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Objectives: This project aimed to construct an individualized PET/CT prognostic
biomarker to accurately quantify the progression risk of patients with stage IIIC-IV
epidermal growth factor receptor (EGFR)-mutated Non-small cell lung cancer (NSCLC)
after first-line first and second generation EGFR- tyrosine kinase inhibitor (TKI) drug
therapy and identify the first and second generation EGFR-TKI treatment-sensitive
population.

Methods: A total of 250 patients with stage IIIC-IV EGFR-mutated NSCLC underwent
first-line first and second generation EGFR-TKI drug therapy were included from two
institutions (140 patients in training cohort; 60 patients in internal validation cohort, and 50
patients in external validation cohort). 1037 3D radiomics features were extracted to
quantify the phenotypic characteristics of the tumor region in PET and CT images,
respectively. A four-step feature selection method was performed to enable derivation
of stable and effective signature in the training cohort. According to the median value of
radiomics signature score (Rad-score), patients were divided into low- and high-risk
groups. The progression-free survival (PFS) behaviors of the two subgroups were
compared by Kaplan–Meier survival analysis.

Results: Our results shown that higher Rad-scores were significantly associated with
worse PFS in the training (p < 0.0001), internal validation (p = 0.0153), and external
validation (p = 0.0006) cohorts. Rad-score can effectively identify patients with a high risk
of rapid progression. The Kaplan–Meier survival curves of the three cohorts present
significant differences in PFS between the stratified slow and rapid progression
subgroups.
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Conclusion: The PET/CT-derived Rad-score can realize the precise quantitative
stratification of progression risk after first-line first and second generation EGFR-TKI
drug therapy for NSCLC and identify EGFR-mutated NSCLC populations sensitive to
targeted therapy, which might help to provide precise treatment options for NSCLC.
Keywords: lung cancer, PET/CT, radiomics, stratification of progression risk, progression-free survival
INTRODUCTION

Non-small cell lung cancer (NSCLC) is the leading cause of
cancer death worldwide (1). The onset of NSCLC is insidious,
and most patients present at an advanced stage. For advanced
NSCLC, platinum-based combination chemotherapy has
reached a bottleneck, with suboptimal efficacy. In recent years,
targeted therapy has achieved remarkable results in cancer
treatment, showing great promise in the treatment of a variety
of advanced tumors. In patients with NSCLC, especially in East
Asian populations, the mutation rate of human epidermal
growth factor receptor (EGFR) is as high as 40%~55% (2).
Therefore, researchers have developed small-molecule tyrosine
kinase inhibitor (TKI) drugs that target EGFR in EGFR gene
mutation therapy, which have subsequently been found to
prolong progression-free survival (PFS) in such patients when
compared with chemotherapy in clinical application (3), extend
the median PFS of patients to 9~11 months (4).

However, not all patients can benefit from them. In the clinical
application, it is found that for a large part of NSCLC patients with
Phase IIIC/IV EGFR mutation after the first-line EGFR-TKI
treatment the disease progressed rapidly and they could not
benefit from the treatment. The third generation of TKI
Osimertinib can simultaneously suppress the EGFR-TKI-
sensitive gene and T790M, the drug resistance gene of the first
and second generation of TKIs, and extend the median PFS of
patients. However, not all patients need the treatment of
Osimertinib. For some patients, the treatment effect of the first
and second generation of TKIs is very good (5). Therefore, how to
screen the patients suitable for the treatment of the first and
second generation of TKIs is particularly important. The progress
of patients receiving the clinical treatment after the treatment of
the first and second generation of EGFR-TKIs was accurately
quantified and evaluated, thus recognizing the population not
sensitive to the treatment, guiding the clinical decision, making the
corresponding treatment and follow-up plan, and improving
prognosis. It has an important clinical value.

In 2012, Lambin et al. (6) first proposed the concept of
radiomics, that is, the high-throughput extraction of image
information from medical images and deep-seated mining and
analysis of massive image data to reveal the pathophysiological
characteristics of diseases (such as tumor heterogeneity) and
provide the most accurate decision support for disease diagnosis,
prognosis prediction and precision treatment (7–10). In the past,
by using the technical means of radiomics in medical imaging,
such as computed tomography (CT), magnetic resonance
imaging (MRI), ultrasound and positron emission tomography
(PET), multiple research teams have revealed the associations
2

between microscopic image information and tumor genotyping,
tumor treatment efficacy and prognosis through deep-seated
information mining and analysis (11).

