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A mathematical analysis of the evolution of a large population
under the weak-mutation limit shows that such a population
would spend most of the time in stasis in the vicinity of saddle
points on the fitness landscape. The periods of stasis are punctu-
ated by fast transitions, in lnNe/s time (Ne, effective population
size; s, selection coefficient of a mutation), when a new beneficial
mutation is fixed in the evolving population, which accordingly
moves to a different saddle, or on much rarer occasions from a
saddle to a local peak. Phenomenologically, this mode of evolution
of a large population resembles punctuated equilibrium (PE)
whereby phenotypic changes occur in rapid bursts that are sepa-
rated by much longer intervals of stasis during which mutations
accumulate but the phenotype does not change substantially. The-
oretically, PE has been linked to self-organized criticality (SOC), a
model in which the size of “avalanches” in an evolving system is
power-law-distributed, resulting in increasing rarity of major
events. Here we show, however, that a PE-like evolutionary re-
gime is the default for a very simple model of an evolving popu-
lation that does not rely on SOC or any other special conditions.

fitness landscapes | low mutation limit | saddle points | punctuated
equilibrium | self-organized criticality

Phyletic gradualism, that is, evolution occurring via a succes-
sion of mutations with infinitesimally small fitness effects, is a

central tenet of Darwin’s theory (1). However, the validity of
gradualism has been questioned already by Darwin’s early, fer-
vent adept, T. H. Huxley (2), and subsequently many non-
gradualist ideas and models have been proposed, to account,
primarily, for macroevolution. Thus, Goldschmidt (in)famously
championed the hypothesis of “hopeful monsters,” macro-
mutations that would be deleterious in a stable environment but
might give their carriers a chance for survival after a major envi-
ronmental change (3). Arguably, the strongest motivation behind
nongradualist evolution concepts was the notorious paucity of
intermediate forms in the fossil record. It is typical in paleontology
that a species persists without any major change for millions of
years but then is abruptly replaced by a new one. The massive
body of such observations prompted Simpson, one of the founding
fathers of the modern synthesis of evolutionary biology, to develop
the concept of quantum evolution (4), according to which species,
and especially higher taxa, emerged abruptly, in “quantum leaps,”
when an evolving population rapidly moved to a new “adaptive
zone,” or, using the language of mathematical population genetics,
a new peak on the fitness landscape. Simpson proposed that the
quantum evolution mechanism involved fixation of unusual allele
combinations in a small population by genetic drift, followed by
selection driving the population to the new peak.
The idea of quantum evolution received a more systematic

development in the concept of punctuated equilibrium (PE) pro-
posed by Eldredge and Gould (5–8). The abrupt appearance of
species in the fossil record prompted Eldredge and Gould to pos-
tulate that evolving populations of any species spend most of the
time in the state of stasis, in which no major phenotypic changes

occur (9, 10). The long intervals of stasis are punctuated by short
periods of rapid evolution during which speciation occurs, and the
previous dominant species is replaced by a new one. Gould and
Eldredge emphasized that PE was not equivalent to the “hopeful
monsters” idea, in that no macromutation or saltation was proposed
to occur, but rather a major acceleration of evolution via rapid
succession of “regular”mutations that resulted in the appearance of
instantaneous speciation, on a geological scale. The occurrence of
PE is traditionally explained via the combined effect of genetic drift
during population bottlenecks and changes in the fitness landscape
that can be triggered by environmental factors (11).
PE has been explicitly linked to the physical theory of self-

organized criticality (SOC). SOC, a concept developed by Bak
(12), is an intrinsic property of dynamical systems with multiple
degrees of freedom and strong nonlinearity. Such systems experi-
ence serial “avalanches” separated in time by intervals of stability
(the avalanche metaphor comes from Bak’s depiction of SOC on
the toy example of a sand pile, on which additional sand is poured,
but generally denotes major changes in a system). A distinctive
feature of the critical dynamics under the SOC concept is self-
similar (power law) scaling of avalanche sizes (12–18). The close
analogy between SOC and PE was noticed and explored by Bak
and colleagues, the originators of the SOC concept, who developed
models directly inspired by evolving biological systems and inten-
ded to describe their behavior (12, 15, 16, 18). In particular, the
popular Bak–Sneppen model (15) explores how ecological con-
nections between organisms (physical proximity in the model
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space) drive coevolution of the entire community. Extinction of the
organisms with the lowest fitness disrupts the local environments
and results in concomitant extinction of their closest neighbors. It
has been shown that, after a short burn-in, such systems self-
organize in a critical quasi-equilibrium interrupted by avalanches
of extinction, with the power law distribution of avalanche sizes.
A distinct but related view of macroevolution is encapsulated

in the concept of major transitions in evolution developed by
Szathmáry and Maynard Smith (19–21). Under this concept,
major evolutionary transitions, such as, for instance, emergence
of multicellular organisms, involve emergence of new levels of
selection (new Darwinian individuals), in this case selection af-
fecting ensembles of multiple cells rather than individual cells.
These evolutionary transitions resemble phase transitions in
physics (22) and appear to occur rapidly, compared to the intervals
of evolution within the same level of selection. The concept of
evolutionary transitions can be generalized to apply to the emer-
gence of any complex feature including those that do not amount
to a major change in the level of biological organization (23).
We sought to assess the validity of evolutionary gradualism by

mathematically investigating the simplest conceivable model of
population evolution on a rugged fitness landscape (24). We
show that, under the basic assumptions of a large population size
and low mutation rate (weak-mutation limit), an evolving pop-
ulation spends most of the time in stasis, that is, percolating
through near-neutral mutational networks around saddle points
on the landscape. The intervals of stasis are punctuated by rapid
transitions to new saddle points after fixation of beneficial mu-
tations. Thus, contrary to the general perception of the weak-
mutation limit as a paragon of gradualism (25), we find that the
default evolutionary mode in this regime resembles PE while not
requiring SOC or any other special conditions.

