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Excretory/secretory products of anisakid 
nematodes: biological and pathological roles
Foojan Mehrdana*   and Kurt Buchmann

Abstract 

Parasites from the family Anisakidae are widely distributed in marine fish populations worldwide and mainly nema-
todes of the three genera Anisakis, Pseudoterranova and Contracaecum have attracted attention due to their patho-
genicity in humans. Their life cycles include invertebrates and fish as intermediate or transport hosts and mammals or 
birds as final hosts. Human consumption of raw or underprocessed seafood containing third stage larvae of anisakid 
parasites may elicit a gastrointestinal disease (anisakidosis) and allergic responses. Excretory and secretory (ES) com-
pounds produced by the parasites are assumed to be key players in clinical manifestation of the disease in humans, 
but the molecules are likely to play a general biological role in invertebrates and lower vertebrates as well. ES prod-
ucts have several functions during infection, e.g. penetration of host tissues and evasion of host immune responses, 
but are at the same time known to elicit immune responses (including antibody production) both in fish and mam-
mals. ES proteins from anisakid nematodes, in particular Anisakis simplex, are currently applied for diagnostic purposes 
but recent evidence suggests that they also may have a therapeutic potential in immune-related diseases.
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Background
Anisakid nematode larvae of the genera Anisakis, Pseudo-
terranova, and Contracaecum (family: Anisakidae; super-
family: Ascaridoidea; order: Ascaridida) are common 
parasites in a variety of marine fish species worldwide 
(Table 1). Different species of these parasites have been rec-
ognized, while some of them include sibling species within 
a particular morphospecies, e.g. Contracaecum osculatum 
complex [A, B, C, D, and E] [1], Anisakis simplex s.l. [A. 
simplex sensu stricto (s.s.), A. berlandi (formerly termed A. 
simplex sp. C) and A. pegreffii] [2, 3], and Pseudoterranova 
decipiens complex [P. decipiens (sensu stricto), P. krabbei, P. 
bulbosa (previously termed P. decipiens C) and P. azarasi 
(formerly termed P. decipiens D)] [4, 5]. Infection with these 
parasites is considered a threat to public health due to their 
zoonotic potential, and the presence of larvae in fish prod-
ucts reduces their commercial value. Free or encapsulated 
larvae are present within the body cavity, in the visceral 
organs or in the musculature of the fish host [6] whereby 

larvae may accidentally be ingested by consumers. The 
term anisakidosis refers to the disease in humans caused 
by any member of the family Anisakidae, whereas anisakia-
sis (or anisakiosis) is specifically caused by members of the 
genus Anisakis, pseudoterranoviasis (or pseudoterranovo-
sis) by the genus Pseudoterranova [7, 8] and contracaeciasis 
(or contracaecosis) is caused by members of the genus Con-
tracaecum [9]. Recent studies have revealed that a series of 
allergens in Anisakis play a major role in the progression 
and clinical picture of the disease. These allergens are a part 
of a rich series of excretory and secretory (ES) worm prod-
ucts, which may play profound biological roles in the life 
cycle of these helminths. Research on anisakid ES products 
has so far mainly focused on Anisakis spp., in particular A. 
simplex, owing to its frequent occurrence and cause of ani-
sakiasis. In the present work, we review the biological and 
pathological role of anisakid ES products with a main focus 
on the compounds released from the genus Anisakis.

Search strategy
A literature search was conducted in PubMed (http://
www.ncbi.nlm.nih.gov/pubmed) and ScienceDirect (http://
www.sciencedirect.com) using the terms “excretory and 
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secretory products” AND “allergy” OR “anisakidosis” com-
bined with anisakid parasites names “Anisakis” OR “Pseu-
doterranova” OR “Contracaecum”. The title and abstract of 
resulted hits were evaluated and the most relevant articles 
were assessed in detail. Our own archives were also used as 
an additional source of information. The papers included in 
this systematic review have been published between 1960 
and 2016.

