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Glioma is the common histological subtype of malignancy in central nervous system, with a
high morbidity and mortality. Cancer stem cells (CSCs) play an important role in regulating
the tumorigenesis and progression of glioma; however, the prognostic biomarkers and ther-
apeutic targets associated with CSC characteristics have not been fully acknowledged in
glioma. In order to identify the prognostic stemness-related genes (SRGs) of glioma in silico,
the RNA sequencing data of patients with glioma were retrieved from The Cancer Genome
Atlas (TCGA) databases. The mRNA expression-based stemness index (mRNAsi) was sig-
nificantly associated with the glioma histologic grade, isocitrate dehydrogenase 1 (IDH1)
mutation and overall survival of glioma patients by the nonparametric test and Kaplan–Meier
survival analysis. A total of 340 SRGs were identified as the overlapped stemness-related
differential expressed genes (DEGs) of different histologic grade screened by the univariate
Cox analysis. Based on 11 prognostic SRGs, the predict nomogram was constructed with
the AUC of 0.832. Moreover, the risk score of the nomogram was an independent prog-
nostic factor, indicating its significant applicability. Besides other eight reported biomarkers
of glioma, we found that F2RL2, CLCNKA and LOXL4 were first identified as prognostic
biomarkers for glioma. In conclusion, this bioinformatics study demonstrates the mRNAsi
as a reliable index for the IDH1 mutation, histologic grade and OS of glioma patients and
provides a well-applied model for predicting the OS for patients with glioma based on prog-
nostic SRGs. Additionally, this in silico study also identifies three novel prognostic biomark-
ers (F2RL2, CLCNKA and LOXL4) for glioma patients.

Introduction
Glioma is the most common histological subtype of primary tumor of central nervous system
(CNS), accounting for approximately 80% of brain malignancies, with 15,000–17,000 new cases an-
nually in the United States [1,2]. The lower-grade gliomas (LGGs) include the diffuse low-grade and
intermediate-grade gliomas (World Health Organization [WHO] grades II and III), with a relatively fa-
vorable prognosis [3]. Glioblastoma (GBM) are generally more aggressive tumors (grade IV) with a higher
morbidity and mortality [4]. Although advanced therapeutic strategy has been proposed, the 5-year over-
all survival (OS) rate of patients with GBM is still less than 5% [1]. Thus, identification the difference
between LGGs and GBM, along with neoplasm histologic grade, may assist oncologists in finding the
prognostic biomarkers and potential targets for the treatment of glioma.

The heterogeneity of tumor cells has long been appreciated and cancer stem cells (CSCs) are the impor-
tant part of glioma [5]. Glioma CSCs are marked by common stem cell markers, such as CD133, CD15,
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CD44, Prominin-1, L1CAM and NPM1 [6]. They can work with immune niche factors and cellular microenviron-
ment to regulate the tumorigenesis and progression of glioma [7]. During glioma treatment, CSCs are highly resistant
to chemotherapy, radiation and immune recognition by regulating autophagy and proteases [8]. Thus, CSCs play im-
portant roles in glioma initiation, progression and therapeutic resistance. Identification of CSC-associated biomarkers
may predict the tumor progression of glioma and provide CSC-based diagnostic and therapeutic strategies.

Nowadays, CSC characteristics have been identified to assess the oncogenic dedifferentiation by deep learning
methods [9]. The DNA methylation-based stemness index (mDNAsi) can reflect the epigenetic stemness features,
while the mRNA expression-based stemness index (mRNAsi) represents the transcriptomic stemness expression. It
has been reported that mRNAsi is a reliable index in bladder cancer and is associated with tumorigenesis and tumor
stage; however, its roles in glioma is still unclear.

In the present study, RNA-seq data and clinical information of patients with LGGs and GBM were collected from
The Cancer Genome Atlas (TCGA) databases. Additionally, we identified the differential expressed genes (DEGs)
and the association between mRNAsi and histologic grade, isocitrate dehydrogenase 1 (IDH1) mutation and OS. The
stemness-related genes (SRGs) were also identified. Based on the prognostic SRGs, the predict model was constructed.
Thus, this bioinformatics analysis provides potential prognostic biomarkers that may assist oncologists in clinical
diagnosis and treatment of glioma.

Method
Data acquisition
Gene expression profiling of 705 primary brain gliomas including 532 LGGs and 173 GBMs were downloaded from
The Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov). The gene expression levels were downloaded in
formats of Fragments Per Kilobase per Million (FPKM) and HTSeq-Counts. Clinical data of the demographics, tumor
information and follow-up data of the all patients were also extracted from the database.

