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Carbon dioxide (CO2), a primary product of oxidative metabolism, can be
sensed by eukaryotic cells eliciting unique responses via specific signalling
pathways. Severe lung diseases such as chronic obstructive pulmonary disease
are associated with hypoventilation that can lead to the elevation of CO2 levels
in lung tissues and the bloodstream (hypercapnia). However, the pathophy-
siological effects of hypercapnia on the lungs and specific lung cells are
incompletely understood. We have recently reported using combined
unbiased molecular approaches with studies in mice and cell culture systems
on the mechanisms by which hypercapnia alters airway smooth muscle con-
tractility. In this review, we provide a pathophysiological and mechanistic
perspective on the effects of hypercapnia on the lung airways and discuss
the recent understanding of high CO2 modulation of the airway contractility.
1. Introduction
Cells and tissues sense and respond to changes in the concentration of gaseous
molecules through specific signalling pathways. Oxygen- and nitric oxide-acti-
vated cellular signalling pathways have been extensively studied [1–3], but
much less is known about the mechanisms by which non-excitable cells sense
and respond to changes in carbon dioxide (CO2) concentrations [3–5]. CO2 is
a primary product of oxidative metabolism and its physiological levels in
mammals are significantly higher than atmospheric levels (approx. 5% versus
approx. 0.04%, https://scripps.ucsd.edu/programs/keelingcurve/) [4,6],
suggesting that CO2 is inextricably linked to physiological conditions. In
humans, the elevation of CO2 levels in tissues and the bloodstream (hypercap-
nia) is a consequence of inadequate alveolar gas exchange in patients with lung
diseases such as the acute respiratory distress syndrome (ARDS) [7–9], chronic
obstructive pulmonary disease (COPD) [10–12] and others [13–15]. In clinical
situations, hypercapnia has been initially proposed to be benign or even protec-
tive in the lung since hypercapnia and its associated acidosis have been shown
to attenuate systemic cytokine response in mechanically ventilated patients
with acute lung injury and ARDS [7,8,16]. However, it is becoming increasingly
evident that elevated CO2 conditions have deleterious pathophysiological
effects on various organs, including the lung [9,17–19], skeletal muscles
[20–22] as well as innate immunity system [18,23–27]. In the lung, recent studies
suggest that high concentrations of CO2 activate specific gene expression
[19,28,29] and signal transduction pathways with adverse consequences on
alveolar epithelial function (alveolar fluid clearance) [17,30–35] and epithelial
cell repair [36–39].

Hypercapnia is also reported to modulate the tone of lung airways which is
a dynamic equilibrium between various excitatory and inhibitory mechanisms.
The effects of hypercapnia on the airways and airway smooth muscle are con-
troversial, as there are reports attesting to it causing increased airway
contractility [19,40–49] or airway relaxation [50–61]. Here, we review recent
advances in our understanding of how elevated CO2 conditions modulate the
airway tone, focusing on the effects of hypercapnia and respiratory acidosis.
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Figure 1. Normoxic hypercapnia increases airway smooth muscle contractility. (a) Acetylcholine (ACh)-induced cell contraction in mouse airway smooth muscle cells
exposed to different conditions. Left, representative images from 7-day exposure conditions (scale bar, 50 µm). Right, time-course quantification of ACh-induced cell
contraction. (b,c) C57BL/6 J wild-type mice were exposed to 21% O2 and 10% CO2 (HC) or maintained in room air (NC) for up to 21 days. Representative images
(top; scale bar, 100 µm) and quantification (bottom) of ACh-induced airway contraction in precision-cut lung slices (b). Total resistance of the respiratory system (Rrs)
at baseline on a FlexiVent instrument (c). (d ) Comparison of respiratory resistance measured by impulse oscillometry between normocapnic and hypercapnic patients
with chronic stable COPD. Values of R5, R20 and R5–R20 indicate total, proximal and peripheral respiratory resistance, respectively. (e) Changes of respiratory
resistance in hypercapnic patients. All data are expressed as means ± s.e.m. (a–c) or median with interquartile range (d,e). *p < 0.05, ***p < 0.001. Reproduced
from [19]. Copyright © 2018 American Association for the Advancement of Science.
