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Abstract: The determination of monoclonal antibody interactions with protein antigens in solution
can lead to important insights guiding physical characterization and molecular engineering
of therapeutic targets. We used small-angle scattering (SAS) combined with size-exclusion
multi-angle light scattering high-performance liquid chromatography to obtain monodisperse
samples with defined stoichiometry to study an anti-streptavidin monoclonal antibody interacting
with tetrameric streptavidin. Ensembles of structures with both monodentate and bidentate
antibody-antigen complexes were generated using molecular docking protocols and molecular
simulations. By comparing theoretical SAS profiles to the experimental data it was determined that
the primary component(s) were compact monodentate and/or bidentate complexes. SAS profiles
of extended monodentate complexes were not consistent with the experimental data. These results
highlight the capability for determining the shape of monoclonal antibody—antigen complexes in
solution using SAS data and physics-based molecular modeling.
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1. Introduction

Understanding protein—protein interactions is a primary goal of structural biology, which can
have direct impact on the manufacturing and therapeutic applications of monoclonal antibodies.
Antibody-antigen interactions are specific and often have favorable equilibrium properties. With two
potential antigen binding sites per molecule, antibodies can provide insights into protein interactions
that are not possible with typical proteins with a single defined binding site per molecule. For decades,
the majority of experimental data elucidating antibody-antigen interactions has come from studying
such complexes in crystals using X-ray diffraction [1,2] and in solution using nuclear magnetic
resonance spectroscopy [3,4]. Knowledge of the specific atomic interactions that define these
interactions can be used to engineer new antibody molecules to elucidate the nature of the association
to add value to improved candidate antibodies in terms of their efficacy and their ability to be
manufactured, stored, and administered. In addition, knowledge of antibody—antigen structures in the
case where the antigen has the capability to bind multiple copies of the same monoclonal antibody
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could have important biochemical impacts on the basic biology of the immune response and in-vivo
response in therapeutic settings.

Small-angle scattering (SAS) using X-rays (SAXS) or neutrons (SANS) is a valuable method
to obtain low-resolution shape information from a large variety of soft-matter systems including
proteins. While the number of unique constraints in SAS data is limited, the use of atomistic models to
interpret SAS data can offer useful insight as the atomic interactions and molecular topology are valid,
physics-based constraints on the models. SAS is often used to provide shape information for problems
in structural biology [5-7]. With selective or random deuteration of hydrogens one can use SANS via
contrast matching to elucidate the shape of independent elements of a multidomain complex [8-10].

The sample requirements to measure the SAS of proteins are generally similar to other biophysical
characterization methods, with concentrations of 0.5 g/L and higher for measurements in solution [7].
SANS can also be used to study proteins in amorphous and solid phases as there is no upper limit to
the protein concentration that can be studied. However, the nature of the scattering can change with
increasing concentration due to intermolecular correlations, and thus knowledge of the shape of the
proteins can be lost as a result of contributions due to time-averaged spatial ordering of proteins in the
sample [11]. Many SAS studies of monoclonal antibodies have been carried out to explore various
aspects of antibody function, physical chemistry, and manufacturing [12-26]. Many of these studies
report that single structures exist in solution by modeling the data using heuristic methods that lead to
overfitting an underdetermined problem. It is understood that antibodies are flexible molecules in
solution [27-29] and very few atomic structures of complete antibodies have been determined by X-ray
crystallography [22]. The three complete structures of antibodies reported to date consist of two IgGl1
structures [30,31] and a single IgG2 structure [32]. These studies considered the antibody structure to
be dynamic and the single set of coordinates reported in each case should be considered “snapshots”
of likely configurations sampled in solution. Ensembles of structures to model the SAS data of a
monoclonal antibody form a more accurate representation of antibody structures in solution [18],
and this has been validated by recent studies using atomic force microscopy and individual particle
electron tomography [33,34]. SAXS has been used to determine the relative position of domains
and characterize the epitope of an antigen—Fab complex [35], but SAS has been under-utilized to
characterize antibody-antigen complexes.