General biology of anisakids
The life cycles of anisakid nematodes comprise adult 
worms in marine mammals, e.g. seals, sea lions, dol-
phins, whales [7, 10, 11] and/or piscivorous birds [12–14]  
and hatched larvae which are free-living until they are 
ingested by an invertebrate host (e.g. a crustacean) 
whereafter they are transferred to a teleost transport host 
by predation. Humans act only as accidental hosts for 
anisakids. They obtain infection through consumption 
of raw or underprocessed seafood, but the nematodes 
do not reach the adult stage in humans whereby human 
hosts cannot transmit the infection further by releasing 
parasite eggs with feces. In contrast, marine mammalian 
hosts (pinnipeds and cetaceans) allow maturation of the 
anisakid worms in their gastrointestinal tract. Following 
copulation between adult male and female worms, para-
site eggs are released by the adult female worm and leave 
the host with faeces to the marine environment where 
they develop and subsequently hatch [15]. The released 
free third stage larvae (L3) become ingested by the first 
invertebrate hosts (including crustaceans, cephalopods 
and polychaetes) in which they reach extra-intestinal 
sites such as the hemocoel, a process which must involve 
enzymatic activity. Following ingestion by the fish, the 
worm larvae penetrate the fish gut and reach internal 
organs such as body cavity, viscera or musculature. The 
fish host range depends to some extent on the anisakid 
species [2, 13, 16] but their geographical distribution is 
also limited by the availability of the intermediate and 
final hosts [17]. Therefore, the presence of the parasite 
in a host implies the co-presence of all the required host 
species for completing the parasitic life cycle at the same 
time in the same area and indicates that ES genes encod-
ing products needed for all steps in the life cycle are pre-
sent in that particular strain of the parasite [18].

Human infections
Humans are accidental hosts of anisakid parasites, and 
acquire L3 through consumption of raw or inadequately 
processed seafood. Ingestion may cause anisakidosis, 
which is manifested by distinct gastrointestinal symp-
toms, e.g. vomiting, diarrhoea, and epigastric pain [19, 
20]. Anisakis simplex s.s. (Rudolphi, 1809) is the most 
frequently reported causative agent for anisakiasis [8] but 

recently Anisakis pegreffii was reported to cause anisakia-
sis in the Republic of Korea [21], Croatia [22], and Italy 
[23, 24]. Infections caused by P. decipiens (Krabbe, 1878) 
[25, 26] and C. osculatum (Rudolphi, 1802) [27–29] have 
been reported at a lower frequency (Table 1). Infections 
with Pseudoterranova may in certain cases cause asymp-
tomatic infections and come to medical attention only 
when worms are recovered following vomiting, cough-
ing or defecating [30, 31]. The few cases of contracaecia-
sis reported severe abdominal pain associated with the 
infection [27, 28].

Production of ES compounds
During all stages of the life cycle, nematodes produce 
and release a series of excretory and secretory molecules 
(ES compounds) which may be key players in parasite-
host interactions including host-specificity. However, 
this does not necessarily mean that the composition of 
compounds or the individual molecules are identical at 
all stages [32]. It may be suggested that production of ES 
compounds in the third stage larvae varies (quantitatively 
and qualitatively) depending on the type of host (crus-
taceans, fish and mammals) due to the different struc-
tural and physiological conditions in these host groups. 
The habitat of poikilothermic organisms, such as crus-
taceans and fish, may reach near zero degree in certain 
marine areas whereas marine mammals are homoiother-
mic animals with body temperatures near 40  °C, which 
challenges the temperature optima of enzymatic systems 
differently. Thus, the temperature-dependent produc-
tion of ES compounds in Anisakis was shown by Bahlool 
et al. [33]. In addition, the chemical interactions (such as 
receptor-ligand binding) between host and parasite must 
differ due to conformational changes of proteins at dif-
ferent temperatures. A number of genes encoding central 
immune factors have been partly conserved throughout 
evolution from invertebrates via fish to mammals, but 
the variation is high [34, 35] and thereby it should be 
expected that host evasion mechanisms in different ani-
mal groups differ. It has also been suggested that differ-
ences among life cycles of different parasite species and 
even sibling species [11, 36] may be attributed to the rela-
tive abundance and function of these bioactive molecules 
influencing host specificity [37].

