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Abstract 

Objective: Ovarian fibromas and adenofibromas are rare ovarian tumours. They are benign tumours composed of 
spindle-like stromal cells (pure fibroma) or a mixture of fibroblast and epithelial components (adenofibroma). We have 
previously shown that 40% of benign serous ovarian tumours are likely primary fibromas due to the neoplastic altera-
tions being restricted to the stromal compartment of these tumours. We further explore this finding by comparing 
benign serous tumours to pure fibromas.

Results: Performing copy number aberration (CNA) analysis on the stromal component of 45 benign serous tumours 
and 8 pure fibromas, we have again shown that trisomy of chromosome 12 is the most common aberration in ovarian 
fibromas. CNAs were more frequent in the pure fibromas than the benign serous tumours (88% vs 33%), however 
pure fibromas more frequently harboured more than one CNA event compared with benign serous tumours. As these 
extra CNA events observed in the pure fibromas were unique to this subset our data indicates a unique tumour evo-
lution. Gene expression analysis on the two cohorts was unable to show gene expression changes that differed based 
on tumour subtype. Exome analysis did not reveal any recurrently mutated genes.

Keywords: Ovarian fibroma, Adenofibroma, Cystadenomas, Cystadenofibroma, Copy number aberrations, Gene 
expression, Exome sequencing, Microarrays
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Introduction
Ovarian fibromas and adenofibromas form part of the 
sex-cord stromal family of tumours and are relatively 
uncommon, accounting for approximately 8% of all diag-
nosed ovarian tumours [1]. These tumours are benign 
entities composed in significant part of fibroblasts (pure 
fibromas), or as compound tumours composed of a mix 
of fibroblast and epithelial (adenofibroma) or sex-cord 
(granulosa-stromal tumours) components. Tumours with 
a cystic epithelial component are termed cystadenomas 
or cystadenofibromas.

Due to their relative rarity and benign nature these 
tumours have not been well molecularly characterised, 
with the majority of studies focussing on immunohisto-
chemistry and cytogenetics. Ovarian fibromas differ from 
fibromas arising in other organs in that they frequently 
express hormone receptors (e.g. ER-β, PR, AR) and are 
typically negative for the characteristic markers of other 
cells derived from a fibroblast/myofibroblastic origin (e.g. 
SMA, CD34, CD117, S-100) [1, 2].

Genomic aberrations involving trisomy and tetrasomy 
of chromosome 12 appear to be particularly prevalent in 
tumours arising in the female genitourinary tract, includ-
ing uterine leiomyomas [3, 4], thecomas [5–7], fibromas 
[7–10] and granulosa cell tumours [11, 12]. The under-
lying biological driver for this recurrent event has yet to 
be established. Other genomic aberrations that arise less 
frequently may be more cell type-specific. Imbalances 
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involving chromosomes 4 and 9 are also common in the 
fibroma-thecoma subgroup, with chromosome 9 aberra-
tions potentially being associated with cellular fibromas 
[13].

We previously reported that around 40% of benign 
serous cystadenomas and cystadenofibromas show copy 
number aberrations (CNA) exclusively in the stroma [14] 
and are thus likely misdiagnosed primary fibromas with 
epithelial inclusion. To investigate this further we under-
took molecular characterisation of these epithelial-stro-
mal tumours in comparison to pure fibromas.

Main text
Materials and methods
Tissue samples
Fresh frozen tissue samples were used for copy number, 
exome and expression analyses. All samples were col-
lected with the patient’s informed consent and the study 
was approved by the Human Research Ethics Commit-
tees at the Peter MacCallum Cancer Centre. Patients 
with ovarian tumors were identified through hospitals in 
the Wessex Region, UK (n = 25) [15] and the Australian 
Ovarian Cancer Study (AOCS) (n = 31) [16, 17]. Pathol-
ogy review was conducted on cryosections adjacent to 
the tissue from which DNA was extracted (PA). Micro-
dissections and DNA/RNA extractions were performed 
as previously described [18]. Samples were selected for 
inclusion based on availability of tissue for DNA and 
RNA extraction.

