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ABSTRACT Homology is a fundamental concept in comparative biology. It is extensively used at the
sequence level to make phylogenetic hypotheses and functional inferences. Nonetheless, the majority of
eukaryotic genomes contain large numbers of orphan genes lacking homologs in other taxa. Generally, the
fraction of orphan genes is higher in genomically undersampled clades, and in the absence of closely
related genomes any hypothesis about their origin and evolution remains untestable. Previously, we
sequenced ten genomes with an underlying ladder-like phylogeny to establish a phylogenomic framework
for studying genome evolution in diplogastrid nematodes. Here, we use this deeply sampled data set to
understand the processes that generate orphan genes in our focal species Pristionchus pacificus. Based on
phylostratigraphic analysis and additional bioinformatic filters, we obtained 29 high-confidence candidate
genes for which mechanisms of orphan origin were proposed based on manual inspection. This revealed
diverse mechanisms including annotation artifacts, chimeric origin, alternative reading frame usage, and
gene splitting with subsequent gain of de novo exons. In addition, we present two cases of complete de
novo origination from non-coding regions, which represents one of the first reports of de novo genes in
nematodes. Thus, we conclude that de novo emergence, divergence, and mixed mechanisms contribute to
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novel gene formation in Pristionchus nematodes.

The sequencing of hundreds of genomes lead to the discovery of new
genes that do not share protein sequence homology with previously
known genes. Over the years, these genes have been referred as young,
pioneer, or orphan genes (Dujon 1996; Khalturin et al. 2009; Tautz and
Domazet-Lo$o 2011). Orphan genes makeup a considerable fraction of
every sequenced metazoan genome and as a result, the total number of
orphan genes has far surpassed that of the known gene families
(Khalturin et al. 2009; Tautz and Domazet-Loso 2011). Recent studies
have shown that the proportion of orphan genes tends to be higher in
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secluded species that are devoid of genome data from closely related
lineages (Khalturin et al. 2009; Tautz and Domazet-Loso 2011). Thus,
deep taxon sampling of closely related species is needed to study their
age, origin, and mode of evolution (Palmieri et al. 2014; Prabh et al.
2018; Stein et al. 2018).

The nematode Pristionchus pacificus is an established model organ-
ism, which has been used for comparative studies with Caenorhabditis
elegans (Sommer and Sternberg 1996; Sommer 2015). Orphan genes
constitute roughly one third of all P. pacificus genes (Borchert et al.
2010; Baskaran et al. 2015). Given that the estimated divergence time
between P. pacificus and C. elegans is 75 (£15) mya (Prabh et al. 2018;
Werner et al. 2018), hence the high fraction of orphan genes in
P. pacificus can be attributed to the depleted taxon sampling around
it (Prabh and Rodelsperger 2016). Thus, to overcome the limitation
of this scarce taxonomic representation, we recently sequenced ten
closely related nematode genomes (Figure 1A) (Rodelsperger et al.
2014, 2017; Prabh et al. 2018), which created a ladder-like phylogeny
around P. pacificus. All ten genomes were generated within a single
laboratory and were annotated using the same pipeline to minimize
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technical variations and maximize comparability (Prabh et al. 2018).
The ensuing analysis was based on orthologous clustering and assign-
ment of the resulting gene families into age classes. This revealed that
younger age classes tend to be located on chromosome arms, show
less evidence of expression, evolve more rapidly, and have a higher
propensity of being lost (Prabh et al. 2018). However, in our previous
work, we neither segregated gene families into orphan and conserved
classes nor did we infer their mechanism of origin. Although several
mechanisms for the emergence of orphan genes have been suggested,
rapid divergence and de novo emergence remain the most widely
accepted (Khalturin et al. 2009; Tautz and Domazet-LoSo 2011). Pre-
viously, the de novo emergence of an open reading frame from an
ancestrally non-coding region had been considered highly unlikely
(Jacob 1977). However, the initial finding of the first instances of de
novo genes in Drosophila, yeast, E. coli, humans, and plants (Levine
et al. 2006; Delaye et al. 2008; Cai et al. 2008; Heinen et al. 2009;
Knowles and McLysaght 2009), inspired several subsequent efforts
to identify and characterize de novo genes in many other organisms
including mammals, insects, and viruses (Li et al. 2010; Wu et al.
2011; Carvunis et al. 2012; Xie et al. 2012; Murphy and McLysaght
2012; Sabath et al. 2012; Wissler et al. 2013; Chen et al. 2015; Ruiz-
Orera et al. 2018; Vakirlis et al. 2018; Klasberg et al. 2018; Schmitz
et al. 2018). While de novo gene origin is generally inferred through
identification of an ancestrally homologous non-coding sequence in a
closely related genome (McLysaght and Hurst 2016), recognition of
gene birth through divergence is complicated by the heterogeneous
mechanisms with various degrees of sequence change that make au-
tomated homology detection untenable (Schmid and Tautz 1997;
Schmid and Aquadro 2001; Long et al. 2003; Chen et al. 2013). Thus,
investigating whether an orphan gene fits one of these models is a
difficult proposition and requires both exhaustive computational and
manual analysis of individual cases. Accordingly, this study is divided
in two parts. In the first part, we employ an automated pipeline that
establishes distinct classes of orphan genes and takes stock of how
these genes are distributed along the Pristionchus phylogeny. In the
second part, we manually investigate a limited number of candidate
genes to illustrate several mechanisms of orphan gene origin.