Molecular dynamics, Monte Carlo simulation, and physics-based docking protocols to determine
protein—protein interactions are viable tools to predict and model experimental data [36]. There are
many simulation methods that one can use to enhance sampling and model the physics of the
interactions, often using various approximations. Yet it remains a daunting challenge to accurately
predict protein—protein interactions for systems of increasing size, and this is complicated further for
flexible or disordered molecules. The sampling of antibody structures in solution can be a intractable
task using molecular dynamics simulation, as antibodies have ~20,000 atoms and require hundreds of
thousands of water atoms to accurately represent a model system to natively explore conformational
space. While advances have been made in the simulation community using specialty processors such
as Anton 2 [37] and graphical processing units [38-40], generally, systems the size of a single antibody
are currently near the upper limit of what one might hope to simulate in a reasonable amount of
time if one has access to the specialized computational hardware. That said, molecular simulations
using all-atom [18,25,41—44], coarse-grain [45,46], and colloidal models [23,26,47-50] can provide
insights into antibody structure and dynamics to probe basic biological, physical, and manufacturing
properties [23-26,42,51]. The complexity and tractability of the problem becomes more challenging
when one considers the interaction of protein antigens with an ensemble of flexible antibody
configurations. There are a variety of tools available to predict antibody-antigen interactions, such as
Rosetta, Modeller, and Haddock, among others [52-56]. A recent re-assessment of antibody binding
site conformation prediction has provided insight into the viability of computational methods [57].

We have used SAXS and molecular modeling to characterize the stoichiometry and structures
of anti-streptavidin IgG2 monoclonal antibody (ASA-IgG2) tetrameric streptavidin (tSA) complexes.
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A series of starting models of varied compositions and binding arrangements were then subjected to
molecular simulation to provide ensembles of structures to compare to SAXS profiles. Ensembles were
generated using backbone torsion-angle Monte Carlo (TAMC) sampling to provide tens of thousands
of unique ASA-IgG2—tSA complexes that allowed for a thorough representation of the physical space
that ASA-IgG2 and bound tSA could occupy, thus enabling the evaluation of structural models by
comparison of theoretical SAXS profiles to the experimental data. This in turn improves the viability
of models derived from SAXS (or SANS) data, that inherently contains few constraints. By enhancing
the resolution of the experimental SAXS profiles using size-exclusion chromatography (SEC) in line
with SAXS detection, together in combination with molecular modeling, it will be shown that specific
models of ASA-IgG2—tSA complexes in solution are consistent with the experimental SAXS data.

2. Results

2.1. Binding Affinity Measurements

To assess the specificity of ASA-IgG2 to monomeric streptavidin (mSA) versus tSA, a series of
binding affinity measurements were performed using surface-plasmon resonance (SPR) with a Biacore
3000 instrument. Figure 1 shows the measured response after covalently bonding ASA-IgG2 to the
surface of the sensor chip and flowing solutions of either mSA and tSA at various concentrations over
the chip. The experiment clearly reveals that ASA-IgG2 has no affinity for mSA up to a concentration of
1 uM (M = mol/L). On the contrary, changes in the response were detected after flowing tSA over the
immobilized ASA-IgG2. Using a simple 1:1 interaction model, a Kp estimate of 40 nM was obtained
for tSA and ASA-IgG2.
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Figure 1. Measured responses for monomeric streptavidin (mSA) and tetrameric streptavidin (tSA)
with immobilized anti-streptavidin IgG2 monoclonal antibody (ASA-IgG2).

In addition, fast protein liquid chromatography (FPLC) measurements were performed on
mixtures of ASA-IgG2 with mSA and tSA, respectively. Figure 2 presents FPLC measurements
of ASA-IgG2 in buffer compared to a mixture of ASA-IgG2 with each type of streptavidin.
Both chromatograms show the results for ASA-IgG2 only and mixtures of ASA-IgG2 with streptavidin.
For the ASA-IgG2 samples, a major peak was observed for the monomer, although about 2% of dimer
was observed in the chromatograms. For the mixtures of tSA with ASA-IgG2, two major peaks were
observed, representing tSA and the complex of tSA and ASA-IgG2. In the case of mSA and ASA-IgG2,
no species eluted before ASA-IgG2, and the two major peaks observed correspond to ASA-IgG2 and
mSA. Therefore, no complex of mSA with ASA-IgG2 was detected.
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Figure 2. Fast protein liquid chromatography (FPLC) chromatograms of samples with ASA-IgG2 and
streptavidin. (A) mSA and ASA-IgG2 with a molar ratio of 4:1 (flow rate 0.75 mL/min). (B) tSA and
ASA-IgG2 with a molar ratio of 5:2 (flow rate 0.50 mL/min). Different concentrations of the free species
were used in each chromatogram.