Estimation of mRNAsi using OCLR
An algorithm named one-class logistic regression machine learning (OCLR) was reported by Tathiane et al. and could
estimate the stemness signatures of the bulk tissue mRNA as an index called mRNAsi. Greater tumor dedifferentiation
and higher activity of CSCs could be presented as higher mRNAsi [9]. In the present study, mRNAsi of LGG and
GBM were estimated by this algorithm based on the normalized gene expression profile obtained from RNA-seq.
The associations between mRNAsi and the OS, histologic grade and IDH1 were also established by nonparametric
test and Kaplan–Meier survival analysis.

DEGs analysis between low and high mRNAsi glioma
In the present study, EdgeR method was applied to identify the DEGs between experimental group and control group.
All brain gliomas samples were divided into three groups by tumor grades (G1, G2 and G3). DEG analysis between
high stemness tumors (samples with mRNAsi greater than the median) and low stemness tumors (samples with mR-
NAsi less than the median) were conducted in these three groups, respectively.

A gene with log2 Fold Change (FC) > 1.0 or < -1.0, and False Discovery Rate (FDR) value < 0.05 was defined
as DEG. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Oncology (GO) functional
enrichment analysis were used to explore the signaling pathways and biological processes that DEGs enriched [10].

Identification of prognostic SRGs and construction of multivariate Cox
regression model
The intersection of these three groups of DEGs were screened and included in the univariate Cox analysis. DEGs with
significant statistical results were defined as prognostic SRGs and integrated into the initial multivariate Cox regres-
sion model. Then, the Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to filter the
independent variables essential to modeling and prevent model overfitting. In addition, the variables with non-zero
coefficient in LASSO regression were included in the final multivariate model. Besides, the goodness of fit and the
accuracy of the model was tested by residual plot and receiver operator characteristic (ROC) curve, respectively.
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Table 1 Baseline information of 657 patients diagnosed with brain glioma

Variables Total patients (N=657)

Age, years

Mean +− SD 46.88 +− 15.40

Median (range) 46 (14–89)

Unknown 2 (0.30%)

Gender

Female 276 (42.01%)

Male 379 (57.69%)

Unknown 2 (0.30%)

Histologic grade

G2 242 (36.84%)

G3 262 (39.88%)

G4 151 (22.98%)

Unknown 2 (0.30%)

TCGA project

Brain Lower Grade Glioma 506 (77.02%)

Glioblastoma Multiforme 151 (22.98%)

Abbreviations: SD, Standard deviation.

Independent prognosis analysis
The risk score was calculated by the formula of the final multivariate Cox model (as followed) for each brain gliomas
patients.

RSx = β1 × gene1 + β2 × gene2+β3 × gene3 . . . · · · + βn × genem

In the formula, “β” represented coefficient of each prognostic gene; “m” represented the number of prognostic
gene in the final multivariate model and “x” represented the number of each patient.

Moreover, all patients were divided into high and low risk group by the median of RS. The Kaplan–Meier survival
curve was used to evaluate the prognosis value of RS. The univariate and multivariate Cox analysis, corrected by
demographics and histologic grade, was used to evaluate the independent prognosis value of risk score.

Construction and validation of the prognostic nomogram
The prognostic nomogram was constructed based on the multivariate Cox model including RS, which could predict
the 3- and 5-year overall survival probability of brain gliomas patients. The calibration curve was used to evaluate
the calibration of the nomogram. Besides, the RNA-seq and clinical data of Chinese Glioma Genome Atlas (CGGA)
(http://www.cgga.org.cn/) were used to validate the generalizability of model in Asian populations [11].

Statistics analysis
R software (Institute for Statistics and Mathematics, Vienna, Austria; www.r-project.org, version 3.6.1) were utilized
for analysis. Two-sided P value < 0.05 was defined as statistically significant for all analysis process.

Result
DEGs analysis
The flowchart of the analysis process was summarized in Figure 1 and the baseline clinical characteristics of se-
lected patients with glioma were summarized in Table 1. In G2 brain gliomas, a total of 2446 genes including 1335
down-regulated ones and 1111 up-regulated ones were identified as DEGs between low mRNAsi gliomas and high
mRNAsi gliomas. The heatmap and volcano plot were presented in Figure 2A,B, respectively. The DEGs enriched in
the GO term pointed to leukocyte migration, passive transmembrane transporter activity and channel activity (Figure
2C), while those enriched in KEGG term were associated with neuroactive ligand–receptor interaction (Figure 2D).