METHODS

Identification of orphan genes
The genome, protein and transcript data of 24 non-diplogastrid nem-
atodes were obtained from Wormbase (WormBase web site, http://
www.wormbase.org, release WS254, date 7/18/16). The phylogenomic
data set for the ten diplogastrid nematodes was gathered from our
previous publication (Prabh et al. 2018) and is available at http://
www.pristionchus.org/download. To improve readability, we have abbre-
viated the original gene identifiers throughout the manuscript and a table
with full identifiers and corresponding gene models on WormBase
(WS269) and WormBase ParaSite (WBPS13) is provided in Table S2.
All the Uniprot knowledgebase taxonomic divisions SwissProt data
were downloaded from ftp://ftp.uniprot.org/pub/databases/uniprot/
current_release/knowledgebase/taxonomic_divisions/. The invertebrate
taxon contained a single Pristionchus species gene, QONHZ4, which
was removed from further analysis.

We first identified all conserved genes for the ten diplogastrid
nematodes using the following approach:

1. Classify all genes that have blastp match (E-value = 1073) with
any non-diplogastrid nematode protein as ‘Conserved genes’. For
the remaining genes go to step 2.
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2. Classify all genes that have a tblastn match (E-value = 107°)
with any non-diplogastrid nematode genome as ‘Conserved genes’.
For the remaining genes go to step 3.

3. Classify all genes that have blastp match (E = 1073%) with any
protein from any Uniprot knowledgebase taxonomic divisions as
‘Conserved genes’. The proteins classified as conserved genes at
this step are candidates for horizontal gene transfer.

The remaining genes were classified as ‘Orphan genes’. All blast runs
were conducted, with version 2.6.0+, under default parameters (includ-
ing no filtering of low complexity regions by SEG) unless mentioned
otherwise.

Classification of orphan genes

The availability of ten diplogastrid genomes provided us with the
opportunity to further investigate Pristionchus orphan genes. Our first
aim was to identify the orphan genes that have a homolog in at least one
other diplogastrid species. Thus, for each species we selected the subset
of orphan genes that have blastp match (E-value = 1073) with at least
one other diplogastrid species. This subset of orphan genes was classi-
fied as “Taxon-restricted orphan genes’ (TROGs). The remaining or-
phan genes were classified as ‘Species-specific orphan gene’ (SSOGs), as
they did not show blastp match with any other species. It is important
to note here that for the identification of TROGs we have only used
protein homology. We did not employ tblastn against genomes to avoid
detection of pseudogenes or non-coding genomic regions as protein
homologs. Further, since a ladder-like species phylogeny exists around
our focal species P. pacificus (Figure 1A) (Rodelsperger et al. 2018), we
decided to trace the origin of P. pacificus TROGs and SSOGs on this
phylogeny. For this, we employed the phylostratigraphy approach
(Domazet-Loso et al. 2007). This approach is based on finding the
oldest ancestral node of a given phylogenetic tree where the founding
member of a gene family can be traced back to. Thus, we divided the
diplogastrid family tree into nine phylostrata. ‘Phylostratum 1’ cor-
responds to the most recent common ancestor of P. pacificus and
P. exspectatus. Additionally, we created ‘Phylostratum 0’ that includes
P. pacificus SSOGs and hence is the youngest phylostratum.

Mapping of gene models from on the genome of

other species

The synteny relation between genes from P. pacificus and the other
species was derived using CYNENATOR (Rodelsperger and Dieterich
2010). Pairwise blastp results for each species pair and two files con-
taining genomic location of genes in both the species, were provided as
input to the software. The output file contained a list of genes from both
species within the syntenic blocks. Spliced alignment of gene models
from one species to the genome of another species was done by employ-
ing the protein2genome model of the Exonerate tool (Slater and Birney
2005).