Since no binding was observed between mSA and ASA-IgG2, no further studies were performed
with mSA. The following results refer to tSA and the complex formed with ASA-IgG2.

To further characterize the complex of tSA and ASA-IgG2, size-exclusion high-pressure liquid
chromatography measurements were coupled with multi-angle light scattering (MALS), known as
SEC-MALS, to study various concentration ratios of antigens to antibodies. Figure 3A displays the
chromatograms representing the free and bound species after mixing tSA and ASA-IgG2 at different
molar ratios. In these chromatograms, the free ASA-IgG2 eluted at about 10 min, whereas tSA eluted
after 12 min. The antigen—antibody complex eluted first, which can be seen as a main peak at 8 min
with an overlapping left peak or shoulder, depending on the molar ratio. These results suggest that
there is not a single complex stoichiometry between tSA and ASA-IgG2. Depending on which free
species was in excess and the molar ratios, different amounts of the complex species were formed.
When the stoichiometry of the species was close to 1:1, the maximum amount of the complex was
formed as most of the ASA-IgG2 and all the tSA were consumed. Regardless, the molecular weight of
the main peak in the complex was constant at the center of the peak and during the remainder of the
elution, as seen in Figure 3B. Therefore, the most abundant species of the antigen—antibody complex
was monodisperse in molecular weight and can be studied by collecting fractions of the main complex
peak. Note that the left shoulder in the complex peak became more pronounced with higher molar
ratios of tSA:ASA-IgG2 and when free ASA-IgG2 species were depleted.

Figure 4 shows the percentage of complex formed after mixing tSA and ASA-IgG2 at different
molar ratios. The maximum percentage of the complex was formed when the molar ratio of the
species was close to one. Moreover, when the antigen and antibody were mixed at the same molar
concentration, very low amounts of the free species were present, suggesting that most of the antigens
and antibodies were used to form the complex up to the point that one of the species was depleted.
Thus, the equilibrium is favored toward the formation of the complex, in agreement with the low Kp
estimated from SPR. These results also suggest that molar ratios close to one should be used for the
SAXS measurements to obtain higher concentrations of the bound species.

From the SEC-MALS measurements, the molecular weights of the free and bound species
were obtained. Table 1 shows the molecular weights of tSA, ASA-IgG2, and the main complex
formed. The values for the free species are in agreement with the known values for these molecules.
The molecular weight obtained for the main complex is 447 4 12 kDa. This is an average of
eight measurements. The only stoichiometry that results in the experimentally calculated value
is a combination of two molecules of tSA and two of ASA-IgG2. Using the values of Table 1,
the molecular weight of two molecules of tSA and two of ASA-IgG2 is 447 & 7 kDa, in agreement with
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the experimental value for the main complex. For the remainder of the discussion of the results, unless
specified, the main complex refers to two ASA-IgG2 molecules associated with two tSA molecules.
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Figure 3. Size-exclusion chromatograms (SECs) of ASA-IgG2 at pH 6.5. (A) Different ratios of molar
concentration of tSA:ASA-IgG2. (B) Molecular weight of the ASA-IgG2-tSA complex peak.
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Figure 4. Percentages of the main ASA-IgG2-tSA complex formed at pH 6.5 after mixing ASA-IgG2
and tSA at different molar ratios.

Table 1. Molecular weight of the free and bound species for the main ASA-IgG2-tSA complex

Species Molecular Weight (kDa) Number of Measurements
tSA 63.3 £0.8 3
ASA-1gG2 160 £ 3 5