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2. Hypercapnia-induced bronchoconstriction
Evidence suggesting that changes in the level of CO2 in the
blood influence the airway tone was first reported by Eintho-
ven in 1892 [40]. He described that inhalation of high
concentrations of carbonic acid (CO2-rich mixtures) caused
bronchoconstriction in dogs, which was confirmed in various
models of normoxic hypercapnia-exposed dogs [41–45] and
cats [46,47]. Airway tone is regulated by interaction of the
sympathetic and parasympathetic nerves [46,62] and the
stimulation of vagal efferent nerves can increase the tone,
resulting in bronchoconstriction [46,62–64]. As the hypercap-
nia-induced bronchoconstriction was abolished by blocking
the vagus nerve, it was understood to be dependent on the
integrity of vagal conduction [40–44,46,47]. In healthy
humans, there have been few reports describing that the inha-
lation of high CO2 concentrations decreases specific airway or
pulmonary conductance which is the mathematical inverse of
airway resistance [48,49]. The increases in airway resistance
during high CO2 exposure were interpreted as extrathoracic
airway narrowing [48] such as larynx narrowing [49], because
the hypercapnic effect was not blocked by atropine or β1/β2
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Figure 2 . Schematic of calcium–calpain signalling in airway smooth muscle cell contraction during hypercapnia. Hypercapnia promotes airway smooth muscle
contractility through an increase in intracellular calcium (Ca2+) and consequent activation of calpain which cleaves caspase-7. Cleaved caspase-7, in turn, cleaves
the transcription factor myocyte enhancer factor 2D (MEF2D) that reduces miR-133a expression, thereby increasing Ras homologue family member A (RhoA) abun-
dance and MLC phosphorylation. Reproduced from [19]. Copyright © 2018 American Association for the Advancement of Science.
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adrenergic receptor agonists. However, the direct studies of
laryngeal resistance during high CO2 exposure indicated no
change in anaesthetized animals [65] and healthy human sub-
jects [66]. Furthermore, several reports of bronchoconstriction
in the hypercapnia-exposed animals [42,44,46] showed that
the blockage of the vagus nerve did not entirely abolish the
bronchoconstrictor response to the high CO2 exposure. These
reports suggest that other mechanisms can contribute to the
airway response to hypercapnia. Recently, we have reported
that CO2 operates as a signalling molecule that increases con-
traction of mouse and human airway smooth muscle cells [19].
We found that high concentrations of CO2, independently
of hypoxia and extracellular pH, increased acetylcholine
(ACh)-induced cell contraction, which is both time- and
dose-dependent in cultured cells (figure 1a). In a murine
model, the exposure to normoxic hypercapnia, particularly
chronic hypercapnia, increased ACh-induced airway contrac-
tion in precision lung cut slices (figure 1b) as well as airway
resistance (figure 1c). Furthermore, we found that, in a small
cohort of patients with chronic COPD, patients with hypercap-
nia had higher airway resistance (figure 1d), which improved
after correction of hypercapnia (figure 1e). Our study also pro-
vided novel insights into the molecular mechanisms by which
hypercapnia promotes airway smooth muscle cell contractility
via calcium–calpain signalling. The signalling was mediated
by caspase-7, which by cleaving the transcription factor myo-
cyte-specific enhancer factor 2D (MEF2D), leads to
downregulation of the microRNA-133a (miR-133a) and conse-
quent upregulation of Ras homologue family member (Rho) A
and myosin light-chain (MLC) phosphorylation (figure 2). Our
data suggest that the elevation of CO2 levels activates specific
signal transduction pathways in airway smooth muscle cells,
which results in deleterious changes in the airway tone, lead-
ing to bronchoconstriction. Taken together, these reports
suggest that hypercapnia can contribute to airway constriction
by activating vagus nerve and high CO2-responsive signal
transduction pathways. In lung disease conditions, hypercap-
nia may worsen airway constriction and limit ventilation to
poorly functioning lung units setting up a feedback loop that
could culminate in respiratory failure.
3. Respiratory acidosis-related bronchodilation
There have been studies reporting that hypercapnia shows
airway relaxation [50–61]. We have reported that airway
smooth muscle relaxation occurs during acute hypercapnia-
associated acidosis, but it was transient and modest [19].