Gene structure validation

One of the main aims of this study was to elucidate the mechanistic
details underpinning the birth of new genes. However, even with our
structured approach of dividing the orphan genes into several categories
and subcategories, we were unable to put forward a clear hypothesis on
this matter. Thus, we decided to create a set of most reliable candidate
genes to better understand the processes that foster new P. pacificus
genes. For this, we limited ourselves to the P. pacificus SSOGs with
confirmed gene structure. The validation of predicted gene structure was
done by visual inspection, in IGV (Thorvaldsdéttir et al. 2013), of raw
RNA-seq data aligned with the P. pacificus genome (Sinha et al. 2014;
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Figure 1 Fraction of SSOGs is consistent within the Pristionchus genus irrespective of divergence time (A) The maximum-likelihood phylogenetic
tree of the species analyzed in this study, adapted from Rédelsperger et al. (2018). Branch lengths denote the number of amino acid substitutions
per site. The numbers correspond to the phylostrata from panel C. (B) The horizontal stacked bars show the fractions of Conserved genes, TROGs,
and SSOGs. (C) The ten phylostrata depict the origin of P. pacificus orphan genes along the diplogasrid lineage. Blue boxes indicate presence of
P. pacificus orphan genes and the most distant diplogastrid species that has homologs of these gene, red bars indicate absence of homologs, and
gray bars indicated homologs may or may not be present. The number of P. pacificus orphan genes in each phylostratum are at the bottom. (D)
The heatmap shows traces of homology for P. pacificus in genomic and transcriptomic data of other species. The rectangles indicate whether
traces of homology were found (blue) or not (red). Manual inspection of P. pacificus RNA-seq data resulted in a high-confidence data set of
29 P. pacificus SSOGs which were taken as the starting point for origin analysis.

Prabh et al. 2018). We used TopHat v2.1.1 and STAR version
020201 for aligning the raw reads to genome (Dobin et al. 2013;
Kim et al. 2013). Single exon genes were filtered out. Only multi-exon
genes with minimum two spliced RNA-seq reads aligning all coding
exons and minimum two spliced reads straddling such exons, were
assigned ‘fully confirmed gene structure’ status. If, only few, but not
all exons of a gene qualified this criteria, then it was assigned ‘partially
confirmed gene structure’ status. For overlapping genes from oppo-
site strands, strandedness of strand-specific RNA-seq data were used
as an additional confirmation step.
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Selection analysis

For selection analysis of the SSOG candidates, their orthologous
reading frames (including in-frame stop codons) from sister species
were extracted and manually adjusted. Protein alignment of the
candidate and its corresponding reading frames from one or more
sister species was done using MUSCLE and visualization was done
with SeaView (Edgar 2004; Gouy et al. 2009). The protein alignment
was converted to codon with PAL2NAL (Suyama et al. 2006). Se-
lection analysis was done with codeml suite of PAML (Yang 2007).
Species tree was passed as gene tree to PAML. If the corresponding
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homologous region from only one sister species was included in
the analysis we generated a single w value for the entire tree, else
we generated independent w values for each branch of the tree
(Figure 5C). The statistical significance of the resulting w values
was calculated using the likelihood ratio test at the P-value threshold
of 0.05. Only statistically significant results were reported.

Data availability

Sequences are available at http://www.wormbase.org and http://
www.pristionchus.org. Full accession numbers of all abbreviated
gene identifiers are listed in Table S2. Supplemental material available
at FigShare: https://doi.org/10.25387/g3.8123768.

RESULTS

Roughly 10% of all genes are species-specific

irrespective of sampling depth

To quantify the amount of orphan genes among the ten nematode
genomes, we applied a three-step filtering procedure (see Methods)
that classified around one third of genes in each genome as orphan
(Figure 1A). We next explored the conservation of orphan genes
within the diplogastrida family. Roughly 70% of all orphan genes have
a homolog in at least one other diplogastrid species (Figure 1B and
Figure S1) and were therefore labeled as ‘Taxonomically-restricted
orphan gene’ or “TROG’. Thus, approximately 10% of all genes
in different Pristionchus species lack any homology at the protein
level with any other species and were classified as ‘Species-specific
orphan gene’ (SSOG). This lack of phylogenetic signal is unex-
pected, since the taxonomic sampling is much deeper around our
focal species P. pacificus (Figure 1A) and encompasses the two
sister species, P. exspectatus and P. arcanus, that can still form
viable but sterile hybrids with P. pacificus (Kanzaki et al. 2012).
Hence we naively anticipated that this should result in a much
lower fraction of SSOGs in our focal species and its close neighbors.
While we cannot rule out that a constant fraction of erroneous gene
annotations partially contributes to this pattern, these results are
consistent with the idea that novel genes are frequently generated as
a result of pervasive transcription but rarely reach fixation and are
rapidly lost (Schmitz et al. 2018).