Biochemical composition of ES products
The ES molecules can be released from parasite organs 
including glands, oesophagus, ventricle, intestine and 
outer surfaces. In the final host, adult male and female 
worms mate and it is believed that during this phase 
chemical communication occurs between sexes which 
may add sex pheromones to the list of possible ES prod-
ucts. At all stages various enzyme activities have been 
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associated with the released materials. Enzymes serving 
a basic metabolic role in the parasite, acid and alkaline 
phosphatases are found [33] and together with enzymes 
connected to infectivity, immune evasion and patho-
genicity (proteases, nucleotidases, esterases, glycases, 
dismutases) they may serve roles at all life cycle stages. 
However, no studies have as yet been presented show-
ing the action of ES products in invertebrate hosts and it 
cannot be excluded that different isotypes are expressed 
to different degrees in intermediate and final hosts. It 
is known that hydrolytic enzymes enable the worm to 
penetrate and migrate in fish tissues [33] and several 
other functions have also been suggested for secreted 
proteins from nematodes. For example, some antico-
agulant activities are recorded from larval A. simplex ES 
products causing prolongation of partial thromboplastin 
time (PTT) which may have a key role in human anisa-
kiasis regarding larval penetration into the gastrointesti-
nal mucosa [38]. Moreover, a number of ES compounds 
from A. simplex larvae ranging from 66 to 95 kDa may 
have a cytostatic inhibitory effect on lymphocyte blas-
togenesis [39]. Acetylcholinesterase (AChE) released by 
some gastrointestinal nematodes may play an impor-
tant role in altering permeability of host intestinal cells 
to secure parasite feeding and therefore survival. This 
enzyme may also adversely affect coagulation and glyco-
genesis in the host [40]. Podolska and Nadolna [41] spec-
ulated that increased secretion of AChE from A. simplex 
larvae in herring should be considered an adaptive 
response to neurotoxic compounds released by the host. 
In general, nematode secretions have immunomodula-
tory effects interfering with host immune responses. 
AChE, glutathione-S-transferase (GST), and superoxide 
dismutase (SOD) secreted by the hookworm Necator 
americanus are known to suppress host inflammatory 
responses [42]. This is in line with secreted AChE from 
the filarial nematode Wuchereria bancrofti where the 
suppressive effect is due to degradation of acetylcholine, 
a neurotransmitter, which is responsible for releasing 
lysosomal enzymes and phagocytosis in the host [43]. 
AChE produced by the ruminant nematodes Osterta-
gia and Haemonchus has been assumed to affect host 
responses by controlling gastric acid secretion [40]. GST 
has been identified in secretions from the swimblad-
der nematode Anguillicoloides crassus in European eels 
and its function was suggested to quench reactive oxy-
gen radicals released as part of the host innate responses 
toward the infection [44]. Proteolytic enzymes produced 
by A. simplex larvae are likely to target central proteins 
in the teleost immune system, e.g. antibodies and com-
plement factors, and thereby enhance the parasite sur-
vival in the fish [33].

Future proteomic studies are likely to extend the list 
of annotated molecules in the ES molecule mixture of 
anisakids but it may be worthwhile to search molecules 
already described from a range of parasites (see the 
review [37]). Thus, apart from a range of enzymes and 
antioxidants, functional effector molecules including 
protease inhibitors, lectins, heat shock proteins, mucins 
and cytokine regulators may be detected.

Immunogenicity of ES products
Many of the A. simplex ES molecules are highly immuno-
genic and can provoke antibody production both in fish 
and mammals. Serum obtained from infected saithe (Pol-
lachius virens) were found to react with larval A. simplex 
molecules in an enzyme linked immunosorbent assay 
(ELISA) [45], and specific antibodies from European eel 
(Anguilla anguilla) reacting against GST in ES isolated 
from A. crassus were detected by western blotting [44]. 
ES molecules in other anisakid larvae have not been stud-
ied to the same extent, but several proteins from Contra-
caecum species have been isolated and shown to elicit a 
humoral response in Antarctic teleosts [46]. Seals also 
produce antibodies with affinity to anisakid antigens. In 
a study focusing on seal serum antibody reactivity against 
the adult lungworm Otostrongylus circumlitus, it was 
found that the sera also reacted with whole body extract 
of other nematodes including Pseudoterranova sp. and 
Anisakis sp. [47]. This corresponds to the well-studied 
antibody production in mammals against nematode 
antigens, which even has been found associated with 
protective immunity [48, 49]. The humoral immune reac-
tions against ES products from A. simplex in accidentally 
infected humans have been intensely investigated. Sev-
eral immunoglobulin classes may be involved, but worm 
specific IgE has attracted considerable interest because 
it is associated with disease progression and allergic 
responses to the parasite.