Copy number data
The Affymetrix SNP6.0 Human Mapping (1.8  M probe 
set) array was utilised for ultra-high resolution allele-
specific copy number analysis. Arrays were performed 
as recommended by the manufacturer with the excep-
tion that the input was reduced from the recommended 
500 ng to 250 ng by reducing reaction volumes by half for 
all processes prior to the SNP6.0 PCR step. Reduction in 
DNA input does not result in any loss in the quality of the 
data. Copy number analysis was performed as previously 
described [18], using Partek Genomics Suite v 6.5. Copy 
number and allele-specific copy number was generated 
paired (when matching normal available) or unpaired 
and circular binary segmentation was performed to iden-
tify regions of copy number and loss of heterozygosity. 
Thresholds were > 2.3 for gains, < 1.7 for losses and < 0.75 
for homozygous deletions. All SNP data has been made 
publicly available through Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/ - GSE67189).

Exome sequencing
For each case 500  ng–1  µg of microdissected tumour 
DNA and matched lymphocyte DNA when available was 

sheared to < 1000  bp using a  Covaris® ultra-sonicator 
 (Covaris®), libraries prepared using the Illumina TruSeq 
DNA Sample Preparation procedure (Illumina), and 
enriched for exome sequencing using the SeqCap EZ 
Human Exome Library v2.0 (Roche NimbleGen). Exomes 
were sequenced with 100  bp PE reads in pools of three 
per lane on a HiSeq 2000 (Illumina).

Sequence reads were aligned to the human genome 
(GRCh37/hg19) using BWA-MEM (v0.7.7-r441) [19, 
20]; duplicates marked using Picard (v1.77); local indel 
realignment and base quality recalibration performed 
using GATK (v2.7-2-g6bda569) [21, 22]; indel detec-
tion performed using GATK Unified Genotyper (v2.7-2-
g6bda569), Indel Genotyper, Pindel (v0.2.5a3) [23], and 
VarScan2 (v2.2.4) [24]; SNV prediction performed using 
GATK Unified Genotyper, MuTect (v2.7-1-g42d771f) 
[25], SomaticSniper [26], JointSNVMix2 (v0.8-b2) [27], 
and VarScan2 (v2.2.4); and variants annotated using 
Ensembl variant effect predictor v73. Exome bam files 
are available from the Sequence Read Archive Accession 
number PRJNA631561 (https ://www.ncbi.nlm.nih.gov/
sra/PRJNA 63156 1).

Variants were enriched for genuine somatic events by 
filtering for those called by >=2 variant callers, with the 
exception of MuTect, which is capable of detecting vari-
ants at lower frequencies and therefore all MuTect vari-
ants were included; germline allele frequency <=0.01 and 
tumour allele frequency >=0.05, with >=0.1 difference in 
allele frequency between tumour and germline; variant 
observed in <=3 of 250 in-house germ-line exomes. All 
variants with a tumour allele frequency >=0.1 were taken 
forward for Sanger sequencing validation.

Expression data
Expression data was generated using the Affymetrix 
Human Gene 1.0 ST array according to the manufactur-
er’s recommendations. An input of 300 ng of total RNA 
was used, as quantified by Nanodrop spectrophotom-
eter. RIN values were determined using the Agilent Bio-
analyzer RNA 6000 Nano assay, the average RIN value for 
the 25 samples was 4.7 (range 1–7.9). Analysis of the data 
was performed using the Partek Gene Expression work-
flow. CEL files were processed using RMA normalisa-
tion and batch correction. All Gene 1.0 ST data has been 
made publicly available through Gene Expression Omni-
bus (http://www.ncbi.nlm.nih.gov/geo/-GSE67223).

Results
The clinical features of the ovarian cohort are presented 
in Table  1. Women with ovarian fibromas compared to 
benign serous ovarian tumours had very similar median 
ages and ranges (64, range 35–80 and 61, range 27–80 
respectively). Interestingly, there appeared to be a strong 

http://www.ncbi.nlm.nih.gov/geo/
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preponderance for both fibromas and benign serous 
tumours to be bilateral or detected on the right ovary 
(Binomial test for left vs right P = 0.02).