SSOGs make the most gene rich phylostratum

To gain more detailed insights into the age distribution of P. pacificus
orphan genes, we separated them into different phylostrata that can
be mapped to the most recent common ancestors of P. pacificus and
the other diplogastrid species (Figure 1C). Based on the parsimonious
assumption that the breadth of a gene’s phylogenetic distribution
is an indicator of its age, a gene that is shared by several species is
expected to be older than a gene that is present in only one or two
species. Thus, each orphan gene was placed into the phylostratum
that points to the most recent common ancestor of P. pacificus and
its most distantly related species that has a homolog of this gene
(Domazet-Loso et al. 2007). P. pacificus SSOGs were placed in the
‘Phylostratum 0’ which is the most gene rich among all phylostrata
(Figure 1C). This gene set is likely a mixture of annotation artifacts
and novel gene-like sequences that result from pervasive transcrip-
tion and translation but do not live long enough to survive a speci-
ation event (Hangauer et al. 2013; Ruiz-Orera et al. 2018; Schmitz
et al. 2018). Due to the high abundance of P. pacificus SSOGs and
the possibility to study their origin in multiple closely related ge-
nomes, we decided to investigate in further detail the processes that
generate such SSOGs.
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Most P. pacificus SSOGs have traces of homology in
closely related genomes

The taxon sampling around our focal species P. pacificus allowed
exhaustive homology search of P. pacificus SSOGs in the genomes of
sister species, which could be indicative of their mechanism of origin.
To this end, we performed various blast searches against the annotated
transcripts, genome assembly, and transcriptome assembly (Figure 1D).
While tblastn searches against the genome assembly of other species
may identify homologous non-coding regions of de novo candidates,
we additionally performed a blastn search against the annotated
transcripts to screen for potential cases of ORF switching, and a
blastn search against the transcriptome assembly to assess the degree
of missing homology due to assembly gaps. As a result, 504 (32%) of
P. pacificus SSOGs show blast hits in all three target database types,
which after closer investigation was seen to be largely due to overlapping
gene structures. It is important to note here that nematodes possess high
fraction of overlapping genes (Jan et al. 2010; Rodelsperger et al. 2016).
Another 479 (31%) of P. pacificus SSOGs did not show hits in any of
the databases and were labeled ‘Untraceable’. Among the remaining
SSOGs, we find only 29 (2%) with a hit in the transcriptome assembly
but not in the genome or the annotated transcripts. This fraction of
putative assembly gap genes is constantly low for all our genomes
supporting their comparably high quality (Prabh et al. 2018). In total,
1082 (61%) of P. pacificus SSOGs exhibit detectable traces of homology
in the genomes of other closely related species, demonstrating that the
taxon sampling of our phylogenomic data set is sufficient to study the
mechanisms of origin for the most P. pacificus SSOGs in greater detail.

Identification of a high-confidence candidate set for
origin analysis

Given that more than a thousand P. pacificus SSOGs show traces of
homology in closely related sister species and that the gene struc-
tures of orphan genes in general are poorly supported by expression
evidence (Prabh and Rddelsperger 2016), we first needed to define a
high-confidence candidate set of SSOGs that could be used for de-
tailed gene origin analysis (Figure 1D). We only considered SSOGs
with more than one annotated exon, because we hypothesized that this
additional layer of regulated expression involving the proper splicing of
the transcripts would yield a more likely protein-coding gene candidate
with confirmed regulated expression as opposed to pervasive transcrip-
tion and translation (Hangauer et al. 2013; Ruiz-Orera and Mar Alba
2019). Additionally, the splice sites can be informative to better predict
the correct orientation of the gene, which is essential to elucidate their
origin and the reason why homology was not detected in the first place.
We manually inspected RNA-seq alignments of all P. pacificus SSOGs
except the untraceable genes, in total 1082 candidate loci, to find gene
structures that are fully confirmed by raw RNA-seq reads and we insisted
on finding a minimum of two raw RNA-seq reads aligned with each
coding exon and two spliced reads that span such exons. Eventually, we
established 29 SSOGs with fully confirmed gene structures (Figure 1D)
that formed our high-confidence candidate set. Based on our investiga-
tion, we provide examples for six plausible mechanisms that explain the
origin of SSOGs including two examples of de novo genes. Among the
high-confidence candidates 21 can be explained by the proposed mech-
anisms, the origin of six candidates cannot be unambiguously concluded
and the two remaining candidates were annotation artifacts (Table S1).