Results
Agent-Based Model of Competitive Exclusion. We consider a well-
mixed population of a large constant sizeN consisting of individuals,
each with a specific genotype. To avoid dealing with the over-
whelming complexity of the space of all genotypes, we work with a
coarse-grained model that groups similar genotypes into “types.”
The genotypes within the same type are considered to be homo-
geneous and densely connected by the mutation network. The only
homogeneity assumption we need to make is that, within each type,
the variations in fitness and available transitions to other classes due
to mutations are negligible. We also assume that sizes of different
types are comparable. The set of all types is denoted by T.
The evolution of a population within the model involves re-

production and mutation. Reproduction of individuals occurs
under the Moran model widely used in population genetics, that
is, with rates proportional to their fitness, and is accompanied by
removal of random individuals to keep N constant (26). Muta-
tions are modeled by transitions in a mutational network E that
might involve one or more elementary genetic mutations. The
individual mutation rate λ is assumed to be low compared to the
reproduction rates. The evolutionary regime depends on 1) the
geometry of the graph (T, E), 2) the fitness function f, 3) the
values of parameters N and λ, and 4) the initial configuration.
Let us now describe our basic model in more detail. We as-

sume that the population size is a large number N, constant in
time. The set T of all possible types is finite or countable. It can
be viewed as a graph with adjacency matrix (Eij)i,j∈T. Two distinct
types i, j are connected by an edge if they differ by a mutation (at
the scale of the model, a mutation is assumed to occur instan-
taneously and without intermediate steps). In that case, we set
Eij = 1. Otherwise, Eij = 0.
Each type i∈T is assigned a fitness value fi > 0 which is

identified with the reproduction rate. The numbers fi are as-
sumed to be distinct and of the order of 1 (more precisely,

bounded), so essentially time is measured in reproductions. It is
convenient to work with relative sizes yiof type populations
(fractions) with respect to the total population size N. We denote by
Δ the space of sequences (yi)i∈T such that yi ≥ 0 for all i and ∑

i∈T
yi = 1.

Denoting the fraction of individuals of type i∈T present in the
population at time t∈R by xi(t) (taking values 0,N−1, 2N−1, . . .), we
define random evolution of the vector (xi(t))i∈T∈Δ as a continuous
time pure jump Δ-valued Markov process, by specifying the transition
rates. A single individual of type i∈T produces new individuals of the
same type i at the rate fi. Each reproduction is accompanied by re-
moval of one individual that is randomly and uniformly chosen from
the entire population. Thus, the total rate of reproduction of indi-
viduals of type i is Nxifi. Given that an individual of type i is repro-
ducing, the probability that the child individual will replace an
individual of type j is xj. Thus, the total rate of simultaneous change
xi → xi + N−1 and xj → xj − N−1 is Nfixixj. Let us now introduce
mutations. We will assume that mutation rates are much lower than the
reproduction rates. To model this, we introduce a small parameter
λ> 0. The rate of replacement of an individual of type i∈ I(x), where

I x( ) = i∈T :   xi>0{ },   x∈Δ,

by an individual of type j is given by λEij ∈ {0, λ}. The total rate of
such transitions occurring in a population is NλEijxi.
In what follows, we derive the PE-like evolutionary regime

from several reasonable assumptions on the geometry of the
graph, the fitness function, population size, mutation rates, and
the initial state. Our results can be viewed as similar to those in
previous work (27–29), where more mathematically sophisticated
models were considered. However, our simple model allows for a
more transparent analysis that is conducive to biological implica-
tions and we use it here to tie the PE concept to noisy dynamics
near heteroclinic networks (30, 31) and emphasize the importance
of saddle points on the landscape for the evolutionary process.

Evolution without Mutations in the Infinite Population Size Limit. In
this section, we examine the case where, in an infinite pop-
ulation, λ = 0, that is, there are no mutations, and approximate
the dynamics of our stochastic model by that of a deterministic
ordinary differential equation (ODE):

_xi = bi x( ),   i∈T, [1]

with the right-hand side given by

bi(x) = xi(fi − f (x)),
where f x( ) = ∑

  j∈T

   

 

fjxj is the average fitness for the population

state x. The system (1) is a well-known competitive exclusion
system [see, e.g., (2.15) to (2.16) of ref. 32] restricted to nonzero
components of x. Eq. (1) emerges due to the averaging effect and
can be viewed as a law of large numbers for our model.
To state the results, we need to introduce some notations and

definitions. We denote I = I(x(0)) for brevity and note that, given
the absence of mutations, our stochastic model and ODE (1) are

defined on the simplex ΔI = x∈RI
+ :  ∑

i∈I
xi = 1{ }. This simplex is

the convex hull of its vertices e(i), i∈ I, corresponding to pure
states where only one type is present:

e(i)k = { 1, i = k,
0, i≠ k.