18F-fluordeoxyglucos (18F-FDG) PET/CT radiomics analysis
can extract additional layers of information on tumor
heterogeneity, such as biological metabolism information and
anatomical characteristic (12). Tumor cell glucose metabolism
produces different genetic variations during growth and
treatment, so the glucose metabolism at different sites in the
same tumor lesion shows significant heterogeneity (13). 18F-FDG
PET, which can reflect the glucose metabolic intensity
information of tumor lesions, has played an important role in
clinical application for NSCLC (14–17). PET/CT radiomics
features can be used as an individualized prognostic biomarker
for patients with NSCLC (18–20). Kang F et al. successfully
applied the radiomics in the diagnosis and differential diagnosis
of lung cancer to reduce the false negative rate (21). Zhang J et al.
showed that PET/CT radiomics model could recognize the
mutation type of EGFR (22).

In recent years, PET/CT radiomics has been used to quantify
the risk of progression of patients with lung cancer after
treatment, gastric cancer, and glioblastoma (14–16). However,
few studies based on PET/CT radiomics to accurately predict the
risk of progression after first and second generation of EGFR-
TKI therapy in stage IIIC/IV EGFR-mutated NSCLC patients
(23). To address the clinical challenges that the progression risk
of patients with stage IIIC-IV EGFR-mutated NSCLC is difficult
to accurately quantify and stratify after first-line first and second
generation of EGFR-TKI targeted drug therapy, we aimed to
construct an individualized prognostic biomarker to accurately
quantify the progression risk of patients with stage IIIC-IV
EGFR-mutated NSCLC after first-line first and second
generation of EGFR-TKI drug therapy and identify the first
and second generation of EGFR-TKI treatment-sensitive
population, which is expected to aid clinicians in treatment
decision-making.
MATERIALS AND METHODS

This retrospective, two-center study was approved by our
Institutional Review Board. The requirement for written
consent was waived by the board.

Patients
This 2-center retrospective study was conducted jointly by two
independent departments. This study was conducted in
accordance with the Declaration of Helsinki. Our Institutional
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Review Board approved this retrospective study and waived the
requirement for informed consent from the patients. Before
treatment, all patients successively underwent clinical
examination, PET/CT scan, blood tests, and pathological
examination. The inclusion criteria were as follows: 1. age 18
and older, stage IIIC-IV NSCLC according to the TNM
classification system of the American Joint Committee on
Cancer; 2. EGFR mutation; 3. TKI group patients were treated
with first-line first and second generation EGFR-TKI according
to the criteria established by the National Comprehensive Cancer
Network (NCCN) until disease progression, with doses
appropriately reduced if severe adverse events occurred; and
4. pretherapy PET/CT was acquired two weeks before the
initiation of EGFR-TKI therapy. The exclusion criteria were as
follows: 1. patients with a history of a second neoplasm; 2. patients
with a history of anticancer therapy or surgical therapy; and 3.
HIV-positive patients. The clinicopathological information
included epidemiological information and characteristics related
to the risk of progression after treatment, including age, sex, and
smoking history, pathological type, TNM stage, performance
status (PS) score, EGFR gene mutation type, carcinoembryonic
antigen (CEA) value, NSCLC-associated antigen value
(CYFRA21-1), and the presence or absence of brain/bone/liver/
lung/pleural/adrenal metastases. All of the clinicopathological
information were complete record for all eligible patients.

In total, 200 patients were recruited from July 2007 to July 2019
from center 1. These patients were randomized into training (N =
140) and internal validation (N = 60) cohorts. Using the same
inclusion criteria, 50 patients who initiated TKI-therapy between
June 2008 and June 2018 from center 2 was subsequently accrued.
This was used as external validation cohort (N= 50). The follow-up
interval was 4-6 weeks, and the examinations included clinical
physical examination, routine laboratory tests andchestCTorPET/
CT. The follow-up duration of this project was 2 years. If no
endpoint event (disease progression or death) occurred, the
follow-up duration should be at least 3 years. PFS was considered
the time from the initiation of EGFR-TKI therapy to the date of
confirmed disease progression or death. PFS was censored at the
date of death fromother causes or the date of the last follow-up visit
for progression-free patients.

PET/CT Scans
PET/CT scans of the training and internal validation cohorts were
performed in center 1 using a Sensation Biograph Somatom 16HR
PET/CT machine (SIEMENS, Germany). Scans of external
validation cohort were acquired in center 2 on eight-section PET/
CT scanner (Discovery ST 8; GEHealthcare, Wisconsin, USA). All
patients fasted for at least 6 hours before the PET/CT scan. Only
patients with blood glucose levels between 72.0 and 144.0 mg/dL
(4.0 - 8.0 mmol/L) were subjected to PET/CT scan. The patients
were instructed to lie still in a quiet room for 60 ± 5 minutes after
they received an intravenous injection of 0.1-0.2 mCi/kg (3.7-7.4
MBq/kg) of 18F-FDG.