Divergence by recycling of ancestrally protein-

coding fragments

The first mechanism alludes to chimeric gene formation resulting
in an SSOG with two exons. Both exons are derived by partial
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Figure 2 Sequence divergence and ORF shift erode evidence of homology. (A) The schematic overview shows an example of an SSOG with
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Thus, traces of sequence homology with the original exons become hard to detect and such genes get classified as SSOGs. (B) This example
shows a P. pacificus SSOG (PP378-0.29) of chimeric origin and its alignments with parts of two conserved P. exspectatus genes. Identical amino
acid residues are labeled in black between the P. pacificus and P. exspectatus exons. Even though the first exon is 100% identical with its
homolog, the stretch of alignment is not long enough to be detected by blastp at the stipulated E-value cutoff. (C) Schematic overview of a gene
split with subsequent exon gain which results in an SSOG (D) The P. pacificus SSOG PP390-0.42 is homologous to the first exon of a conserved
P. exspectatus gene. The neighboring gene shows homology with the remaining exons, indicating that the SSOG is derived from a gene split
event. (E) The alignment of the P. pacificus SSOG with P. exspectatus is spread over multiple reading frames. Amino acid identity between the
predicted reading frame of both the proteins are marked in black and those from the other reading frame of the exspectatus gene are
marked in saffron. The residues corresponding to the P. pacificus SSOG in different reading frames of the P. exspectatus sequence are also

labeled in black.

duplication, but of separate source genes. The paralogous exons
from both the ancestral source genes are duplicated and then get
inserted in close proximity to facilitate the formation of a novel
ORF (Figure 2A). Considering that such genes can be created by
minimal contribution from existing genes, local alignment based
tools may fail to detect the homology of these short sequence
stretches with their paralogous exons. For example, PP378-0.29 is
a P. pacificus SSOG with two exons. Its first exon has 100% protein
identity with an exon from a P. exspectatus Gluthatione peroxidase
gene (92% identity with the corresponding exon of the orthologous
P. arcanus gene PA7-2.29), while its second exon shows partial
identity with an exon of another conserved P. exspectatus gene
(PE440-0.48, Figure 2B). Orthologs of both P. exspectatus genes
are maintained in P. pacificus and given that the first exon shows
high sequence identity with same exon of the Gluthatione peroxi-
dase gene in both P. exspectatus and P. arcanus, we can establish that
the the first exon of our candidate has been derived through partial
duplication of an existing gene. However, blastp failed to detect
homology with the paralogous exons from the two P. exspectatus
genes. This demonstrates that even if a high percentage of identity
is retained between paralogous exons, small chimeric genes can be
classified as SSOGs.

The second mechanism of SSOG creation is based on splitting of
an ancestral gene (Figure 2C). After the split, either both or one of
the fragments can diverge from the ancestral sequence and can also

-=.G3:Genes| Genomes | Genetics

Volume 9 July 2019 |

acquire new exons. If the fragments resulting from a gene split event
are small, a moderate level of divergence can result in a failure to
detect homologous sequences. The P. pacificus gene PP390-0.42, is
an example of an SSOG created by gene split (Figure 2D). Based on
synteny information and spliced alignment, we mapped the first
exon of this gene to the first exon of a conserved gene (PE158-
0.48) in P. exspectatus and another P. pacificus gene is homologous
to the remaining exons of the P. exspectatus gene. The P. exspectatus
gene PE158-0.48 is the ortholog of P. arcanus gene PA73.-2.42 and
both genes share the same first exon, which confirms that the
first exon of our candidate gene is the result of a gene split event.
Upon manual inspection, we found that the first exon of the
P. pacificus SSOG has acquired insertions that shifted its reading
frame and renders protein homology undetectable. Although some
of the N-terminal residues are identical to the P. exspectatus pro-
tein (Figure 2e), the remaining residues from the first exon of our
candidate gene were found to be derived from other reading frames
of the orthologous P. exspectatus exon. Hence, it is clear that the
predicted ORF from the first exon of our candidate gene is mainly
derived from the non-ancestral reading frame. Moreover, the ini-
tial segment, which partially retains the ancestral ORF, is not large
enough to facilitate homology detection. Ancestry of the second
exon of the P. pacificus SSOG could not be established even
after manual inspection. This suggests that the second exon has
been acquired de novo. Thus, origin of the candidate gene can be
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we show amino acid identity and similarity between our candidate SSOG with the translation from P. exspectatus and P. arcanus genomes. (C) This is
a two exon gene, and both the exons share a remote homology with the opposite strand of one single exon of a P. exspectatus gene at the aligned
locus. The identical amino acid residues between the P. pacificus SSOG and its corresponding P. exspectatus ORF are marked in saffron. (D) The
schematic overview illustrates a case of actualisation of an altemative reading frame by duplication. Overprinting describes a gene with two altemnate
ORFs. Gene prediction tools generally do not annotate alternate overlapping ORFs from the same strand. However, duplication might generate gene
copies where the alternative ORF will be annotated. Nevertheless, in species with a single copy of this gene only one ORF gets predicted and due to
lack of protein homolog in other species the alternate ORF will be categorized as SSOG. (E) PP49-3.6 is a four exon SSOG. Its P. exspectatus homolog
is predicted from the same strand but in a different reading frame. Both genes maintain both ORFs. We found a P. pacificus gene, PP49-3.55, which is
predicted in the P. exspectatus ORF and their identical amino acid residues are marked in turquoise between their exons and also in corresponding
reading frame of our candidate SSOG. Comparison of this reading frame between the two P. pacificus genes shows two residues, in saffron, that are