One of these vertices plays a special role. Let ip be the type with
maximum fitness f p (within I), that is, f * = fi* = max

i∈I
  fi. We will
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see that e(ip) is an attractor for both deterministic dynamical sys-
tem defined by (1) and for our stochastic model.
Solutions of the system (1) admit a concise analytic form (33):

xi(t) = xi(0)efit∑j∈Ixj(0)efjt
, i∈ I.

Since we assumed that the fitness values for each type are
distinct, this formula implies straightforwardly that x(t) converges
to e(ip) exponentially fast, with exponential rate given by the se-
lection coefficient

s =f p − f pp, [2]

where f pp is the second-largest fitness value in I. On the one
hand, our main approximation result given below implies that
this attraction to the maximum fitness state e(ip) under typical
conditions holds also for the stochastic agent-based system; on
the other hand, it quantifies possible deviations from this
behavior.
For the approximation result, we need to define the discrepancy

D(t) = x(t) −Φtx(0), [3]

where x(t) is the Markov process without mutations and for any y,
Φty is the solution of ODE (1) with the initial condition y, at time
t. We are going to estimate the maximum discrepancy up to time
t, that is, D* t( ) = sup

u∈ 0, t[ ]
‖ D u( ) ‖, where ‖ · ‖ is the L1 norm in RI

defined by

‖ x ‖= ∑
i∈I

⃒⃒
⃒⃒xi
⃒⃒
⃒⃒. [4]

We assume that the number of types |I| is small compared to the
population size, more precisely, there is μ< 1=2 such that

|I| ≤ Nμ. [5]

Because this model does not include mutations, if a type i
becomes extinct at time t0, that is, xi(t0) = 0, then xi(t) = 0 for
all t≥ t0. We denote the event on which no type i∈ I becomes
extinct before time t by Bt = {I(x(u)) = I for all u∈ [0, t]}. Events
from a sequence (AN)N∈N are stretch-exponentially unlikely
(SE-unlikely) if for some C, γ > 0,

P AN( ) ≤ Ce-N
γ
,    N ∈N.

This is fast decay in N, just short of being truly exponentially fast.
We are now ready to state our main result for the system without
mutations and to examine the meaning of each of its parts.

Theorem 1. Assume 5. Then:

1) There are constants c, β> 0 such that events
BclnN ∩ D* clnNð Þ>N-β� �

are SE-unlikely.
2) Let β be defined in Part 1 of the theorem. Then, for any δ< β, there

is a constant C> 0 such that, conditioned on the nonextinction of
type ip, and up to an SE-unlikely event, jx ClnNð Þ-e i*ð Þj≤N-δ.

3) There are constants C’, α> 0 such that, if
��xð0Þ � eði

pÞ��≤N�δ, then

P x C’lnN( ) = e i*( ){ }>1-N-α.

4) There is a number p> 0 that does not depend on N, such that
the probability of nonextinction of type ip is bounded below by p
for all initial conditions xð0Þ satisfying xipð0Þ> 0.

5) For any δ∈ ð0,1Þ, if xipð0Þ>N�δ, then, extinction of type ip is
SE-unlikely.

Part 1 of the theorem shows that, up to time clnN, if no type
gets extinct, the stochastic process x(t) follows the deterministic
trajectory Φtx(0) very closely, deviating from it at most by N−β.
This happens with a probability very close to 1, exceptions being
SE-unlikely.
Part 2 shows that, if type ip does not die out, then, with a high

probability, by time ClnN, it will dominate the population
whereas all other types will be almost extinct. The proof of the
Theorem shows that C = 1=s, where s is the exponential rate of
attraction to e(ip) given by the the selection coefficient and de-
fined by (2).
Part 3 means that, after realization of the scenario described in

Part 2 and an additional logarithmic time, ip will be the only
surviving type.
Part 1 is conditioned on the nonextinction of any type, whereas

Part 2 is conditioned on the nonextinction of type ip. If any type i
dies out, Part 1 still applies to the continuation of the process on
the simplex ΔI\{i} of a lower dimension. By contrast, for Part 2 to
be meaningful, we need to provide a bound on the nonextinction
of ip. This is done in Parts 4 and 5.
Part 4 states that there is a positive probability (independent

of the population size) that the progeny of even a single indi-
vidual of type ip will drive out all other types.
Part 5 states that, once the fraction of the individuals of type ip

reaches a (small) threshold N−δ, then, it is almost certain that ip
will dominate the population.
To summarize these results, the chance of extinction for the

fittest type is nonnegligible only when there are very few indi-
viduals of this type, that is, when the initial state involves a recent
mutation that produced a single individual of this type. Once the
number of individuals reaches a certain modest threshold, the
typical, effectively deterministic, behavior will follow the trajec-
tory of Eq. 1 closely, eventually reaching the pure state of fixa-
tion where only individuals of type i* are present. The proof of
Theorem 1 is given in the end of this section. Now, we turn to the
analysis of the dynamics generated by ODE (1).

Heteroclinic Network. The points e(k) are hyperbolic critical points
(saddles) of various indices (the index of a saddle is the number
of negative eigenvalues of the linearization of the vector field at
that saddle). We can find these eigenvalues and associated ei-
genvectors explicitly. The linearization (∂jbi(e(k))) of b at e(k) is

∂kbk e k( )( ) = -fk,  

∂ibk e k( )( ) = -fi, i≠ k,
∂ibi e k( )( ) = fi-fk, i≠ k,
∂jbi e k( )( ) = 0, j≠ i, i≠ k.