Allergenicity of ES products
Symptoms associated with anisakid nematode larvae 
present in human tissues may—at least in some cases—
be due to allergic responses. Allergens in A. simplex 
comprise both somatic antigens (SA) and ES molecules 
and several have been shown to be resistant to various 
freeze-, heat- and digestive processes. It is believed, based 
on empirical data, that allergy towards A. simplex must 
be induced by an active infection by a live worm but then 
subsequent exposure to allergens including ES products 
is sufficient to elicit an allergic response [50]. However, 
ingestion of larvae is not the only possibility to acquire 
anisakid-related disease. Occupational exposure to the 
parasitized fish containing anisakid allergens can elicit 
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allergic reactions, e.g. bronchial hyperreactivity and der-
matitis [51–53].

Anisakis allergens
Anisakis simplex has so far been described as the only 
anisakid parasite responsible for allergic reactions in 
humans. Different groups of allergenic molecules have 
been isolated from L3 larvae; (1) ES proteins secreted by 
the parasite, (2) SA of the larval organs, and (3) cuticu-
lar proteins [8]. Allergenic proteins (Ani s1 to Ani s12, 
Ani s 13, Ani s 14, Ani s 24  kDa, Ani s CCOS3, Ani s 
cytochrome B, Ani s FBPP, Ani s NADHDS4L, Ani s 
NARaS, Ani s PEPB, and Ani s troponin) have been 
described in A. simplex, of which Ani s 1, Ani s 2, Ani s 7, 
Ani s 12, Ani s 13, Ani s 14, and an Ani S 11-like protein 
(Ani s 11.0201) are identified as major allergens [54–60]. 
Allergens Ani s 7 and Ani s 10–12 are still uncharacter-
ized with unknown functions [54]. A number of puta-
tive novel allergens (cyclophilin and two proteins with 
unknown function) have recently been characterized for 
the first time from A. simplex transcriptomes by compar-
ing predicted amino acid sequences with homologous 
known allergenic proteins [61]. In general, A. simplex ES 
allergens are known to be more potent which could be a 
result of their higher affinity to specific IgE compared to 
the somatic antigens [62].

Allergen persistence
Despite the fact that anisakid larvae lose their infectiv-
ity by adequate food preparation, it should be noted that 
parasite allergens (SA or ES products) may be resistant to 
heat, freezing, and pepsin (Ani s 1, Ani s 4, Ani s 5, Ani 
s 8, Ani s 9, Ani s 10, Ani s 11.0201) as they preserve the 
antigenicity and may trigger allergic responses in sensi-
tized persons following consumption of well-cooked or 
canned fish [60, 63–70].

Allergen cross‑reactivity
IgE raised in patients against SA and ES antigens of A. 
simplex may cross-react with homologous antigens of 
other ascarid nematodes (e.g. Ascaris suum, Ascaris lum-
bricoides, Toxocara canis, Hysterothylacium aduncum), 
or arthropods (German cockroach, chironomids) [71–
73]. However, somatic proteins are more likely to cross-
react, while ES antigens are more specific. For example, 
Ani s 2 (paramyosin, a somatic antigen) has been shown 
to have high similarity and, therefore, high degree of 
cross-reactivity with some dust mites, e.g. Acarus siro 
and Tyrophagus putrescentiae. Ani s 3 (tropomyosin), 
another somatic allergen, is also suggested to have the 
potential to cross-react with molecules from crusta-
ceans, e.g. Homarus americanus (American lobster), and 
Metapenaeus ensis (greasyback shrimp), molluscs, e.g. 