Copy number aberrations
Genome-wide copy number analysis was performed 
for eight unselected pure fibromas, and compared to 
copy number data from the stroma of 27 serous cys-
tadenofibromas and 18 serous cystadenomas (collec-
tively referred to as benign serous tumours). CNAs were 
detectable in 7/8 (88%) of the pure fibromas, with gain 
of chromosome 12 being the most recurrently observed 
aberration in five of eight (63%) cases (Additional file 1: 
Table  S1). Other recurrent CNAs in the fibromas were 
gain of chromosomes 9 or 9q (50% cases), 18 and 21 (20% 
cases each). CNAs were detected in the stroma of 33% of 
benign serous tumours. Recurrent gain of chromosome 
12 was also observed in 31% of serous cystadenofibromas 
(8/27) and 17% of serous cystadenomas (3/18), gain of 
9q was only observed in single serous cystadenofibroma 
case, while loss of chromosome 22 was detected in 11% 
of cystadenofibromas (3/27). No CNAs were detected in 
the stroma of the normal ovaries.

Expression analysis
Gene expression arrays were used to compare the stromal 
RNA of three normal ovaries against eight pure fibro-
mas (seven with CNAs), seven cystadenomas (two with 
CNAs), and seven cystadenofibromas (four with CNAs). 
Comparing normal ovary to benign serous tumours or 
fibromas did not identify any differentially expressed 
genes following multiple testing correction. Compari-
son of benign serous tumours to fibromas also did not 

Table 1 Clinical features of cohort

Sample ID Age Laterality CN Gene 
expression

Exome

Pure Fibromas

 IC33 80 Bilateral (same) Y Y

 IC4 n/a Bilateral (same) Y Y

 IC269 59 Right Y Y

 IC425 49 Left Y Y

 IC458 35 Right Y Y

 IC494 53 Bilateral (same) Y Y

 IC181 65 Right Y Y

 IC137 64 Bilateral (other) Y Y

Cystadenofibroma

 IC149 66 Bilateral (same) Y Y

 IC10 59 Right Y Y

 IC164 72 Left Ya Y Y

 IC158 82 Bilateral (same) Ya Y Y

 IC5 81 Left Ya Y Y

 IC103 56 Bilateral (same) Ya Y Y

 IC467 52 Right Ya Y Y

 IC120 74 Right Y Y

 A4 74 Right Ya Y

 A3 61 Bilateral (same) Ya Y

 A2 63 Bilateral (same) Ya Y

 A5 66 Right Ya Y

 A6 75 Bilateral (same) Ya

 A8 48 Bilateral (same) Y

 A9 66 Left Ya

 A10 54 Bilateral (same) Ya

 A25 61 Right Ya

 A11 72 Bilateral (same) Ya

 A12 76 Bilateral (same) Ya

 A61 68 Right Y

 A29 57 Bilateral (same) Ya

 A22 51 Bilateral (same) Ya

 A13 50 Right Ya

 A14 62 Bilateral (same) Ya

 A15 45 Left Ya

 A7 69 Right Ya

Adenofibroma

 IC450 27 Right (other) Ya Y Y

Cystadenoma

 IC148 67 Bilateral (other) Ya Y Y

 IC24 77 Bilateral (same) Y Y

 IC196 46 unilateral (unspecified) Y Y

 IC7 79 Right Ya Y

 IC591 48 Right Y Y

 A17 35 Bilateral (same) Ya Y

 A16 50 Right Ya

 A18 73 Bilateral (same) Ya

 A19 46 Right Ya

 A20 65 Right Ya

Table 1 (continued)