Therefore, for each i∈ I such that i≠ k, there is an eigenvalue
fi − fk of (∂jbi(e(k))) with an eigenvector e(i) − e(k) pointing along
the simplex edge connecting e(k) and e(i). These eigenvectors span
the simplex ΔI, so the additional eigenvalue −fk with eigenvector
e(k) that is transversal to ΔI can be ignored. To demonstrate ex-
plicitly that the vertex e(k) is a saddle, we note that the eigendir-
ections given by e(i) − e(k) are stable or unstable, depending on
the sign of the associated eigenvalue, that is, on whether fi < fk or
fi > fk. Moreover, there is a heteroclinic connection (a trajectory
connecting two distinct saddle points) between e(i) and e(k). This
trajectory coincides with the simplex edge between e(i) and e(k)
and corresponds to the presence of exactly two types i, k. The
dynamics along this trajectory is described by the logistic equa-
tion

_xi = (fi − fk)xi(1 − xi)
(see Fig. 1 for the phase portrait).
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The key feature of this dynamics is a heteroclinic network
formed by trajectories connecting saddle points to one an-
other. The vertex e(ip) is a sink (a saddle with the maximal
index) if considered in ΔI, but it can also be viewed as a
saddle in simplices of higher dimensions based on coordi-
nates (types) that include those with higher fitness than f p.
The types with higher fitness will appear if we include
mutations into the model.

Evolutionary Process with Mutations. We now consider the full
process with positive but small mutation rate λ and recall that, for
each type i∈ I(x), the rate of mutation to type j is given by λEij.
We consider here only relatively late stages of evolution that are
preceded by extensive evolutionary optimization so that the
overwhelming majority of the mutations are either deleterious or
at best neutral. More precisely, we assume that there is a con-
stant M such that for each i∈ I(x) the total number of available
fitness-increasing (beneficial) mutations, that is, vertices j∈T

such that Eij = 1 and fj > f p, is bounded by M. Our first as-
sumption on the magnitude of λ is that

r N( ) = λNlnN=s ≪ 1,

where s is the selection coefficient defined in 2.
According to Theorem 1 and the accompanying discussion, if

the evolutionary process is conditioned on the survival of type ip,
then, typically, it takes ClnN time for the process xip(t) to reach 1
(fixation), where C = 1=s. The probability of a beneficial muta-
tion during this time interval is bounded by

1-e-MNλClnN = 1-e-Mr N( ) ≤ Mr N( ). [6]

Thus, the population is unlikely to produce a new beneficial
mutation before it reaches the state of fixation where type ip is
the only surviving one. Once a new beneficial mutation occurs
and, accordingly a new best-fit type emerges, it either gets extinct

quickly or gets fixed in the population, in time of the order
lnN=s. The trajectory, driven by differential reproduction of ran-
dom mutations, closely follows the heteroclinic connection, that
is, the line connecting two vertices of the simplex Δ. The entire
process can be described as follows: There is a moment when ip is
the only type present, after which it takes time of the order
(kλN)−1 to produce a new beneficial mutation, where k is the
number of beneficial mutations that are available from ip. Then,
it takes time of the order lnN=s for this fittest type to take over
the entire population, after which the process repeats. At least
for mutations with a relatively large s, on the order of 0.01 to 0.1,
this time is much shorter than the time the population spends in
the vicinity of a saddle point, “waiting” for the beneficial
mutation to occur.
Now consider deleterious mutations. There are N individuals,

and each produces a suboptimal (lower fitness) type with the rate
λL, where L is the number of available deleterious mutations.
Using the Poisson distribution, we obtain that, by the time t, it is
highly unlikely to produce more than tNλL new suboptimal in-
dividuals. If t = lnN=s, then, this number is λLN lnN=s, so re-
quiring

λLlnN=s ≪ 1, [7]

we obtain λLNlnN=s ≪ N, that is, over the travel time between
saddles the emerging individuals with deleterious mutations con-
stitute an asymptotically negligible fraction of the entire popula-
tion. Thus, the trajectory x(t) will be altered only by a term
converging to 0 as N→∞.
The resulting picture is as follows: The evolving population

spends most of the time in a “dynamic stasis” near saddle points.
During this stage, a dynamic equilibrium exists under purifying
selection: Deleterious mutations constantly produce individuals
with fitness lower than the current maximum, and these indi-
viduals or their progeny die out. On time scale of (kλN)−1, a new
beneficial mutation will occur, and then either the new type will
go extinct fast (in which case, the population has to wait for
another beneficial mutation) or will get fixed such that, in time
lnN=s, the new type (followed by a small, dynamic cloud of
suboptimal types) will constitute the bulk of the population. The
transition from one most common type to the next occurs along
the heteroclinic trajectory coinciding with the edge of the
infinite-dimensional simplex connecting the two vertices corre-
sponding to monotypic populations. This iterative process of fast
transitions between long stasis periods spent near saddle points is
typical of noisy heteroclinic networks, as demonstrated in early,
semiheuristic work (34, 35, 36) and later rigorously (30, 31).
However, the two types of noisy contributions, from reproduc-
tion and mutation, play distinct roles here, so although the
general punctuated character of the process that we describe
here is the same as in the previous studies, their results do not
apply to our case straightforwardly.
Because the process is random, deviations from this general

description eventually will occur. SE-unlikely, extremely rare
events can be ignored. However, the right-hand side of Eq. 6,
albeit small, does not decay stretch-exponentially, and so, with a
nonnegligible frequency, a new beneficial mutation would ap-
pear before the current fittest type takes over the entire pop-
ulation. The result will be clonal interference such that the
current fittest type starts being replaced with the new one before
reaching fixation.