Perna viridis (green mussel), and Crassostrea gigas (giant 
Pacific oyster), and also with the insect American cock-
roach (Periplaneta americana) [74]. The allergen Ani s 1, 
an ES protein, is generally considered to have no cross-
reaction with other allergens, which make it a suitable 
candidate for diagnosis of hypersensitivity and intestinal 
anisakiasis [75, 76]. Using this allergen along with Ani s 4 
has been shown to achieve a diagnostic sensitivity of 95% 
by IgE immunoblotting [77]. Further precision of diagno-
sis may be achieved if combined with detection of Ani s 
5, another ES antigen, which also has demonstrated its 
utility for serodiagnosis of the Anisakis larvae sensitiza-
tion [68].

Allergens in other anisakids
The allergenic potential of other anisakids, e.g. P. decipi-
ens, molecules has not been studied to the same extent as 
A. simplex. A number of somatic antigens in C. oscula-
tum larvae have been isolated with the molecular weight 
of 47, 63, and mainly 91 kDa [46], but a recent study using 
experimental infection of mice with live Contracaecum 
sp. larvae did not show IgG or IgE antibody responses 
specific to SA or ES antigens [78]. However, the Contra-
caecum body structure and migratory strategy in the fish 
host are partly similar to those of Anisakis larvae [79] 
suggesting that further genomic and proteomic analysis 
of SA and ES molecules of Contracaecum L3 should be 
conducted.

Pathology and ES products
Pathological changes associated with anisakidosis may 
result from the direct tissue invasion by the larva into 
the gastric or intestinal mucosa, but immunological 
reactions (cellular and humoral) towards worm con-
stituents are likely to play a major role. It has been 
suggested that the parasite pathogenicity may vary 
among closely related species and geographic strains 
[80–82] which may at least partly explain differential 
occurrence of disease. In addition, the infection dos-
age may be expected to influence the host reaction. In 
many cases of anisakidosis a single larva is responsible 
for infection. However, a total of 56 A. simplex larvae 
were recovered in a patient in Japan [83], and another 
human case in Spain was diagnosed infected with more 
than 200 A. simplex larvae accumulated in the gastric 
mucosa [84].

Clinical symptoms are partly connected to allergic 
reactions involving IgE-mediated hypersensitivity with 
resulting acute urticaria, angioedema, and anaphylaxis 
occasionally accompanied by gastroallergic anisakido-
sis [8, 85–89]. However, specific anti-Anisakis IgE is still 
detectable in patients over the years after the allergic epi-
sodes with a declining trend [90].
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Cellular reactions with partial remodeling of tissues 
involving infiltration with macrophages, eosinophils, 
mast cells, neutrophils and lymphocytes at the penetra-
tion site are known to occur both in fish and pigs [33, 
91]. Furthermore, in a recent in vitro study exposure of 
human fibroblast cell line HS-68 to A. pegreffii ES com-
pounds led to elevation in reactive oxygen species (ROS) 
levels causing oxidative stress and also activation of 
kinases and subsequent inflammation, cell proliferation, 
inhibition of apoptosis and DNA damage [92].

In the case of invasive anisakidosis, ulcerations and 
hemorrhages are found in the intestinal or stomach wall. 
Even if worm larvae die in the human host, it should be 
noted that antigens released from the remains of the 
worm may induce inflammatory responses eliciting 
symptoms which cannot be differentiated from other dis-
orders, e.g. cholecystitis, neoplasia, gastritis, peritonitis 
[93], appendicitis [94], eosinophilic gastroenteritis, and 
Crohn’s disease [95].