Trunk PET scans were performed from the upper thigh to the
pharynx nasalis immediately after completion of the CT scans.
After a skull CT scan, a 5-minute skull PET scan in one bed
position was performed from the foramen magnum to the top of
Frontiers in Oncology | www.frontiersin.org 3
the skull. PET scans in center 1 and center 2 were respectively
performed using a three-dimensional model with a matrix of
128×128 voxels and a two-dimensional model with a matrix of
128×128 voxels.

For CT reconstruction, the raw data were converted into
images using two-dimensional fast Fourier transform. For three-
dimensional reconstruction, CT data were converted by the
digital model and prepared for attenuation correction of PET
images by using voxel space overlay and interpolation. PET
images were reconstructed using the iterative ordered-subset
expectation maximization (OSEM) method (4 iteration times
and 8 character sets) with scatter correction. Image fusion was
completed, producing PET, CT, and PET/CT fusion images in
the transverse, sagittal, and coronal planes.

Tumor Segmentation
The contour of primary lung tumor (also called region of interest,
ROI) on PET and CT images was first delineated slice-by-slice by
a nuclear medicine physician with 10 years of experience in
thoracic oncology using ITK-SNAP software (version 3.6.0; www.
itksnap.org). To evaluate the reproducibility of feature extraction
to different contours of segmentation, the delineated ROIs were
perturbed by supervoxel–based contour randomization (24) to
produce perturbed ROI in 60 randomly selected patients from
training cohort.

Radiomics Feature Extraction
Both PET and CT radiomics features were extracted using the
PyRadiomics package (version 3.0; https://github.com/Radiomics/
pyradiomics), an open-source platform for easy and reproducible
radiomics feature extraction (25). 14 volumetric shape were
separately extracted from PET and CT segmentation masks; 18
first-order statistical and 75 texture-matrix radiomics features were
extracted from the original and 8 wavelet- and 2 Laplacian of
Gaussian (LoG)-filtering-derived PET andCT images, respectively.
Ultimately, 2074 = 2 modalities × [14 shape + (18 intensity+ 75
texture)× (1+8+2 images)]3Dradiomics featureswere extracted to
quantify the phenotypic characteristics of the tumor region in PET
and CT images. The parameter settings of PET/CT image
preprocessing and the generation of derived images for
customizing the PyRadiomics feature extraction are described in
Supplemental Table S1. The comprehensive radiomics features list
is described inSupplemental Table S2. To correct for differences in
features caused by the different centers (i.e., different scanners), we
used the ComBat compensation method (https://github.com/
Jfortin1/ComBatHarmonization), which identified a center-
specific transformation to express the feature data in a common
space devoid of center effect (26–28). To further ensure that the
range of features was relatively uniform, we firstly normalized the
training data into z-scores, then the mean and standard deviations
of training cohort were used to normalize the feature values of the
internal and external validation cohorts.

Radiomics Feature Selection, RAD-Score
Building, and Prognostic Modeling
In order to avoid overfitting due to the over-abundance of
features relative to sample size, we performed a four-step
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feature selection method to enable derivation of stable and
effective signature in the training cohort. First, the two-way
random effects, absolute agreement, single rater/measurement
intra-class correlation coefficient (ICC) (29) was calculated for
each feature to evaluate the robustness of feature extraction to
different contours of segmentation. Features with ICC greater
than 0.8 were considered as robust features and retained (30).
Secondly, Pearson correlation analysis was used to assess the
correlation between all remaining features. For each feature pair
with absolute correlation coefficient > 0.8, the feature that
yielded higher absolute column-wise correlation mean was
eliminated, which tends to provide redundant information
about tumor phenotype. Thirdly, univariate Cox analysis was
conducted by performing 10-fold cross validation in the training
cohort, and Harrell’s concordance index (C-index) was used to
measure the prognostic performance. Features were sorted in
descending order of the mean validation C-index (in the 10
validation rounds), and the top 10 features were selected. Finally,
multivariate Cox analysis that considered all possible
combinations of candidate features (in sets of 2 up to 10
features) was conducted by performing 10-fold cross validation
in the training cohort, and the feature combination with the
highest average validation C-index (in the 10-fold cross
validation) and significantly associated with PFS was identified
as prognostic signature. The signature was used to refit the final
Cox model (Radiomics model) in the whole training cohort, and
the radiomics signature score (Rad-score) for each patient was
calculated based on the selected signature.