Taking the Structure of the Landscape into Account. In general, the
structure of the landscape can be complicated. The available
information on the structure of complex landscapes is limited,
and there are few mathematical results. Several rigorous results
based on random matrix theory have been obtained for centered
Gaussian fields on Euclidean spheres of growing dimension with

Fig. 1. The phase portrait of the dynamical system (1). Four types, 1, 2, 3,
and 4, are shown such that f1< f2<f3 <f4. The dynamics is defined on the
simplex Δ{1,2,3,4} with vertices e(1), e(2), e(3),e(4), corresponding to pure states
where the population consists entirely of individuals of one type. These
vertices are critical points of the vector field b. The edges of the simplex are
heteroclinic orbits connecting these critical points to each other. Several
other orbits are also plotted as arrows. The vertex e(4) attracts every initial
condition with nonzero fraction of individuals of the fittest type i* = 4.
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rotationally invariant covariances of polynomial type (37, 38).
For those models, the average numbers of saddles of different
indices at various levels of the landscape have been shown to
grow exponentially with respect to the dimension of the model,
and a variational characterization of the exponential rates has
been obtained. Although formally limited to concrete models,
these results indicate that there are many local maxima and
many more saddle points in such complex landscapes. In the
context of the evolutionary process, this indicates that the evo-
lutionary path through a sequence of temporarily most fit types is
likely to end up not in a global but in a local maximum. Consider
now what transpires near a local fitness peak. Suppose the cur-
rent most fit genotype differs in k0 sites from the locally optimal
genotype, and sequential beneficial mutations in these sites in an
arbitrary order produce a succession of increasing fitness values.
Ignoring shorter times of order ln N of transitioning between
saddles and only taking into account the leading contributions
(that is, the sum of the waiting times for the beneficial muta-
tions), the time it takes to reach the peak is then of the order of
k0λN( )-1 + k0-1( )λN( )-1 + . . . + 2λN( )-1 + λN( )-1 ≈ λN( )-1lnk0 (recall
that our time units are comparable with reproduction rates).
Once the peak is reached, it is extremely unlikely that the pop-
ulation moves anywhere else on the landscape. More specifically,
the waiting time for the appearance of a new most fit genotype is
exponentially large in N as follows from the metastability theory
at the level of large deviations estimates.

Proof of Theorem 1: To prove Part 1, our first goal is to represent
the discrepancy D(t) defined in Eq. 3 in a convenient way. We
can write the solution Φtx(0) of ODE (1) with initial value x(0) as

Φtx 0( )( )i-xi 0( ) = ∫ t
0bi Φ

sx 0( )( )ds,     i∈ I. [8]

It is useful to represent x(t) in a similar form. To that end, we
recall that every Markov process solves the martingale problem
associated with its own generator. Therefore, introducing the
projection function πi(x) = xi, we obtain that there is a martin-
gale Mi such that

xi t( )-xi 0( ) = πi x t( )( )-πi x 0( )( ) = ∫ t
0N πi x s( )( )ds +Mi t( ),     i∈ I,

[9]

where the generator N h is defined by

N h x( ) = lim
t↓0

E h x t( )( )|x 0( ) = x[ ]-h x( )
t

.

For our pure jump process the generator is determined by
transition rates:

N h x( ) = N ∑
i, j∈T
i≠j

fi   xi   xj h σijx( ) − h x( )( ),

where σijx denotes the state obtained from state x by adding an
individual of type i displacing an individual of type j:

(σijx)k =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk, k≠ i, j,

xi + 1
N
, k = i,

xj − 1
N
, k = j.

We can compute directly

N πi x( ) = N∑
j : j≠i

fi   xi   xj
1
N

+N∑
j : j≠i

fj   xj   xi -
1
N

( )
= ∑

j

fi-fj( )xixj = bi x( ).

Plugging this into (9), we obtain

xi t( )-xi 0( ) = ∫ t
0bi x s( )( )ds +Mi t( ),   i∈ I. [10]

Subtracting (8) from (10), we obtain

Di t( ) = xi t( )- Φtx t( )( )i = ∫ t
0 bi x s( )( )-bi Φtx s( )( )( )ds +Mi t( ),   i∈ I.

[11]

We will view M(t) = (Mi(t))i∈I as a vector-valued martingale. To
estimate the integral term, we recall the definition (4) and prove
the following statement:

Lemma 1. Let F = max
i∈T

  fi. Then, for all I ⊂T,

‖ b x( )-b y( ) ‖ ≤ 3F ‖ x-y ‖ ,   x, y∈ΔI .
Proof: We have

‖ b(x) − b(y) ‖= ∑
i

⃒⃒
⃒⃒bi(x) − bi(y)

⃒⃒
⃒⃒

= ∑
i

⃒⃒
⃒⃒(fixi − xi∑

j

xjfj) − (fiyi + yi∑
j

yjfj)
⃒⃒
⃒⃒

≤ J1(x, y) + J2(x, y),
where

J1(x, y) =
⃒⃒
⃒⃒∑

i

fi(xi − yi)
⃒⃒
⃒⃒ ≤ F ‖ x − y ‖

and

J2(x, y) ≤ ∑
i

⃒⃒
⃒⃒xi∑

j

xjfj − yi∑
j

yjfj

⃒⃒
⃒⃒

≤ ∑
i

⃒⃒
⃒⃒xi(∑

j

xjfj −∑
j

yjfj) + (xi − yi)∑
j

yjfj

⃒⃒
⃒⃒

≤ ∑
i

xiJ1(x, y) +∑
i

⃒⃒
⃒⃒xi − yi

⃒⃒
⃒⃒F ≤ J1(x, y) + F ‖ x − y‖1

≤ 2F ‖ x − y ‖ .