uniquely found in these genes. This indicates that SSOGs can be generated by prediction of an alternate ORF.

attributed to gene split, partial ORF shift, and de novo acquisition
of a new exon.

New gene creation through alternative reading

frame usage

So far, we have discussed two mechanisms of new gene creation that
require deviation from an existing gene structure but maintain the
ancestral reading frame either fully or partially. Here we discuss a
third mechanism that involves strand switching, which results in a
completely new ORF (Figure 3A). The P. pacificus SSOG PP198-1.6
has two coding exons and is an example of such a mechanism. In
P. pacificus, this gene is placed within an intron of a conserved
P. pacificus gene (Figure S2). This intron is 2.1 kb long in P. pacificus.
The corresponding intron of the P. exspectatus ortholog is 1.4 kb long
and shows no homology to our candidate SSOG at the nucleotide
or the protein level (Figure S2). Spliced alignment of the candidate
SSOG on to the P. exspectatus genome did not generate any match.
Thus, we performed a tblastn match against both the P. exspectatus
and P. arcanus genomes at a relaxed threshold of E-value < 10 (Figure
3B). The resulting aligned genomic section was traced to a single exon
of PE1052-0.1 gene whereby our candidate has some sequence iden-
tity with a reading frame from the reverse strand of the P. exspectatus
gene (Figure 3, B and C). The ortholog of PE1052-0.1 gene in P. arcanus
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(PA61-4.37) also maintains this exon and the neighboring exon-
intron boundaries. Although the sequence identity between PP198-
1.6 and PE1052-0.1 is not substantial (tblastn E-value = 2.37) and
could be indicative of an ancient duplication event with subsequent
losses, we propose that our candidate SSOG gene shares a common
ancestry with sequences in P. exspectatus (PE1052-0.1) and P. arcanus
(PA61-4.37) and originated from a combination of a possibly ancient
duplication event, intron gain, strand-switching (Figure S2), and in-
sertion at its current position.

The fourth mechanism deals with genes that can have more than
one overlapping ORFs. This phenomenon is known as overprinting
and has been reported in several studies (Grassé 1977; Ohno 1984; Keese
and Gibbs 1992; Chen et al. 1997; Makalowska et al. 2005; Nekrutenko
et al. 2005; Chung et al. 2007; Gontijo et al. 2011; Sabath et al. 2012;
Guan et al. 2018). Generally, gene prediction tools only annotate single
ORFs. However, if an ancestral gene with two ORFs gets duplicated in a
lineage, one of the duplicates can switch to the less common ORF
(Figure 3D). This will lead to classification of the duplicated gene as
an SSOG, as the corresponding ORF has not been annotated in any
other species. We found that the P. pacificus SSOG PP49-3.6 is one
candidate for such a scenario. Although it lacks protein homologs
with any other species, this gene has a paralog, PP49-3.55, at the
predicted transcript level (blastn E-value = 0.00, identity = 92%).
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Figure 4 Failures in homology detection lead to classification as SSOGs. (A) Conserved synteny may reveal loci where genes are incorrectly
classified as SSOGs due to a failure of homology detection. (B) The P. pacificus SSOG PP142-0.63 is found in a conserved syntenic region with the
P. exspectatus TROG PE68-1.70. Both proteins are ‘GGX’ repeat rich proteins and share a small non-repetitive part, but blastp failed to identify

both proteins as homologous.