We reason that hypercapnia may acutely contribute to
bronchodilatation when the tone of airways is previously
increased by various constrictor stimuli such as drugs [52–
54], hypoventilation [55,67–69] or when the reduction of
ventilation in one lung following the occlusion of its pulmon-
ary artery leads to bronchoconstriction in response to local
airway ischaemia [70] and hypocapnia [50–52,71]. The inhala-
tion of high CO2 concentrations reduces constriction of airways
as well as the tension developed by isolated bronchial rings
caused by drugs such as 5-hydroxytryptamine [52–54]. It
also reverses the airway constriction associated with pulmon-
ary artery occlusion in ventilated animal models [50,52]. In
humans, the administration of high CO2 can relax the constric-
tion of airways in the patient with unilateral pulmonary artery
occlusion [51] and young asthmatic adults with hyperventila-
tion (hypocapnia) [55] or exercise-induced bronchoconstriction
[55,56]. These in vivo and in vitro effects of hypercapnia were
not stimulated by the nerve reflexes and were understood to
be a result of changes in extracellular/intracellular pH level,
possibly elevated CO2-related acidosis (respiratory acidosis)
in airway smooth muscle cells. Many of the cellular responses
to CO2 elevation are thought to be a consequence of acidosis
because of the rapid conversion of CO2 in solution into
H2CO3 and subsequently HCO3

− and H+ [5,72]. Several
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Figure 3. A proposed model for the modulation of CO2 in airway tone. Lung airway cells sense and respond to changes in CO2 levels, which modulates the tone of
airways, airway contraction or relaxation, via specific mechanisms of the vagus reflexes, molecular CO2 and pH effects. (a) Hypercapnia. Acute and chronic hyper-
capnia promote airway contractility via either vagus reflexes or molecular CO2 effects. (b) Respiratory acidosis. Elevated CO2 conditions particularly showing acute
respiratory acidosis can have a potent relaxing effect on contracted airways via pH effects.
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in vitro reports show that respiratory or normocapnic (meta-
bolic) acidosis produced a reversible reduction in active
tension of bronchial rings [53,54,57,58]. Extracellular pH can
alter airway smooth muscle tone by changing the levels of
pH and intracellular calcium (Ca2+) [58,59,73]. Intracellular
acidification has been reported to decrease intracellular Ca2+

levels through voltage-dependent Ca2+ channels in the
potassium-induced contractile model, thereby inhibiting
airway smooth muscle cell contraction [60]. On the other
hand, an in vitro study reported that high concentrations of
CO2, independently of extracellular pH, enhanced airway
smooth muscle relaxation via the epithelium-dependent
mechanism induced by substance P in the model of methacho-
line-precontracted bronchial smooth muscle [61]. Collectively,
elevated CO2 conditions, specifically showing acute respirat-
ory acidosis, appear to have a potent relaxing effect on
contracted airways.
4. Effect of hypocapnia on airway contractility
Low levels of CO2 (hypocapnia) have been also reported to
increase airway constriction in humans with pulmonary
artery occlusion [51,71], hyperventilation [67,68] and
exercise-induced asthma attacks [55,56] and other models
in vivo [50,52,70,74] and in vitro [59,61,75,76]. The broncho-
constrictor effect of hypocapnia is largely attributed to local
mechanisms on the bronchial smooth muscle since it was
not abolished by vagotomy or atropine in intact ani-
mals [50,70] and asthmatic patients [55,56]. Several reports
suggest that the hypocapnic response involves additional
contribution of cholinergic reflexes in the airways [67,68].
The cellular mechanisms involved in local airway response
to hypocapnia are likely dependent on intracellular alkalosis
elicited by hypocapnia on airway smooth muscle cells.
In vitro studies suggest that intracellular alkalosis can increase
airway smooth muscle contractility [77] by increasing intra-
cellular Ca2+ levels through voltage-dependent calcium
channels in airway smooth muscle [60,73,76].
5. Conclusion
A proposed model for the effects of CO2 levels on the airway
tone, airway smooth muscle contractility or relaxation, is pre-
sented in figure 3. Lung airway cells appear to sense and
respond to changes in CO2 levels via specific mechanisms
of the vagus reflexes, molecular CO2 and pH effects. Thus,
the effect of elevated CO2 levels to lung diseases is somewhat
controversial. Hypercapnia is associated with worse out-
comes in patients with obstructive lung diseases such as
asthma [13], obesity hypoventilation syndrome [14] and
COPD [10–12]. Furthermore, the recently reported strategy
of mechanical ventilation aimed at reducing the partial
pressure of CO2 in arterial blood can provide beneficial
effects including improvement of airway resistance, health-
related quality of life and mortality for patients with COPD
and hypercapnia [11,12,19]. Understanding the elevated
CO2 effects on airway contractility is of significant clinical
interest for those patients and could help with the design of
innovative therapeutic approaches.
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