Combining three displays above, we complete the proof.
Taking the absolute value in Eq. 11, then taking the sum over

i∈ I and applying Lemma 1, we obtain

‖ D t( ) ‖≤ 3F∫ t
0 ‖ D s( ) ‖ ds +Mp t( ),

where M* t( ) = sup
s∈ 0, t[ ]

‖ M s( ) ‖.
Using the Gronwall inequality, we obtain

‖ D(t) ‖≤ Mp(t)e3Ft. [12]

To estimate Mp(t), we first use 5 to write for any β> 0:
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P M* t( ) ≥ N-β{ } ≤ ∑
i

P Mi* t( ) ≥ N-β-μ{ }
≤ Nμmax

i∈I
P Mi* t( ) ≥ N-β-μ{ }, [13]

where Mi* t( ) = sup
s∈ 0, t[ ]

|Mi s( )|. Next, we will apply an exponential

martingale inequality from Appendix B6 of ref. 39 in the form
given by van de Geer (lemma 2.1 of ref. 40):

Lemma 2. If jumps of a locally square integrable cadlag martingale
(M(t))t≥0 are uniformly bounded by a constant K > 0, then

P ∃t :
⃒⃒
M t( )

⃒⃒
≥ A, 〈M〉t ≤ B2{ } ≤ 2exp -

A2

2 AK + B2( )[ ].
Each Mi is a piecewise linear martingale with jumps of size 1=N
[its jumps coincide with those of xi(t)]. Since, in addition, the
total jump rate is bounded by NF, we obtain that the predictable
quadratic variation of Mi satisfies 〈Mi〉t≤ tNF=N2 = tF=N. Thus,
we can apply Lemma 2 with B2 = tF=N, K = 1=N, and
A = N−β−μ:

P Mi* t( ) ≥ N-β-μ{ } ≤ 2exp -
N-2 β+μ( )

2 N- β+μ( )-1 + tFN-1( )[ ], · i∈ I.

Combining this with (13), choosing β so that β + μ< 1=2 and
using t = clnN, we can find constants C, γ > 0 such that

P M* t( ) ≥ N-β{ } ≤ 2Nμexp -
N-2 β+μ( )

2 N- β+μ( )-1 + tFN-1( )[ ] ≤ Ce-N
γ
.

Using this in (12), we complete the proof of Part 1 of the theo-
rem. To prove Part 2, we notice that according to Part 1, up to an
SE-unlikely event, the stochastic process follows the determinis-
tic trajectory N−β closely up to time τe∧clnN, where τe is the first
moment when one of the types goes extinct. We can restart the
process at τe∧clnN treating x τe∧clnN( ) as a new starting point
and apply the same estimate to the restarted process (in case
τe < clnN, with fewer nonzero coordinates involved). Patching
several ODE trajectories together in this way and noting that,
conditioned on nonextinction of type ip, the total time it takes to
travel from any point x∈ΔI with xip ≥N−1 to the neighborhood of
e(ip) of size N−δ is bounded by ClnN for some C, we obtain Part 2.
The remaining parts follow from an auxiliary statement. To

state it, we define a jump Markov process y(t) with values in
{0,N−1, 2N−1 . . . , 1} such that y(0) = x(0) and y(t) makes a jump
from x to x + N−1 with rate Nf px(1 − x) and to x − N−1 with rate
Nf ppx(1 − x), where f pp < f p is the second largest value among fi,   i∈ I.

Lemma 3. 1. The process y(t) is stochastically dominated by xip (t). 2.
The process y(t) considered only at times of jumps is an asymmetric
random walk on {0,N−1, 2N−1 . . . , 1} with absorption at 0 and N
and probabilities of a step to the right and left being p and 1 − p
where p∈ (1=2,1) solves

p
1 − p

= f p

f pp
.

Proof: The coordinate xip jumps to the right with rate
Nfixip (1 − xip ) and to the left with rate

Nxip∑
j≠ip

fjxj ≤ Nxip f pp∑
j≠ip

  xj = Nf ppxip 1 − xip( ).

So, the jump rates to the left for both processes coincide and the
jump rates to the right for process y(t) do not exceed those for

process xip (t), and Part 1 of the lemma follows. To prove Part 2, it
suffices to note that the ratio of the jump right rate to the jump
left rate for process y(t) is equal to f p=f pp everywhere (except the
absorbing points 0 and 1).
To prove Part 3, we can use this lemma and the fact that if

m≥N=2, then

N
m
N

m − N
N

≥ 1
2
(m − N),

which implies that (except for an exponentially improbable event
that xip hits level N=2 before 1), the time it takes for all non-ip
types to die out is stochastically dominated by the extinction time
for the linear birth-and-death process with birth rate λk = Ak and
death rate μk = Bk where A = f pp=2<B = f p=2. The probabilty
pk(t) of extinction by time t starting with k individuals was prob-
ably first computed in ref. 41. There is a misprint in equation 78
in ref. 41 but one can use equation 68 of that paper (for gener-
ating functions) to obtain

pk(t) = (Be(B−A)t − B
Be(B−A)t − A

)k = (1 − B − A
Be(B−A)t − A

)k.
Plugging t = C’lnN and k = N1−δ into this formula we obtain

1-pN1-δ C’lnN( ) = 1- 1-
B-A

BNC’ B-A( )-A
( )N1-δ

∼ B-A( )N1-δ

BNC’ B-A( )-A
∼ B-A

B
N1-δ-C’ B-A( ),

and since α = C’(B − A) − 1 + δ> 0 if we choose C’ large enough,
the desired result follows.
The last two parts of Theorem 1 follow from Lemma 3, and

similar well-known statements for asymmetric random walks.