main complex 447 £12 8
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The formation of the main complex as well as peak shape and separation in the chromatogram
were evaluated in acidic pH. However, ASA-IgG2 was unstable at pH 3. Figure 5 shows the SEC
chromatogram combined with the MALS data close to neutral and acidic pH. As shown in Figure 2,
ASA-IgG2 was mostly monomeric at pH 6.5, with only 2% aggregates. In the case of pH 3.0, the main
peak that eluted at 9.5 min represents the ASA-IgG2 monomer, whereas the first elution peaks account
for dimers and aggregates of higher molecular weight. Based on the area of the peaks, only 67% of the
sample was monomeric at pH 3.0. The peak that eluted before the monomer corresponds to the dimer,
and the first peak, which overlaps with the dimer peak, corresponds to aggregates with a wide range
of molecular weights. Although acidic pH is not suitable for this system because of aggregation of
ASA-IgG2, mixtures of the antigen and the antibody were studied with SEC. Regardless of aggregation,
the main complex did not form at acidic pH (data not shown), as the peak area was directly proportional
to the prepared concentration of antibody and antigen and neither were associated in a complex.
Note that data shown in Figures 1-5 correspond to single measurements and do not represent mean
values from multiple measurements.
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Figure 5. Size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) data
of ASA-IgG2 at (A) pH 6.5 and (B) pH 3.0. Light green represents the UV absorption data. Black marks
represent the molecular weight of the eluted species.

2.2. Small-Angle X-ray Scattering

Based on the binding affinity results, SAXS measurements were performed in antigen—antibody
mixtures with similar molar ratios at pH 6.5. Figure 6 presents the SAXS data of the antigen—antibody
complex using different separation techniques. Although peak fractionation and separation of the main
complex peak were clearly needed for SAXS measurements, scattering measurements were performed
in bulk (without fractionation), after collecting fractions of the main complex peak (fractionation),
and coupling SEC with SAXS (SEC-SAXS). The bulk measurement consisted of a mixture of tSA
and ASA-IgG2 at a molar ratio of 1:1, in which the main complex corresponds to 67% of the sample
according to the SEC. The SAXS profile for this sample shows a linear slope in the intermediate Q
region (0.01-0.1 A~1), which is characteristic of polydisperse systems. In addition, the profile displays
an increase in intensity at low Q, indicating the presence of aggregates and large species. The SAXS
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profile after SEC-fractionation of the main complex peak shows significantly less polydispersity and
lower amounts of aggregates. This is confirmed by the SEC-MALS analysis, which shows that 86% of
the fractionated sample corresponds to the main complex. Finally, the SEC-SAXS displays the profile of
the main complex right after eluting from the SEC column. Although all profiles show similar features,
the profile obtained with SEC-SAXS shows the lowest polydispersity and aggregation.
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Figure 6. Small-angle X-ray scattering (SAXS) data of the ASA-IgG2-tSA complex at pH 6.5 using
different separation methods. (A) Profiles are arbitrarily shifted for better visualization. (B) Scaled
profiles. Error bars correspond to 1 propagated standard error.

Figure 7 shows the SAXS profiles for tSA, ASA-IgG2, and the main complex from the SEC-SAXS
measurement. tSA and the ASA-IgG2 had the expected curvature and features in the intermediate Q
region for a globular protein and an antibody, respectively [44]. Figure 7B presents the scaled profiles
of these species, which show higher intensities at low Q for the complex, followed by the ASA-IgG2
and tSA. The low Q intensity is proportional to molecular weight, in agreement with the SEC-MALS
results. In addition, the radius of gyration (Rg) for each sample can be calculated using Guinier
analysis. Table 2 displays the results of the Guinier analysis using the SAXS profiles in Figures 6 and 7.
As expected, the main complex is the species with the largest size. However, depending on the
method used to separate the main complex, some differences are observed. Using fractionation or no
separation for the main complex results in larger radii of gyration due to the presence of other higher
molecular weight species (see Figure 3). Nonetheless, the method of fractionation provides results that
are comparable to those of SEC-SAXS, with a difference in size of 4 A.
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Figure 7. SAXS data of the ASA-IgG2-tSA complex and the free species at pH 6.5. (A) Profiles
are arbitrarily shifted for better visualization. (B) Scaled profiles. Error bars correspond to the +1
propagated standard error.

Table 2. Guinier Analysis of the SAXS profiles for the free and bound species.