For clinicopathological parameters, univariate Cox analysis was
performed to assess the association with PFS, and only significant
predictors (p < 0.05; p values were corrected for false discovery rate
(FDR)) after multiple testing correction with the Benjamini-
Hochgerg method (31) in the training cohort, were kept to build
multivariable Cox model (Clinicopathological model). To further
assess whether the clinicopathological findings can improve the
performance of the Rad-score, statistically significant
clinicopathological parameters were combined with the Rad-score
via forward stepwise feature selection using maximum log-
likelihood criterion as the stopping rule (32), to build a combined
multivariable Cox model (Combined model).

Validation of Prognostic Model
for PFS Prediction
Time-dependent receiver operating characteristic (ROC)
analyses were performed to estimate the probability of each
model in predicting 10-month, one-year and 14-month PFS. C-
index and area under the ROC curve (AUC) were quantified to
evaluate the prognostic accuracy in the training cohort and
another two independent validation cohorts. The prognostic
score was generated for multivariable Cox model by using a
linear combination of selected features weighted by their
respective coefficients. Patients were stratified into slow and
rapid-progression subgroups by the median value of prognostic
score as computed in training cohort; log-rank test was then used
to compare the significant difference between the two Kaplan–
Meier curves. The same median value of prognostic score was
applied to the two independent validation cohorts to perform
Frontiers in Oncology | www.frontiersin.org 4
risk stratification. All patients who received EGFR-TKI therapy
were therefore stratified into slow and rapid-progression
subgroups. The PFS behaviors of the two subgroups were
compared by Kaplan–Meier survival analysis.

Statistical Analysis
Statistical analysis was performed with MATLAB R2015b,
Statistical Program for Social Science (SPSS; version 22.0) and
R software (version 3.4.4; http://www.Rproject.org). A two-sided
p value < 0.05 was used as the criterion to indicate a statistically
significant difference.
RESULTS

Patient Characteristics
The baseline characteristics of the three patient cohorts with
stage IIIC-IV EGFR-mutant NSCLC from two institutions are
summarized in Table 1. 250 patients received first and second
generation EGFR-TKI therapy (140 patients, 60 patients, and 50
patients in three cohorts), and 243 of the 250 (97.2%) patients
suffered NSCLC progression during the follow-up period. The
mean PFS for the training, internal validation, and external
validation cohorts was 9.82 ± 6.86 months (range 0.3-35
months), 12.14 ± 8.47 months (range 1-40.5 months), and
15.20 ± 11.49 months (range 2.1-58.5 months), respectively.

PFS Prediction Performance of the
RAD-Score and the Combined Model
A three-feature signature was built by four-step feature selection in
the training cohort (Supplemental Tables S3, S4), and it was
further used for the construction of multivariable radiomics
model (Supplemental Table S5), and the Rad-score was
ca lcu la ted for each pat i ent . Rad-score = 0 .242 ×
PET_wavelet_LHL_First-order 90th percentile + 0.214 ×
PET_wavelet_LHL_GLDM Large Dependence High Gray Level
Emphasis + 0.199 × CT_wavelet_HHH_First-order Kurtosis.

The C-index of the radiomics model (Rad-score) for PFS
prediction was 0.65 (95% confidence interval (CI): 0.60-0.70) for
the training cohort and 0.61 (95% CI: 0.53-0.68) and 0.60 (95%
CI: 0.52-0.68) for the internal and external validation cohorts,
respectively (Table 2). The AUC for the radiomics model (Rad-
score) ranged from 0.58 to 0.72, 0.64 to 0.74, and 0.67 to 0.79 for
10-month, one-year, and 14-month PFS probability prediction in
the three cohorts, respectively (Table 2 and Figure 1A).

In univariate Cox proportional hazards regression analysis,
after FDR correction, only N stage was found to be significantly
associated with PFS in the training cohort. The corresponding C-
index, p values and hazard ratios (HRs) with 95% CIs are detailed
in Supplemental Table S6. The C-index of the clinical model (N
stage) was 0.59 (95% CI: 0.54-64), 0.56 (95% CI: 0.47-0.64), and
0.56 (95% CI: 0.48-0.64) for training, internal and external
validation cohorts, respectively. The AUC of clinical model for
10-month, one-year, 14-month PFS probability prediction
ranged from 0.62-0.67, 0.57-0.71. and 0.59-0.62 in the three
cohorts, respectively (Table 2 and Figure 1B). The combined
model incorporating the Rad-score and N stage yielded a
November 2021 | Volume 11 | Article 721318
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TABLE 1 | Demographic and clinicopathologic characteristics of the training cohort, internal validation cohort and external validation cohort.