Discussion
Despite some disagreements regarding its extent, fossil record
analysis suggests that PE is important in organismal evolution (7,
8, 10), which is, therefore, in general, not gradualist. Here we
examine mathematically a simple population-genetic model and
show that the default regime of population evolution under ba-
sic, realistic assumptions, namely, large effective population size,
low mutation rate, and rarity of beneficial mutations phenome-
nologically resembles PE. It has to be stressed that this model is
entirely within the classical framework of population genetics
which also includes estimates of mutation fixation times and the
waiting times between fixation events (42, 43). We reformulate it
here, in order to take advantage of the mathematical toolkit of
heteroclinic network analysis that provides for a rigorous
treatment.
We show that, in the weak-mutation limit, large populations

spend most of their time in “dynamic stasis,” that is, exercising
short-range random walks within their local neutral networks in
the vicinity of saddle points on the fitness landscape, without
shifting to a new distinct state. The stasis periods are punctuated
by rapid transitions between saddle points upon emergence of
new beneficial mutations; these transitions appear effectively
instantaneous compared to the duration of stasis, even when they
evolve through more than one elementary mutation event
(Fig. 2). Eventually, the population might reach a local fitness
peak where no beneficial mutations are available. This would
lead to indefinite stasis as long as the fitness landscape does not
change and the population size stays large (drift to a different
peak is exponentially rare in N, that is, impractical for large N).
Two conditions determine the behavior described by this

model: 1) low overall mutation rate (dominated by deleterious
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mutations), [Eq. (7)], λL ≪ s=lnN and 2) an even lower rate of
beneficial mutations, which results in the difference in scale
between the waiting time (λkN)−1 and the saddle-to-saddle
transition time lnN=s, that is, λkN ≪ s=lnN. Comparison of the
expressions for these conditions suggests that, for the PE-like
regime to be pronounced, in the vicinity of all saddle points
where the population is at equilibrium, deleterious mutations
should outnumber the beneficial mutations by at least a factor of
N. This is a large but not unrealistic difference in the case of
“highly adapted” organisms, that is, in situations that are most
common in the extant biosphere, where the pool of straightfor-
ward optimizations that presumably were available at the earliest
stages of the evolution of life had been exhausted long ago. For
example, with population and genomic parameters characteristic
of animals, namely, N ∼105 and ∼107 amino acid-encoding sites
in the genome, the local mutational neighborhood in the se-
quence space consists of 19 × 107 mutations. Assuming that
about half of these mutations are deleterious and noting that the
number of beneficial mutations should be less by a factor of 105,
there must be 1 < k < 1,000 beneficial mutations available, ap-
parently, a realistic value. It should be emphasized that, once a
beneficial mutation occurs it can open the door for additional
ones due to pervasive epistasis, so that a transition might involve
multiple adaptive mutational events.
The condition on the overall mutation rate (λL ≪ s=ln N) is

more difficult to assert because both λ and L depend on the
clustering of the whole sequence space into a coarse-grained
network of distinct types. Note, however, that, as the first ap-
proximation, λ is bounded by the sequence-level mutation rate μ
(only some of the sequence-level mutations lead to transitions
between distinct types) and L is bounded by the genome size G
(the number of available sequence-level single-position muta-
tions is on the order of the genome size, although only some of
these mutations have detectable deleterious effect). Thus,
λL< μG, where μG is the expected number of sequence-level
mutations per genome per generation. It has been shown that
the values of μG tend to stay of the order of 1=N under “normal”
conditions (44, 45); therefore,

λL<μG ∼ 1=N ≪ s=lnN.

The condition for a mutation to be subject to selection in an
asexual population is Ns >>1 (43). According to the above in-
equality, the weak-mutation regime applies when Ns ≫ lnN. For
realistic population sizes, N < 109, lnN < 20, so this regime holds
for a broad range of conditions.
Thus, our model suggests that the PE-like regime is common

and is likely to be the default in the evolution of natural pop-
ulations. The probable exceptions include stress-induced muta-
genesis (46), whereby the mutation rate can rise by orders of
magnitude, locally blooming microbial populations that might
violate the kN ≪ L condition, and abrupt changes in the fitness
landscape that might temporarily increase the number of im-
mediately beneficial mutations k. All of these situations, how-
ever, are likely to be transient.
Theoretically, PE has been linked to SOC as the underlying