Similarly, in G3 brain gliomas, 4629 genes including 3175 down-regulated ones and 1454 up-regulated ones
were identified as DEGs between low mRNAsi gliomas and high mRNAsi gliomas. The heatmap and volcano
plot were presented in Figure 3A,B, respectively. The significant GO (Figure 3C) and KEGG (Figure 3D) terms of
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Figure 1. The flowchart of all analysis process

stemness-related DEGs also included leukocyte migration, passive transmembrane transporter activity and neuroac-
tive ligand–receptor interaction, along with external side of plasma membrane and cytokine–cytokine receptor in-
teraction.

In G4 brain gliomas, a total of 1765 DEGs including 1032 down-regulated ones and 733 up-regulated ones.
The heatmap and volcano plot were presented in Figure 4A,B, respectively. GO terms including leukocyte migra-
tion, collagen-containing extracellular matrix and receptor ligand activity (Figure 4C) and KEGG terms including
cytokine–cytokine receptor interaction and neuroactive ligand–receptor interaction (Figure 4D) were also identified
as significantly enriched items among stemness-related DEGs

Identification of prognostic SRGs
Among all the identified histologic grade DEGs, a total of 340 stemness-related DEGs were explored as the overlapped
genes, which were regarded as SRGs (Figure 5A). In addition, mRNAsi of glioma were significantly associated with
prognosis (Figure 5B, P<0.001). In order to identify the association between mRNAsi and important indexes, we
used the nonparametric test and found that there was significant difference in mRNAsi among different histologic
grade gliomas (Figure 5C, P<0.001). Furthermore, IDH1 mutations were more often detected in high mRNAsi tu-
mors (Figure 5D, P=0.001). The 340 SRGs in different histologic grade gliomas were integrated into the univariate
Cox analysis to identified key SRGs and we found that CCL7, CXCL6, SELE, C2CD4A, GPR141, TNFSF14, CCR2,
GPR171, PTGER2 and VGLL3 were associated with histologic grade (Figure 5E).

Identification of the prognostic model
A total of 11 prognostic SRGs with both statistical significances in univariate Cox analysis and non-zero coefficient
in LASSO regression were included in the final multivariate model (Figure 6A and Supplementary Figure S1A,B),
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Figure 2. The results of differential expressed genes analysis and functional enrichment analysis between low mRNAsi

tumors and high mRNAsi tumors in G2 brain gliomas

The heatmap (A) and volcano plot (B) of the differential expressed genes. The GO (C) and KEGG (D) terms for the differential

expressed genes.

namely ABCC3, CHI3L1, CLCNKA, F2RL2, LOXL1, LOXL4, OSMR, OTP, PLAUR, POSTN and TIMP1. The risk
scatter plot (Supplementary Figure S1C) and risk curve (Supplementary Figure S1D) of the final multivariate model
demonstrated the distribution of risk score among all patients. The Kaplan–Meier analysis suggested that the risk
score was significantly associated with the OS of patients with glioma (Figure 6B, P<0.001). The ROC curve and
residual plot illustrated a high efficiency (AUC = 0.832, Figure 6C) and the residual distribution of the multivariate
model (Figure 6D).

Independent prognosis analysis, construction and validation of the
prognostic nomogram
The risk score was shown to be an independently prognostic factor for glioma in both univariate (HR = 26.183, 95%CI
(13.593−50.431), P<0.001) (Figure 7A) and multivariate (HR = 1.045, 95%CI (1.018−1.072), P<0.001) (Figure 7B)
Cox regression model corrected by demographics and histologic grade. The prognostic nomogram was constructed
based on the multivariate Cox model including risk score, which could predict the 3- and 5-year OS probability
of brain gliomas patients (Figure 7C). The calibration curve suggested the acceptable calibration of the nomogram
(Figure 7D,E).

Identification of the novel prognostic biomarkers
Finally, the 11 prognostic SRGs in the final multivariate model were validated by the CGGA data and we found three
novel prognostic biomarkers (F2RL2, CLCNKA and LOXL4) for glioma that have not been reported before (Sup-
plementary Figures S2–4). All of them were associated with the OS of patients with primary glioma significantly
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Figure 3. The results of differential expressed genes analysis and functional enrichment analysis between low mRNAsi

tumors and high mRNAsi tumors in G3 brain gliomas

The heatmap (A) and volcano plot (B) of the differential expressed genes. The GO (C) and KEGG (D) terms for the differential

expressed genes.