Characteristics Training set (n = 140) Internal validation set (n = 60) p value External validation set (n = 50)

Age (years) 0.642
Mean ± SD 57.83 ± 11.47 58.57 ± 12.25 61.46 ± 12.99

Gender 0.241
Male 71 (50.7%) 25 (41.7%) 23 (46.0%)
Female 69 (49.3%) 35 (58.3%) 27 (54.0%)

Location 0.826
Left 56 (40.0%) 25 (41.7%) 28 (56.0%)
Other 84 (60.0%) 35 (58.3%) 22 (44.0%)

Pathological typing 0.479
Adenocarcinoma 133 (95.5%) 59 (98.3%) 48 (96.0%)
Other 7 (5.0%) 1 (1.7%) 2 (4.0%)

T category 0.925
TI 22 (15.7%) 10 (16.7%) 6 (12.0%)
T2 49 (35.0%) 18 (30.0%) 12 (24.0%)
T3 28 (20.0%) 13 (21.7%) 6 (12.0%)
T4 41 (29.3%) 19 (31.7%) 26 (52.0%)

N category 0.454
N0 15 (10.7%) 8 (13.3%) 9 (18.0%)
N1 20 (14.3%) 6 (1.0%) 3 (6.0%)
N2 51 (36.4%) 17 (28.3%) 6 (12.0%)
N3 54 (38.6%) 29 (48.3%) 32 (64.0%)

M category 0.231
M0 5 (3.6%) 0 (0.0%) 2 (4.0%)
M1a 30 (21.4%) 16 (26.7%) 9 (18.0%)
M1b 60 (42.9%) 27 (45.0%) 10 (20.0%)
M1c 45 (32.1%) 17 (28.3%) 29 (58.0%)

Tobacco use 0.311
Smoker 40 (28.6%) 13 (21.7%) 14 (28.0%)
No smoker 100 (71.4%) 47 (78.3%) 36 (72.0%)

Base PS score 0.770
< 2 129 (92.1%) 56 (93.3%) 38 (76.0%)
≥ 2 11 (7.9%) 4 (6.7%) 12 (24.0%)

Mutation status 0.319
EGFR 19Del 64 (45.7%) 30 (50.0%) –

EGFR 21L858R 53 (37.9%) 25 (41.7%) –

Other EGFR 23 (16.4%) 5 (8.3%) –

CEA 0.835
Mean ± SD 110.64 ± 209.31 130.37 ± 248.97 –

CYFRA21-1 0.987
Mean ± SD 8.44 ± 11.37 10.19 ± 18.53 –

Brain metastasis 0.064
Yes 19 (13.6%) 15 (25.0%) 11 (22.0%)
No 121 (86.4%) 45 (75.0%) 39 (78.0%)

Bone metastasis 0.275
Yes 84 (60.0%) 31 (51.7%) 33 (66.0%)
No 56 (40.0%) 29 (48.3%) 17 (34.0%)

Liver metastasis 0.162
Yes 21 (15.0%) 4 (6.7%) 2 (4.0%)
No 119 (85.0%) 56 (93.3%) 48 (96.0%)

Lung metastasis 0.828
Yes 63 (45.0%) 28 (46.7%) 23 (46.0%)
No 77 (55.0%) 32 (53.3%) 27 (54.0%)

Pleural metastasis 0.225
Yes 48 (34.3%) 26 (43.3%) 17 (34.0%)
No 92 (65.7%) 34 (56.7%) 33 (66.0%)

Adrenal metastasis 0.159
Yes 25 (17.9%) 6 (10.0%) 10 (20.0%)
No 115 (82.1%) 54 (90.0%) 40 (80.0%)

PFS (months) 0.063
Mean ± SD 9.82 ± 6.86 12.14 ± 8.47 15.20 ± 11.49
Frontiers in Oncology | www.fro
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Age, CEA, CYFRA21-1 and PFS are shown as mean ± standard deviation (SD); other data are the number of patients with the percentage in parentheses. Statistical comparison between
the training cohort and validation cohort was computed with c2 test (categorical variables) or Mann-Whitney U test (continuous variables). PS, performance status; CEA, carcinoembryonic
antigen; CYFRA21-1, non-small cell associated antigens; PFS, progression-free survival.
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TABLE 2 | Model performance on predicting PFS and time-dependent PFS probability.