mechanism (12, 15). However, we show here that a PE-like re-
gime is readily observed in extremely simple models of pop-
ulation evolution that do not involve any criticality. The major
conclusion from this analysis is that PE-like evolution rather than
gradualism is the fundamental character of sufficiently large
populations in the weak-mutation limit which is, arguably, the
most common evolutionary regime across the entire diversity of
life. The parameter values that lead to this regime appear to hold
for evolving populations of all organisms, including viruses, un-
der “normal” conditions. Situations can emerge in the course of
evolution when the PE regime breaks through disruption of the
stasis phase. This could be the case in very small populations that
rapidly evolve via drift or in cases of a dramatically increased
mutation rate, such as stress-induced mutagenesis, and especially
when these two conditions combine (46–48). In many cases,
disruption of stasis will lead to extinction but, on occasion, a
population could move to a different part of the landscape,
potentially, the basin of attraction of a higher peak. The evolu-
tion of cancers, at least at advanced stages, does not appear to
include stasis either, due to the high rate of nearly neutral and
deleterious mutations and low effective population size (46).
Furthermore, the PE-like regime is characteristic of “normal”
evolution of well-adapted populations in which the fraction of
beneficial mutations is small. If many, perhaps the majority, of
the mutations are beneficial, there will be no stasis but rather a
succession of rapid transitions in a fast adaptive evolution re-
gime. Conceivably, this was the mode of evolution of primordial
replicators at precellular stages of evolution.
One of the most fundamental—and most difficult—problems

in biology is the origin of major biological innovations (more or
less synonymous to macroevolution). In modern evolutionary
biology, Darwin’s central idea of survival of the fittest trans-
formed into the concept of fitness landscape with numerous
peaks, where each stable form occupies one of the peaks (24, 49).
Then, the fundamental problem arises: If a population has
reached a local peak further adaptive evolution is possible only
via a stage of temporary decrease of fitness. How can this hap-
pen? A common answer is based on Wright’s concept of random
genetic drift: The smaller the effective population size Ne (or
simply N, for a well-mixed population) the greater the proba-
bility of random drift through (not excessively deep) valleys in
the fitness landscape (49–51). This notion implies that evolu-
tionary transitions occur through narrow population bottlenecks.
As formalized in our previous work, the evolutionary “innovation
potential” is inversely proportional to Ne (22). There are, how-
ever, multiple indications that drift is unlikely to be the only
mode of evolutionary innovation and that novelty often arises in
large populations thanks to their high mutational diversity
(52–55). Nevertheless, it remains unclear, within the tenets of
classical population genetics, how a large population can cross a
valley on the landscape. One obvious way to overcome this

Fig. 2. Evolution under PE on a fitness landscape dominated by saddles:
stasis around saddle points punctuated by fast adaptive transitions. Planar
shapes depict distinct classes of genotypes. The color scale shows a range of
fitness values. Gray “ramp” strips show available transitions between the
genotype classes (k transitions leading to classes with higher fitness and L
transitions leading to classes with lower fitness, k ≪ L). The two blue circles
indicate the original and the current states of the population; blue arrows
show succession of genotypes within the same class, occurring within the
effectively neutral network during the “dynamic stasis” phase; red arrows
indicate fast adaptive transitions from a lower-fitness genotype to one with
a higher fitness.
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conundrum is to assume that the landscape changes in time due
to environmental changes, so that peaks could become saddle
points, and vice versa, and a population might find itself in the
basin of attraction of a new fitness peak (56, 57). The analysis
presented here suggests a greater innovation potential of large
populations than usually assumed, stemming from the fact that a
typical landscape in a multidimensional space contains many
more saddle points than peaks. On the one hand, this intuitively
obvious claim follows from the observation that, for any two
peaks, the path connecting the peaks and maximizing the mini-
mum height must pass through a saddle point. On the other
hand, it is justified by precise computations of exponential (with
respect to the model dimension) growth rates of the expected
numbers of saddle points of various indices (including peaks) for
random Gaussian landscapes under certain restrictions on co-
variance (37, 38). Thus, typical fitness landscapes are likely to
allow numerous transitions and extensive, innovative evolution
without the need for valley crossing, as also argued previously
from the analysis of “holey” fitness landscapes (24). In biological
terms, it seems to be impossible to maximize fitness in all nu-
merous directions (the number of these being at least on the
order of the genome size), and therefore the probability of
beneficial mutations is (almost) never zero, however small it
might be (in general, this pertains not only to single point mu-
tations but also to beneficial epistatic combinations of mutations
as well as large-scale genomic changes, such as gene gain, loss,
and duplication). In other words, the landscape is dominated by
saddle points that are far more common than peaks, so that there
is almost always an upward path which an evolving population

will follow provided it is large enough to afford a long wait in
saddles without risking extinction due to fluctuations.
Results similar to ours have been reported in the mathemat-

ical biology literature (27–29). Specifically, it has been proven
that a trait substitution sequence process (sequential transition
from one dominant trait to another) occurs in the limit of large
population size and small beneficial mutation rate. Here we
employ a very simple model to demonstrate the fundamental
character of the concept of PE, to tie it to the noisy dynamics
near heteroclinic networks (30, 31) and to stress the key role of
saddle points, in contrast to the widespread perception of peaks
as the central structural elements of fitness landscapes.
To conclude, the results presented here show that PE-like

evolution is not only characteristic of speciation or evolution-
ary transitions but rather is the default mode of evolution under
weak-mutation limit which is the most common evolutionary
regime (25). In our previous work, we have identified conditions
under which saltational evolution becomes feasible, under the
strong-mutation limit (48). Here we show that, even for evolu-
tion in the weak-mutation limit that is generally perceived as
gradual (25), PE is the default regime. Even during periods of
stasis in phenotypic evolution, the underlying microevolutionary
process appears to be punctuated.
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