Diagnosis and ES products
Diagnosis of anisakidosis initially relies on a detailed 
history of recent seafood consumption and may be con-
firmed by direct visualization and examination of the 
larvae. Removal of the worm by endoscopy/colonos-
copy [96] or surgery [97] allows concurrent diagnosis 
and treatment of gastric/intestinal form of the disease, 
but non-invasive methods such as sonography and X-ray 
have also been proven as valuable diagnostic tools [98–
100]. Haematological evaluations may show leukocy-
tosis, e.g. mild to moderate eosinophilia, and mast-cell 
degranulation [93, 101, 102]. Diagnosis of anisakiasis can 
be conducted with serologic tests which are partly based 
on reactions towards ES products of the worm. ELISA, 
IgE immunoblotting and ImmunoCAP can detect Anisa-
kis-specific IgE reactivity to a complete extract of Anisa-
kis L3 larvae which supports diagnosis of intestinal and 
allergic diseases [75, 103–105]. However, interpretation 
of results may not be clear-cut due to cross-reactivity of 
the A. simplex antigens with other antigens such as prod-
ucts from Ascaris spp., T. canis, insects (cockroaches) or 
crustaceans (shrimps) and care should be taken to omit 
false-positive serology results [106–108]. Since it has 
been shown that detection of specific IgG4 raised in the 
infected human host against A. simplex is likely to be 
more specific than specific IgE in diagnosis of gastro-
allergic anisakiasis [88, 109], detection of this Ig subclass 
is relevant to include in serological tests. Flow cytometry 
has also been applied as a tool for diagnosing allergy to 
Anisakis products activating basophils [110]. Skin prick 
tests (SPTs), inserting Anisakis products into the skin of 
the patient, may assist diagnosis of the allergic form of 
the disease mediated by cellular immune responses, but 

the test has a low specificity and high rate of false posi-
tives due to cross reactivity with other allergens from 
seafood and mites [111], and from A. lumbricoides [112, 
113]. This frames the necessity of improving diagnostic 
kits based on specific Anisakis antigens, e.g. purified nat-
ural or recombinant allergens [114–116] and has accel-
erated immunoscreening of protein-expressing cDNA 
libraries [117], phage display system [118], and mass 
spectrometry-based proteomics [54] to identify novel 
allergen candidates.

It has been shown that the application of recombi-
nant allergens of A. simplex, expressed in Escherichia 
coli or Pichia pastoris, can improve diagnostic assays 
by increasing specificity and avoid misdiagnosis caused 
by cross-reactions [115]. Measuring IgE reactivity to 
recombinant Ani s 1 (rAni s 1) and Ani s 7 (rAni s 7) 
allergens has been suggested as the most efficient sero-
diagnostic means for anisakiasis, when combining sen-
sitivity and specificity. However, Ani s 1 is considered 
the major allergen in gastro-allergic anisakiasis, while 
Ani s 7 can be recognized independently of the amount 
of specific IgE production, i.e. in the case of chronic 
urticaria with lower serum specific IgE values [119, 
120]. Furthermore, an internal fragment of the rAni s 7 
(435Met-713Arg), known as t-Ani s 7, is shown to have 
the potential to improve serodiagnostic specificity [121]. 
In a recent survey of two groups of subjects in Norway, 
including recruited blood donors (BDO) and patients 
with total IgE levels ≥1000 kU/l (IGE+), the prevalence 
of anti-Anisakis IgE antibodies was 0.4 and 16.2% in 
the BDO and IGE+ groups, respectively. However, fur-
ther analyses of Anisakis positive sera by ELISA against 
recombinant allergens rAni s 1 and rAni s 7 showed a 
seroprevalence of 0.0 and 0.2%, respectively, and it can-
not be excluded that false-positivity occurs due to cross-
reactivity to other allergens such as shrimp and house 
dust mite [122]. Gamboa et al. [123] also emphasized the 
value of rAni s 1 for diagnosing allergy to Anisakis both 
in vivo (SPT) and in vitro [specific IgE and basophil acti-
vation test (BAT)]. Both natural and recombinant Ani s 
10 have also shown positive reactivity with 39% of Ani-
sakis-allergic patients’ sera [69]. Besides high specificity, 
there are other advantages using recombinant allergens. 
For example, the yield of purified recombinant Anisa-
kis proteins from bacterial cultures is higher compared 
to the yield of the natural protein from Anisakis larvae, 
while they show equivalent immunochemical properties 
[124, 125]. Asturias et al. [126] reported a high yield of 
6.6 mg/L culture of a purified recombinant tropomyosin 
from A. simplex (As-TPM), whereas the final yield of the 
purified natural As-TPM was only 0.36  mg/g of Anisa-
kis larvae, which advocates for inclusion of recombinant 
allergens in allergy diagnostic tests.
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Treatment and ES products
There is no standard medication available to treat anisa-
kiasis. However, benzimidazoles such as the anthelmintic 
albendazole (400–800 mg daily for 6–21 days) have been 
suggested as a possible therapy [127–129]. It has also been 
shown that administration of corticosteroids like 6-meth-
ylprednisolone (1 mg/kg/24 h for 5 days) may be a useful 
option to treat the acute intestinal anisakiasis as an alter-
native to surgical resection [130]. Moreover, prednisolone 
(5  mg/day for 10  days) and olopatadine hydrochloride 
(10  mg/day for 6  weeks) have demonstrated promising 
results to resolve intestinal anisakiasis symptoms [100].