Model Cohorts C-index (95% CI) AUC1 (95% CI) AUC2 (95% CI) AUC3 (95% CI)

N stage4 training 0.59 (0.54-0.64) 0.62 (0.54-0.71) 0.64 (0.55-0.72) 0.67 (0.58-0.74)
internal validation 0.56 (0.47-0.64) 0.57 (0.44-0.70) 0.60 (0.47-0.73) 0.71 (0.58-0.82)
external validation 0.56 (0.48-0.64) 0.59 (0.44-0.73) 0.62 (0.47-0.75) 0.59 (0.44-0.72)

Rad-score training 0.65 (0.60-0.70) 0.72 (0.64-0.80) 0.74 (0.66-0.81) 0.79 (0.71-0.85)
internal validation 0.61 (0.53-0.68) 0.66 (0.53-0.78) 0.64 (0.50-0.76) 0.67 (0.54-0.79)
external validation 0.60 (0.52-0.68) 0.58 (0.43-0.72) 0.69 (0.55-0.81) 0.76 (0.62-0.87)

Combined model training 0.67 (0.62-0.72) 0.75 (0.67-0.82) 0.78 (0.70-0.84) 0.81 (0.74-0.87)
internal validation 0.61 (0.52-0.69) 0.64 (0.50-0.76) 0.66 (0.52-0.77) 0.72 (0.59-0.83)
external validation 0.60 (0.51-0.69) 0.60 (0.45-0.73) 0.69 (0.55-0.81) 0.71 (0.56-0.83)
Frontiers in Oncology | www.fr
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AUC1, AUCs at 10-month progression-free survival (PFS).
AUC2, AUCs at one-year progression-free survival (PFS).
AUC3, AUCs at 14-month progression-free survival (PFS).
N stage4, Clinicopathological model was built with N stage.
CI, confidence interval; AUC, area under the curve.
A

B

C

FIGURE 1 | Time-dependent receiver operating characteristic (ROC) curves of (A) radiomics model, (B) clinical model and (C) combined model in the training,
interval validation, and external validation cohorts.
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C-index of 0.67 (95% CI: 0.62-0.72) in the training cohort, 0.61
(95% CI: 0.52-0.69) in the internal validation cohort, and 0.60
(95% CI: 0.51-0.69) in the external validation cohort; the AUC
ranges were 0.60-0.75, 0.66-0.78, and 0.71-0.81 for the 10-month,
one-year, and 14-month PFS probability predictions in the three
cohorts, respectively (Table 2 and Figure 1C). The statistical
comparison of the ROC curves between the combined model and
radiomics model (Rad-score) was performed using the DeLong
test method (33). The p values from the DeLong test are given in
Supplemental Table S7. No significant differences were found
(all p values > 0.05); therefore, the combined model showed no
performance improvement when compared with the radiomics
model (Rad-score) for PFS prediction.

Risk Stratification of EGFR-TKI Therapy
and Identification of a Sensitive Population
As shown in Figures 2A, B according to the division of median
value of Rad-score (median value: -0.0721), each of these three
cohorts was divided into slow-progression (blue bars) and rapid-
progression (red bars) in the expectation of EGFR-TKI therapy.
The Kaplan–Meier survival curves of the three cohorts present
significant differences in PFS between the stratified slow and rapid
progression subgroups. Higher Rad-scores were significantly
associated with worse PFS in the training (p < 0.0001), internal
validation (p = 0.0153), and external validation (p = 0.0006)
cohorts. The proportion of rapidly progressing patients in each
cohort was 50%, 47%, and 50%. Compared with the Rad-score, the
Clinicopathological model based on N stage cannot identify the
patients with a high risk of rapid progression in the internal (p =
0.1100) and external (p = 0.4637) validation cohorts (Figure 2C).
At the same time, the combined model incorporating the Rad-
score and N stage cannot successfully achieve risk stratification in
the external (p = 0.1010) validation cohort (Figure 2D).
DISCUSSION

Our 2-center study results showed that the established PET/CT
Rad-score had favorable predictive performance for PFS
estimation. It can accurately quantify the risk of progression after
first-line EGFR-TKI treatment in NSCLC patients and identify
populations sensitive to targeted therapy for EGFR-mutant NSCLC
to help develop personalized clinical treatment regimens.