(Supplementary Figure S2). In addition, all of them except LOXL4 were related to the OS of patients with recurrent
glioma significantly (Supplementary Figures S2–4). As for these 11 prognostic SRGs, ABCC3 (Supplementary Fig-
ure S5) and POSTN (Supplementary Figure S6) were significantly associated with almost all subtypes of glioma. To
minimize bias, external databases of The Human Protein Atlas [12] was also used to detect protein expression of 11
prognostic SRGs at the tissue level of brain and glioma (Supplementary Figure S7).

Discussion
Advanced knowledge of glioma genome and proteome has promoted the identification of biomarkers to facilitate the
prognosis prediction, early diagnosis and personalized treatment decisions [13–15]. However, due to the aggressive
nature and therapeutic resistance, the treatment of glioma, in especial GBM, is still the dilemma for neurosurgeons
and oncologists [8]. In the treatment resistance of radiotherapy, chemotherapy and even immunotherapy, the glioma
CSCs play important roles. Thus, exploring the CSCs features of glioma may provide prognostic biomarkers and thera-
peutic targets for patients with glioma. Here, we found mRNAsi was a reliable index that was significantly up-regulated
in high grade glioma and LGG with IDH1 mutation by bioinformatics methods. We developed a prediction model
based on the prognostic SRGs that was well-applied in predicting the prognosis of glioma patients. Additionally, we
also identified three novel prognostic biomarkers (F2RL2, CLCNKA and LOXL4) for glioma patients in silico.

Generally, the CSCs underlie glioma initial growth and recurrence following treatment-resistance [16]. Nowadays,
the single-cell RNA-seq (scRNA-seq) has been applied in glioma to explore the distinct CSC populations [16]. It
was found that most cancer cells are differentiated from the glial lineages (oligodendrocyte-like or astrocyte-like
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Figure 4. The results of differential expressed genes analysis and functional enrichment analysis between low mRNAsi

tumors and high mRNAsi tumors in G4 brain gliomas

The heatmap (A) and volcano plot (B) of the differential expressed genes. The GO (C) and KEGG (D) terms for the differential

expressed genes.

cells) and a subgroup of cells appear undifferentiated neural stem/progenitor cells which is responsible for fueling
the glioma growth [17]. In another scRNA-seq study of IDH-mutant gliomas, CSCs driven the glioma differentiation
and targeting them has a major impact on the tumor management [3].

Due to the significate roles of CSSs in the glioma, exploring the CSCs characteristics may provide potential
biomarkers for progression monitor and therapeutic targets in the management of glioma. The CSCs characteristics
are often governed by the epigenetic state, along with the activity of transcription factors (TFs), chromatin regulators
and microenvironment cell networks [16]. In the present study, we used the mRNAsi to describe the CSCs charac-
teristics of transcriptome gene expression. We found that the mRNAsi of glioma patients was significantly associated
with pathological grade, IDH1 mutation and their OS.

The metabolic gene IDH1 is commonly mutated in gliomas [18]. Appropriately 80–90% of LGGs and 5% of GBMs
were identified in the discovery of brain tumors [19,20]. The IDH1 enzyme, located in the cytosol/ peroxisome, can
promote the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (a-KG) [21]. Its mutation is supposed to
be an early event in glioma formation and can promote the proliferation and colony formation of normal human
astrocyte cell normal human astrocyte cells [22]. Additionally, the IDH-driven epigenetic changes remain the glioma
cells in a less differentiated or stem-like state, rendering them vulnerable to suffering additional oncologic events,
such as the mutation of tumor suppressor protein 53 (TP53) [23]. Thus, IDH1 enzyme may be related to stemness
which is consistent with the results of the present study.

Exploring the predictors may also assist neurosurgeons and oncologists in clinical decision-marking of glioma,
and thus many previous studies work on them by integrating clinical information and genomic biomarkers [24,25].
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Figure 5. The clinical relevance of mRNAsi and identification of stemness-related genes

(A) The Venn plot of the stemness-related differential expressed genes among histologic grade gliomas. The association between

mRNAsi and prognosis (B), histologic grade gliomas (C) and IDH1 mutations (D). (E) The heatmap of the stemness-related differential

expressed genes among different grade gliomas.