In addition, novel treatment options are likely to follow. 
Thus, in  vitro studies on larvicidal activities of natural 
terpenes, e.g. geraniol, citronella essential oil, and tea tree 
essential oil [131, 132], Matricaria chamomilla essential 
oil (including α-bisabolol) and in vivo work on adminis-
tration of the aldehydic monoterpene citral and the alco-
holic citronellol suggested that these compounds may be 
effective against infections caused by A. simplex and/or 
Contracaecum sp. [133–136]. Medical treatment leading 
to killing worm larvae in tissues may result in significant 
release of worm antigens (SA and/or ES products) which 
could exacerbate disease symptoms and it may be nec-
essary to combine treatment with immune-moderating 
drugs such as corticosteroids.

Therapeutic potential of anisakid molecules
Ascarid nematode larvae carry genes encoding various 
immunoregulatory products which ensure the survival of 
the parasite in the host immune environment [137, 138] 
and ES products of anisakids are expected to have simi-
lar properties. In a mouse experimental model of asthma, 
induced by an A. suum allergen (APAS-3), it was shown 
that an ES protein, PAS-1, could reduce Th2 responses, 
inhibit cellular migration, suppress cytokine expression 
(IL-4, IL-5), and reduce chemokine production in bron-
choalveolar lavage (BAL) fluid [139]. Similarly, PAS-1 has 
in a mouse model been shown to have an inhibitory effect 
(probably mediated by IL-10 and TGF-β secretion) on E. 
coli LPS (lipopolysaccharide)-induced inflammation via 
suppression of TNF-α, IL-1β and IL-6 [140, 141]. Lung 
allergic inflammation in mice induced by ovalbumin 
(OVA) was inhibited by PAS-1 immunization mediated 
by stimulation of IL-10 and IFN-γ production and sub-
sequent suppression of cytokine and antibody reactions 
[142, 143]. An anaphylactic immune response to peanut 
in a mouse model has also been inhibited partially by 
A. simplex or A. lumbricoides somatic extracts through 
reduction of specific IgG1 and subsequently inhibi-
tion of anaphylactic symptoms score [144]. It was also 
shown by Bahlool et al. [33] that Anisakis ES compounds 
decreased expression of genes encoding inflammatory 

cytokines. In addition, a recent study has demonstrated 
immunoregulatory effects of A. simplex ES antigens in a 
colitis zebrafish model [145]. These findings suggest that 
by appropriate biochemical techniques the immunoregu-
latory potential of anisakid ES molecules may be further 
characterized and exploited for prevention and/or treat-
ment of inflammatory diseases.

Conclusion and perspectives
Increasing population of anisakid final hosts (marine 
mammals) and thereby their endoparasitic anisakid 
nematodes may lead to elevated infection levels in 
fish [146, 147]. This may together with the increas-
ing trend of raw or undercooked seafood consump-
tion explain increasing occurrence of anisakidosis and 
infection-induced allergies. ES products released by the 
anisakid nematodes have been shown to play a central 
role not only in the general biology of the parasite but 
also in human disease. Some ES products elicit allergic 
responses in humans but as in other helminths, other 
ES products may modify host immunity and suppress 
immune responses which open alternative usage of ani-
sakid parasite products as therapeutics. In this review, 
we have focused on A. simplex allergens and the asso-
ciated allergy, since our current knowledge is mainly 
limited to this species. The immunomodulatory activi-
ties of other relevant anisakids, particularly P. decipi-
ens and C. osculatum, are still inadequately described 
and further investigations using in  vitro and in  vivo 
techniques are necessary to identify the allergenic or 
immunosuppressive properties of anisakid-originated 
components and elucidate the mechanisms involved in 
immunoregulations.
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