At present, few studies based on PET/CT radiomics to predict
PFS of NSCLC patients with EGFR mutations. Although, our
previous study (23) attempted to investigate the performance of
PFS prediction using interim PET/CT (ΔSUVmax and
ΔSUVmean) in stage IIIC/IV EGFR-mutant NSCLC patients
with EGFR-TKI therapy, this is a single-centre study with a small
cohort size (78 patients), the AUCs of the ΔSUVmax and
ΔSUVmean were 0.764 and 0.725, respectively. This results has
not been validated with independent cohorts from different centers,
hence it may be over-fitting. Our results showed that the AUCs of
the Rad-score were 0.72, 0.74, and 0.79 for 10-month, one-year, and
14-month PFS probability prediction in the training cohort. This is
comparable with previous study. However, the corresponding
Frontiers in Oncology | www.frontiersin.org 7
AUCs were 0.66, 0.64 and 0.67 in the internal validation cohort,
and 0.58, 0.69 and 0.76 in the external validation cohort, which
reiterates the importance of multi-center independent validation to
reflect the actual performance of radiomics model. Furthermore,
this results are consistent with study by Kirienko et al. (15), which
used PET/CT radiomics signatures to successfully predict disease-
free survival (DFS) of 259 patients with NSCLC after surgery; it
achieved an AUC of 0.68 via using PET/CT signature in the
independent validation cohort (90 patients), and an AUC of 0.65
after combining it with clinical predictors. While the C-index of
above studies were not reported, so there is no direct comparison of
C-index. Importantly, our Rad-score had higher C-index and AUCs
than clinical N stage in all three cohorts (Table 2), and can
effectively identify the patients with low risk of slow progression
in internal and external validation cohorts, and for these patients,
EGFR-TKI therapy showed great clinical benefits (Figure 2).

In this study, a total of 2074 (1037 PET and 1037 CT)
radiomics features were extracted to quantify the phenotypic
characteristics of the tumor region in PET and CT images, and a
4-step feature selection method was performed to avoid model
overfitting. In particular, the robustness of feature extraction to
different contours of segmentation was evaluated, which may
improve the stability and generalizability of model. Herein, we
used supervoxel-based contour randomization (24) to create
perturbed ROIs in PET and CT images of 60 randomly
selected patients, respectively. Having 60 patients (120 PET
and CT ROIs) perturbed would have made it possible to assess
the robustness of feature extraction (34–36). Furthermore, due to
the perturbed ROIs may deviate from tumor region, even include
some non-tumor slices (Supplementary Figure S1), which may
leads to unnecessary removal of features in robustness
assessment, the perturbed results were further checked and
adjusted slice by slice, which is also a time-consuming process.

It is worth noting that nearly 90% (1867 of 2074) features
were non-robust (309 of 2074 features) and redundant (1558 of
2074 features) (Table S3). Furthermore, Chalkidou et al.
reported that 10 to 15 observations per predictor variable are
minimally required to produce reasonably stable estimates (37).
The top 10 features (140 training samples) were therefore
selected from the remaining 10% features via univariate Cox
analysis, and three-feature signature was eventually built via
exhaustive search, which considered all possible combinations

(1013 combinations = o
10

k=2

Ck
10) in multivariable Cox analysis. The

signature consists of two PET features and one CT feature, namely
PET_wavelet-LHL_first-order 90th Percentile (a measure to
describe the 90th percentile of intensity distribution of wavelet-
filtering PET images), PET_wavelet-LHL_gldm Large
Dependence High Gray Level Emphasis (a measure to gauge the
distribution of large dependence with higher gray-level values in
Gray Level Dependence Matrix (GLDM) of wavelet-filtering PET
images), and CT_wavelet-HHH_first order Kurtosis (a measure of
peakedness in the intensity distribution of wavelet-filtering CT
images). Our study showed that the Rad-score built with the three
features could predict posttreatment PFS in the training group and
the 2 validation groups of EGFR-TKI-treated patients (Figure 2B).
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The PET/CT Rad-score identified 123 patients with rapid
progression after treatment and 127 patients with slow
progression after treatment from 250 patients in the EGFR-TKI
treatment group. The PFS of the corresponding two types of
patients was 8.56 ± 5.17 months and 14.54 ± 10.19 months. There
was a statistically significant difference (p < 0.0001) in PFS between
the two groups (Figure 3). The rapid-progression patients in the
EGFR-mutated NSCLC group did not benefit from EGFR-TKI
treatment and were a TKI-treatment insensitive population. In
this study, the PET/CT Rad-score successfully achieved accurate
Frontiers in Oncology | www.frontiersin.org 8
quantification of the risk of progression after first-line first and
second generation EGFR-TKI drug therapy in stage IIIC/IV
EGFR-mutated NSCLC patients and identified first and second
generation EGFR-TKI treatment-sensitive populations.