However, none of them cover the CSC-related signatures and prognostic SRGs, which play significant roles in the tu-
morigenesis, tumor development and drug resistance. According to the pathway analysis, we found the highly enrich-
ment of leukocyte migration and neuroactive ligand–receptor interaction. The leukocyte migration often regulates
immunosuppressive microenvironment and the lymphocyte specific protein 1 (LSP1)-induced immunosuppressive
microenvironment has been reported to contribute to GBM [26]. In addition, CD133+ and Nestin+ glioma stem-like
cells could also regulate SDF-1α and CXCR4, which subsequently promote leukocyte migration and glioma progres-
sion [27]. Generally, the tumorigenesis and progression of glioma is significantly with its microenvironment. The
microenvironment cells interact with glioma cells with neuroactive ligand–receptor interaction [28,29].

8 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2020) 40 BSR20201037
https://doi.org/10.1042/BSR20201037

Figure 6. The model diagnosis of multivariate Cox model including prognostic stemness-related genes

(A) The final multivariate model of the 11 prognostic stemness-related genes. (B) The Kaplan–Meier analysis of the risk score. The

ROC curve (C) and residual plot (D) of the multivariate model.

In the present study, we identified eleven key prognostic SRGs, namely ABCC3, CHI3L1, CLCNKA, F2RL2,
LOXL1, LOXL4, OSMR, OTP, PLAUR, POSTN and TIMP1. Based on the prognostic SRGs, we built a prediction
model for glioma patients with a high accuracy and applicability (AUC: 0.832). Thus, the present study is a good
supplement to the existing research about the prognosis evaluation of patients with glioma. In the prediction mod-
els, the identified key prognostic SRGs could also work as biomarkers for the OS and recurrence of patients with
glioma. In the CGGA external validation, ABCC3 and POSTN were significantly associated with the OS in almost
all the grades of primary and recurrent glioma. As one of the ATP-Binding Cassette (ABC) transporters, ABCC3
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Figure 7. Independent prognosis analysis and construction of the prognostic nomogram

The univariate (A) and multivariate (B) Cox regression model corrected by demographics and histologic grade. (C) The constructed

prognostic nomogram based on the multivariate Cox model. (D and E) The calibration curve suggested acceptable calibration of

the nomogram.
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(also known as MRP3) is commonly overexpressed in many cancer types and mediates tumorigenesis, growth and
chemoresistance by interacting with microenvironment cells [30–33]. In patients with glioma, some studies have also
identified ABCC3 as a prognostic biomarker using microarray and next generation sequencing [34,35]. Along with
ABCC3, POSTN (periostin) was also identified to be the important regulator in the tumorigenesis and treatment
of glioma [36,37]. Other prognostic SRGs are also tightly involved in the development of many tumors, in especial
glioma. For example, TIMP1 can regulate the alternative protease-independent activities [38,39]. The OSMR (recep-
tor for the cytokine Oncostatin M) is a regulator of brain tumor stem cells (BTSC) proliferation by mediating EGFR
phosphorylation [40]. CHI3L1 can be associated with IDH status and 1p/19q co-deletion in patients with glioma [41].

F2RL2, CLCNKA and LOXL4 are novel prognostic biomarkers for glioma which have not reported before. Their ef-
ficacies were also verified by external CGGA database. Compared with CLCNKA and LOXL4, F2RL2 was specifically
applied in all grades of primary glioma, revealing its prognostic role in primary glioma. F2Rl2 is a G-protein-coupled
receptor (GPCR) encoding the protease-activated receptor-3 (PAR3), which plays a clear role in inflammatory re-
actions and immune responses, and PAR3 can regulate the tumorigenesis and metastasis in many kinds of tumors
including glioma [42–45]. Thus, we supposed that the roles of F2Rl2 in primary glioma might be related to PAR3
by inflammatory reactions. In addition, CLCNKA has been reported to mediate chloride channel and found to be
dysregulated in the heart failure and salt-sensitive hypertension [46–48]. However, its roles in tumorigenesis are still
unknown. LOXL4, encoding a member of the lysyl oxidase gene family, catalyzes oxidative deamination of lysine
residues in collagen and elastin [49]. It takes part in cancer occurrence and metastasis in many tumors via p53 or
FAK/Src pathway and its high expression is often associated with poor prognosis [49–52]. According to our results,
we suppose that these three prognostic biomarkers potentially regulate the tumorigenesis and progression of brain
glioma by mediating the CSCs.

Conclusion
This bioinformatics analysis demonstrates the mRNAsi as a reliable index for the IDH1 mutation, histologic grade
and OS of glioma and provides a well-applied model for predicting the OS for patients with glioma based on prog-
nostic SRGs. Additionally, this in silico study also identifies three novel prognostic biomarkers (F2RL2, CLCNKA
and LOXL4) for glioma patients.
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