The protein predicted from the candidate SSOG is in a reading frame
that differs from that of its paralogous transcript. We found that both
OREFs are available to both paralogs. The predicted ORF of the paralog is
conserved within the genus and has its orthologous ORF in P. exspectatus
(Figure 3e). Selection analysis indicates that the predicted P. pacificus
OREF shows an  value of 1.6 whereas the ancestral ORF shows evidence
of negative selection (® = 0.38). This demonstrates how annotation
artifacts such as inconsistent ORF calling can give rise to classification
of genes into SSOGs. However, in the absence of conclusive evidence
such as ribosome profiling data, we cannot completely reject the pre-
dicted reading frame and would point out the possibility that gene
duplication in principle allows actualisation of such alternative ORFs.

Heuristic failures in homology detection contribute to
classification as SSOGs

The fifth mechanism of SSOG formation specifically deals with the fact
that blast programs implement a heuristic approach to find sequence
matches and typically these programs are run with default settings. It is
obvious that lowering thresholds (e.g., E-value) or switching to a more
sensitive alignment approach (Slater and Birney 2005) facilitates the
identification of homologous sequences for a number of P. pacificus
SSOGs that were missed by blast programs. This has been illustrated by
the identification of homologous regions for the previously described
divergence cases (Figure 2B and Figure 3B). During our investigation of
high-confidence candidates, we encountered two repeat rich SSOGs,
PP142-0.63 and PP81-0.14, where more detailed investigation of the
syntenic region facilitated the identification of a homologous segment
in the P. exspectatus genome (Figure 4A). Even when blast’s repeat
filtering is switched off, it fails to detect homology due to the combi-
nation of a small non-repetitive match and indels as well as substitu-
tions in the repeat-rich region (Figure 4B). Even though we cannot
be sure, how specific this behavior is to repeat-rich genes, these two
examples together with the previous examples illustrate that the failure
of any heuristic approach to detect homology, will inevitably lead to
the classification of certain genes with homologs as SSOGs.

Evidence for de novo genes in P. pacificus

All the five mechanisms described in the previous sections portray
how new genes can be created from old genes. However, the P. pacificus
SSOG PP23-6.60 is an example of de novo formation from an ances-
trally non-coding region. It has two coding exons, placed within a single
intron of the P. pacificus homolog of C. elegans C27F2.7 (Figure S3).
The intronic location of our candidate SSOG within a conserved gene
helped us to identify the orthologous genomic locations in other
Pristionchus species. Based on the spliced alignment of our candidate
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against the genomes of other species we were able to extract the orthol-
ogous sequences from P. exspectatus, P. arcanus and P. maxplancki
(Figure 5B). No transcriptional evidence for the genomic regions
corresponding to their extracted ORFs was found in P. exspectatus,
P. arcanus and P. maxplancki (Figure S3). Nevertheless, the length of
the P. exspectatus ORF matches that of the P. pacificus prediction.
Additionally, the P. arcanus ORF aligns well with the P. pacificus
ORF but contains two stop codons in the middle of the second exon.
Furthermore, the sequence extracted from P. maxplancki has stop
codons at the 11t and 14t position and no Methionine thereafter
to make an abridged ORF. This suggests that the ORF at this locus was
engendered in the common ancestor of P. pacificus, P. exspectatus,
and P. arcanus. Moreover, the lack of ORF in P. maxplancki and
alignable region in other species confirms the de novo origin of this
gene. The protein coding nature of our de novo candidate was further
supported by selection analysis of the P. pacificus ORF and the protein
translation from the other species. In this analysis, we allowed each
branch of the tree to have an independent w value. Here, the branches
leading from the common ancestor of P. pacificus, P. exspectatus and
P. arcanus, toward the P. pacificus lineage are under extremely strong
negative selection (Figure 5C). This indicates that since its emergence,
the de novo gene has been maintained as a protein coding gene in the
lineage leading to P. pacificus.

Our second de novo candidate PP356-0.37 is a two exon gene with
its entire coding sequence in the 2" exon. Since the candidate could be
mapped on to the genomes of none of the other species but P. exspectatus,
we were only able to extract the orthologous P. exspectatus sequence
from a conserved syntenic region (Figure S4). Nevertheless, the ab-
sence of transcription in P. exspectatus and the presence of a stop
codon at the 4t position of the extracted P. exspectatus sequence
confirms the non-genic and non-transcribed status of the P. exspectatus
sequence. Even though the absence of homologous traces outside
the two sister species did not allow us to conclusively infer the state
of this gene in the ancestor of P. pacificus and P. exspectatus, we
propose that the P. pacificus SSOG PP356-0.37 arose very recently
and is a putative de novo gene that emerged from a previously non-
coding intergenic region in the P. pacificus lineage. Together with a
recent study of the Caenorhabditis genus (Zhang et al. 2019), these
genes are the first examples of de novo genes in nematodes.

