role in maintenance of mineral homeostasis and,
in this context, the present use of active vitamin D includes
the treatment of secondary hyperparathyroidism in CKD.
Moreover, vitamin D deficiency is common among CKD
patients and in fact may contribute to deterioration in their
kidney function. In addition to the traditional supplementa-
tion of CKD patients with 1,25(OH)

2
D
3
, it is possible that, by

assessing and reducing any 25(OH)D deficiency and treating
secondary hyperparathyroidism, physicians may be able to
adequately fuel both the renal and extra-renal pathways of
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Figure 4: Overview of biological functions of vitamin D in clinical nephrology.

1,25(OH)
2
D
3
synthesis. This will maintain both the classical

and nonclassical functions of vitamin D and ultimately
influence the clinical outcomes of this high-risk group of
patients.
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