Sample ID Age Laterality CN Gene 
expression

Exome

 A23 58 Bilateral (same) Ya

 A21 64 Bilateral (same) Ya

 A26 55 Bilateral (same) Ya

 A27 59 Left Ya

 A62 68 Bilateral (same) Y

 A63 43 Right Y

 A64 55 Bilateral (same) Y

 A24 58 Bilateral (same) Ya

Normal

 IC79 60 n/a Y

 IC236 n/a n/a Y

 IC369 40 n/a Y

Same = same diagnosis both ovaries. Other = different diagnosis in contralateral 
ovary. n/a, information not available. Y, included in this manuscript
a in Hunter et al. 2011
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identify any differentially expressed genes. Comparison 
of samples based on the presence or absence of CNA, or 
the presence of specific CNA compared to an absence of 
genomic aberrations (with and without tumour subtyp-
ing), did not identify differentially expressed genes that 
remained significant following multiple testing correc-
tion. As these samples are difficult to enrich for neoplas-
tic cells due to a mixture of cell types in the stroma the 
expression signal from the tumour cells will be diluted, 
therefore a less stringent approach was taken to iden-
tify candidate genes by taking the most significantly 
altered genes p <=0.001 with a fold change >=2. Through 
this approach 17 genes were found to be differentially 
expressed based on the presence of specific CNA (gain 
9q and 12, loss of 16q) compared to samples with no 
genomic CNAs (Table 2).

Exome data
Exome sequencing was performed on the stromal DNA of 
seven cystadenofibromas, one adenofibroma and one cys-
tadenoma (all with CNAs), and two cystadenofibromas 

and one cystadenoma with no CNAs. Exome sequencing 
identified 83 putative somatic variants, with an average of 
7 mutations per case (range 2–20). It is difficult to enrich 
for the subpopulation of neoplastic fibroblasts in the 
stroma, as indicated by the low variant allele frequency of 
the majority of the variants (Additional file 2: Table S2), 
and subsequently difficult to validate findings by Sanger 
sequencing. We undertook Sanger validation of a sub-
set of variants for each case. No recurrent mutations or 
recurrently mutated genes were identified that went on to 
validate. In total, 20 somatic variants were able to be vali-
dated by Sanger sequencing (Table  3). Of the validated 
variants, a single nonsense mutation was identified in 
the DMD gene. The remaining 19 validated variants were 
all missense variants, the functional impacts of which 
were assessed using transFIC (Transformed Functional 
Impact for Cancer) (Table 3). No variants from the three 
tumours with no CNAs validated by Sanger sequencing.

The ability to detect variants may be confounded by 
normal DNA contamination. There was a positive corre-
lation between the number of variants detected (before 

Table 2 Candidate genes for differential expression

Gene Cytoband Fold-change P value Function

9q genes gain vs no gain

 HAPLN1 5q14.3 +5.2 0.000008 ECM protein and ERK signalling; overexpressed in metastatic melanoma and mesotheliomas

 PRAME 22q11.22 +3.6 0.000342 Repressor of retinoic acid receptor. Overexpressed in multiple neoplasms (including melanoma)

 SLC17A3 6p22.2 +3.3 0.000081 Voltage-driven transporter. Affects serum uric acid levels

 CKS2 9q22.2 +3.3 0.000232 CDC28 protein kinase regulatory subunit 2. Overexpressed in numerous neoplasms, overrides the 
intra-S-phase DNA damage checkpoint

 ANOS1 Xp22.31 +2.8 0.000297 ECM protein. Putative cell adhesion molecule, upregulated in some tumour types

 RNF182 6p23 +2.5 0.000110 E3 ubiquitin ligase. Overexpressed in Alzheimers

 SLC17A1 6p22.2 +2.3 0.000711 Sodium-dependent phosphate transporter. Affects uric acid levels

 CRB1 1q31.3 +2.1 0.000466 Photoreceptor protein

 SYT14 1q32.2 +2.1 0.000601 Family of proteins involved in synaptic transmission

 C6orf115 6q24.1 +2 0.000848 Uncharacterised protein

 APOD 3q29 −2.6 0.000762 Putative lipoprotein metabolism. Inverse correlation between expression and colorectal tumour 
progression. Associated with neurodegeneration

 CLU 8p21.1 −2.4 0.000751 Secreted anti-apoptotic chaperone protein. Overexpressed in many tumour types and associated 
with neurodegeneration

 SLFN11 17q12 −2.3 0.000237 Putative DNA/RNA helicase. Expression of other family members inhibits growth of fibroblasts and 
thymoctyes. Sensitises cancer cells to DNA damaging agents

chr12 genes gain vs no gain

 NDST3 4q26 +2.9 0.000814 N-deacetylase/N-sulfotransferase 3. Golgi apparatus protein, associated with schizophrenia and 
bipolar disorder

 PRELP 1q32.1 −2.2 0.000646 Connective tissue ECM protein. Abnormally expressed in chronic lymphocytic leukaemia cells

16q genes loss vs no loss

 PRAME 22q11.22 +6.4 0.000347 Repressor of retinoic acid receptor. Overexpressed in multiple neoplasms (including melanoma).