DISCUSSION

Genome sequencing projects identify novel genes in all domains of life.
Many of these genes have been shown to be involved in lineage specific
adaptations (Milde et al. 2009; Kawasaki et al. 2011; Mayer et al. 2015;
Villanueva-Canas et al. 2016; Aguilera et al. 2017). However, even with
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Figure 5 De novo gene birth. (A) A de novo gene can originate as an antisense transcript in the intron of another gene. De novo creation of such
an ORF can be verified by finding the corresponding intron in a related species that lacks this ORF. (B) PP23-6.60 is two exon P. pacificus gene
that is located in an intron of another P. pacificus host gene. Based on the identification of the orthologous intron of the host gene in other
species, we have created an alignment of our candidate and translation of its corresponding reading frame from other species. It is clear that the
same ORF also exists in P. exspectatus. However, P. arcanus has two stop codons (*) in the middle of the 2" exon and P. maxplancki has two stop
codons in the 15t exon itself. (C) Selection analysis done on the alignment from panel B, indicates that the predicted ORF has been under strong
selection toward the P. pacificus lineage. This trend may have started from the common ancestor of P. pacificus, P. exspectatus and P. arcanus. (D)
A de novo gene can originate from ancestrally intergenic region. (E) The P. pacificus gene PP356-0.37 contains a single coding exon and its
homologous reading frame in P. exspectatus is found at a non-transcribed intergenic location and has an early stop codon (*). This gene does not

show sequence homology with any other species but P. exspectatus.

deep taxonomic sampling of genomic data sets, it remains unclear, what
are the most common mechanisms to form novel genes. Given, that
yeasts, mammals, insects, and nematodes have highly variable genomic
architectures (e.g., genome size and fraction of coding sequences
(Rodelsperger et al. 2013), presence of operons (Sinha et al. 2014),
recombination (Srinivasan et al. 2002), transposon control (Sarkies
et al. 2015), and DNA methylation (Rosi¢ et al. 2018)), multiple
studies in different clades are needed to characterize and compare
processes that lead to emergence of novel genes. In this study, we
bring the power of clade genomics to enumerate various mechanisms
of gene birth in Pristionchus nematodes (Rogers 2018), this makes
our study the first of its kind in nematodes.

The exceptionally high number of SSOGs (Figure 1, B and C) may
be due to a combination of erroneous gene models and short-lived
gene-like sequences that result from pervasive transcription and trans-
lation (Hangauer et al. 2013; Schmitz et al. 2018; Ruiz-Orera and
Mar Alba 2019). We discussed two cases, where either wrong ORF
annotation or heuristic failure in homology detection resulted in an
incorrect classification as SSOGs. However, as most SSOGs are only
poorly supported by expression data, it is challenging to conclusively
distinguish annotation artifacts from lowly expressed genes. Thus,
it remains unclear, to what extent annotation errors and pervasive
transcription and translation contribute to the abundance of SSOGs.
The deep taxon sampling of our phylogenomic data allowed us to
detect traces of homology for 1082 (61%) of P. pacificus SSOGs.
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This demonstrates the potential of the Pristionchus system to study the
mechanisms of gene birth. However, in contrast to many other recent
studies in mammals (Ruiz-Orera et al. 2018; Schmitz et al. 2018), insects
(Klasberg et al. 2018) and yeasts (Carvunis et al. 2012; Vakirlis et al.
2018), we did not aim only for the identification and characterization
of de novo genes, but undertook an unbiased exploration of high-
confidence candidates through manual investigation of gene structures
and various sequence search methods (i.e., blastn, tblastn, and spliced-
mapping with exonerate) in our phylogenomic data set. In some cases,
this lead to a reclassification of an SSOG as TROG, but more impor-
tantly this demonstrated that both divergence of existing genic
segments and de novo creation of new genic elements contribute to
orphan gene emergence. While de novo origin only requires the iden-
tification of an ancestrally non-coding sequence in a closely related
species, the case of the P. pacificus SSOG PP390-0.42 (Figure 2, C, D
and E) shows that the distinction between de novo and divergence
can sometimes be difficult to discern. The formation of this gene
results from several steps, which include splitting of the ancestral
gene, sequence divergence, reading frame shift and de novo acqui-
sition of a new exon. Thus, we argue that this gene should be
considered a product of ‘mixed origin mechanism’, as both diver-
gence and de novo origin mechanisms have contributed to its birth.
Moreover, in order to quantify the contribution of different origin
mechanisms, we first have to establish a comprehensive catalog with
detailed descriptions of all possible mechanisms and then develop
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computational tools to reliably detect them. This knowledge can
be used in future to perform more systematic screens, possibly also
on older phylostrata, in order to get better estimates of the relative
contribution of various mechanisms to novel gene emergence.
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