Clinicopathological information on the combination of
peripheral invasion and metastasis might reflect the biological
invasiveness of tumors and have some predictive prognostic value
(38). However, our survival analysis results identified only N stage
among the clinicopathological factors as a risk factor for predicting
PFS in patients receiving EGFR-TKI treatment, while lymph node
A

B

D

C

FIGURE 2 | (A) Rad-score according to the three-feature signature and Kaplan–Meier survival curves of (B) radiomics model, (C) clinical model, and (D) combined
model in the training (left), interval validation (middle), and external validation cohorts (right). All scores have subtracted the cutoff. P values were calculated using the
log-rank test.
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metastasis is a well-established prognostic feature for predicting
the prognosis of NSCLC (39–42). The predictive value of T stage
and distant metastasis varies in different studies (4, 43–45), and
our study showed that T stage, M stage, and metastasis at all sites
were not prognostic factors. Smoking history is a causative risk
factor for lung cancer (46), but whether smoking history is a risk
factor affecting the therapeutic effect of lung cancer remains
inconclusive (47–49). Pathological type and EGFR mutation
(exon 18 deletion, exon 19 deletion, or exon 21 L858R
substitution) subtype are still controversial prognostic factors in
different trials (5, 39, 50–52). In our study, we found that
differences in pathological type as well as three common EGFR
mutations did not differ in terms of their benefit for EGFR-TKIs
(p > 0.05). CEA and NSCLC-associated antigen are important
indicators for monitoring the recurrence and progression of
NSCLC, but our study did not show them as prognostic factors
for predicting PFS. In addition, this analysis did not show that sex
had a significant prognostic impact (41).

In the evaluation of the value of the clinicopathological model
and Rad-score-clinicopathological combined model, our study
showed that the combined model showed no significant PFS
prediction performance improvement when compared with the
Rad-score, and the AUC did not significantly improve. In
addition, compared with the Rad-score, the clinicopathological
model based on N stage had poor performance of risk
stratification and could not identify sensitive patients with
Frontiers in Oncology | www.frontiersin.org 9
EGFR-TKI therapy in the internal (p = 0.1100) and external
(p = 0.4637) validation cohorts. At the same time, the combined
model incorporating the Rad-score and N stage could not
successfully achieve risk stratification in the external validation
cohort (p = 0.1010) and thus could not identify patients with
rapid progression who are resistant to EGFR-TKI therapy. The
possible reason may be that the clinical factor contains limited
and rough prognostic information; moreover, due to tumor
heterogeneity, pathological factors cannot reflect the overall
tumor differentiation (53, 54). Our findings are in line with
those of recent studies that the Rad-score-clinicopathological
combined model does not improve the PFS prediction
performance (15, 55).

Despite the favorable results of the Rad-score, our study also
has some limitations. First, the PET/CT images from two centers
were affected by different scanners and protocols. This effect was
compensated by the ComBat harmonization method. A more
comprehensive method to balance the scanner variance is worth
future exploration. Second, we mined 3 prognostic features from
PET/CT images and compared their performance with
clinicopathological factors. The relationship between the
radiomic features and biological level events was not
investigated, which limits the broad translation of such
radiomics model into clinical application.

Some efforts have been made to introduce biological meaning
into radiomics. Tunali et al. performed genomic analysis and
FIGURE 3 | Kaplan–Meier survival curves of slow progression subgroup TKI patients (blue line) and rapid progression subgroup TKI patients (red line). P value was
calculated using the log-rank test.
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immunohistochemistry analysis for carbonic anhydrase IX, and
demonstrated that CT treatment response biomarkers for
patients with lung cancer treated with immunotherapy were
strongly associated with hypoxia, a prognostic factor (56).
Ganeshan et al. took a more detailed look at the correlation of
CT texture features from lung cancer tumors to histopathologic
markers of angiogenesis and hypoxia, and concluded that CT
textures appear to be surrogate measure of tumor hypoxia (57).
The interpretability of the radiomics model in terms of the
biological properties of tissue is an essential and challenge
process (58). Our future studies will plan to pursue biological
validation to further explain the radiomics prognostic model.
CONCLUSIONS

In conclusion, a pretreatment PET/CT radiomics biomarker for
the prediction of the PFS of NSCLC patients with stage IIIC/IV
EGFR mutations was established; it has the potential to realize
the precise quantitative stratification of progression risk after
first-line first and second generation of EGFR-TKI drug therapy
and identify EGFR-mutant NSCLC populations sensitive to
targeted therapy. One of the limitation is that the relationship
between radiomics biomarker and biological meaning has not
been investigated in present study.
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