 GLRA2 Xp22.2 +2.7 0.000412 Glycine receptor alpha 2, neutrophil and p38 MAPK associated

 GABRA5 15q12 +2.5 0.000136 GABA receptor alpha 5, associated with schizophrenia and bipolar I disorder

 SLFN11 17q12 −3.6 0.000336 Putative DNA/RNA helicase. Expression of other family members inhibits growth of fibroblasts and 
thymoctyes. Sensitises cancer cells to DNA damaging agents
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validation) and the average allele frequency (Spearman’s 
r = 0.76, P = 0.01, Additional file 3: Figure S1). The mean 
sequencing depth was 121.3 reads (88.6–186.8) for ger-
mline samples and 122.7 reads (72.8–163.6) for somatic 
samples, therefore the detection of low frequency vari-
ants is not substantially compromised by limited depth of 
coverage.

Discussion
The findings of this study are consistent with previous 
karyotyping and FISH studies that identified trisomy 12 
as the most common chromosomal abnormality identi-
fiable in ovarian fibromas [8–10]. Pure ovarian fibromas 
were found to harbour chromosomal abnormalities more 
frequently than benign serous ovarian tumours (88% 
vs. 33%), further supporting our hypothesis that a sub-
set of benign serous tumours are actually fibromas that 
coincidentally have an associated epithelial cyst. How-
ever, benign serous tumours more frequently harboured 
trisomy 12 as the sole aberration (47% of tumours with 
aberrations) compared to fibromas (30% of tumours with 
aberrations). Fibromas also more frequently harboured 
CNA that were rarely detected in the benign serous 
tumours such as 9q gain (50% cases), potentially indicat-
ing unique underlying biological drivers.

Expression analysis provided some interesting can-
didates that have previously been associated with neo-
plasms or fibroblast growth for further investigation. 
Genes with increased expression in tumours with CNAs 
compared to those without CNAs included the extracel-
lular matrix (ECM) and signalling molecules HAPLN1 
and ANOS1, the antigen and repressor of retinoic acid 
signalling molecule PRAME, and the cell cycle regulator 
CKS2. All of these genes have been previously associated 
with overexpression in other types of neoplasm [28–34], 
and PRAME and CKS2 expression have been proposed as 
markers of poor prognosis in high-grade serous ovarian 
carcinoma [33, 35].

Genes with decreased expression in tumours with 
CNAs compared to those without CNAs included the 
putative DNA/RNA helicase SLFN11, the ECM protein 
PRELP, the high density lipoprotein component APOD, 
and the secreted chaperone CLU. Although these have all 
been linked with altered expression in other neoplasms 
before, this has typically been upregulation and poten-
tially linked to neoplastic progression [36–40], includ-
ing in ovarian cancer for APOD and CLU [41, 42]. Data 
is inconsistent for CLU, as expression was also linked to 
improved prognosis in high-grade serous ovarian carci-
noma [33]. Low expression of SLFN11 has been associ-
ated with resistance to chemotherapy in ovarian cancer 
other cancers due to its role in the DNA damage response 
[43].

No genes were found to be recurrently mutated, how-
ever, two tumours had mutations in histone methytrans-
ferases (SETD2 and KMT2D) and one also had a mutation 
in a demethylase (KDM4A), all previously associated with 
neoplasia and all mutations predicted to be deleterious. 
Other mutated genes have also been associated with neo-
plasia, such as HECW2, SRRT  and KLK14, with predicted 
medium to high deleterious impact.

Limitations

– Use of Affymetrix Human Gene 1.0 ST array is lim-
ited to the probes on the array at the time.

– Insufficient power to detect differentially expressed 
genes due to n = 3 normal ovaries.

– Limited ability to detect mutations due to normal 
contamination.
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org/10.1186/s1310 4-020-05194 -z.
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may limit the number of mutations detected.
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