Sample Method Radius of Gyration A) QminRg  QmaxRg r2
tSA Bulk 27.4 0.52 1.3 0.98
ASA-IgG2 SEC 49.2 0.44 1.0 0.99
ASA-IgG2-tSA complex SEC 84.8 0.56 1.3 0.95
ASA-IgG2—tSA complex  Fractionation 88.9 0.69 1.3 0.91
ASA-TgG2-tSA complex Bulk 123 1.0 1.2 0.62

Figure 8 shows the pair distribution function and Kratky plot for tSA, ASA-IgG2, and the main
complex using different separation methods. tSA and ASA-IgG2 show the expected profiles for a
globular protein and an antibody, respectively [44]. For the complex, a shoulder is observed in the pair
distribution function at about 50 A and a maximum at 88 A. The first shoulder matches the maximum
of the pair distribution function for tSA and ASA-IgG2, suggesting that it corresponds to distribution
of distances in each of the antibody domains and subdomains of the components. On the contrary,
the maximum at 88 A is shifted by 10 A to larger distances compared to the ASA-IgG2 distribution,
which suggests that the peak maximum corresponds to distances between ASA-IgG2 domains and the
antigen-binding fragment (Fab) with tSA. A Kratky plot is useful to qualitatively assess the folded
or globular state of proteins. ASA-IgG2 has a Kratky plot that is asymmetric, as shown in Figure 8B,
indicating some degree of non-globular shape most likely due to inherent flexibility that has been
noted for other flexible monoclonal antibodies [18,44]. However, due to the low signal-to-noise in the
samples with ASA-IgG2-tSA complexes, it is difficult to judge the degree of flexibility of the complex
compared to antibodies alone or to globular proteins. For tSA, a bell-shaped curve characteristic of
globular proteins was obtained.
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Figure 8. (A) Pair distribution function and (B) Kratky plot for the ASA-IgG2-tSA complex and its

components at pH 6.5.

2.3. Model Building

The generation of atomistic models for use to model the SAXS data was carried out in two
steps as described in Materials and Methods, and is summarized here. First, a series of building
blocks were created in order to systematically create variant models of the various species involved.
These structures included ASA-IgG2, tSA, the ASA-IgG2 Fab—tSA complex derived from docking,
ASA-IgG2 (Fab)2-tSA derived by symmetrizing the ASA-IgG2 Fab—tSA complex, and the ASA-IgG2
fragment crystallizable region (Fc) domain as shown in Figure 9. As the stoichiometry derived
from SEC-SAXS indicates that complexes with two ASA-IgG2 and two tSA molecules are the major
components in the main fraction, the building blocks were used to create models of monodentate
(single shared tSA) and bidentate (doubly-shared tSA) models, as shown in Figure 10.
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Figure 9. Schematic representation of protein structures used to create models. Fc: orange; Fab light
chains: red; Fab heavy chains: grey; linkers between Fc and Fab domains: blue; tSA: mulberry.
Brackets indicate that ensembles of structures were created. (A) ASA-IgG2; (B) tSA; (C) Fab—tSA from
the docking protocol; (D) the Fab—tSA-Fab (Fab2—tSA) complex created by symmetrizing structures
from (C,E) Fc. Coordinates for Fc and Fab were from the original ASA-IgG2 model [18]. Fc: fragment
crystallizable region; Fab: antigen-binding region.
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Figure 10. Schematic of model building process for monodentate (A,B) and bidentate (C-E) ASA-IgG2-tSA
complexes. (A) Fc and a secondary Fab structure were aligned to ensembles of Fab2—SA (depicted in
blue box) to create preliminary Fab2—tSA 2ASA-IgG2 structures. (B) Ensembles of Fab—tSA were added to
structures built in (A). Note that the predicted Fab—tSA docked configurations were maintained. (C) Fc and
secondary Fab structures were aligned to ensembles of Fab2—tSA (depicted in blue boxes) to create
preliminary Fab2—SA single ASA-IgG2 structures. Only structures with Fab—Fc-Fab angles between
70 and 90 degrees were considered. (D) Fc and secondary Fab structures were aligned to ensembles of
Fab2-tSA (depicted in blue boxes) to create preliminary Fab2—tSA single ASA-IgG2-two Fab structures.
Only structures with distances between terminal C-alpha atoms of heavy chain residues 211 of less than
40 A were considered. (E) Fc structures were added to structures from (D) that were subsequently
energy-minimized and equilibrated using molecular dynamics simulation.

2.4. Comparison of Models to SAXS Data

In order to thoroughly model the SEC-SAXS data, a comprehensive comparison of ensembles
of models representing potential molecular species in solution was carried out. While many of these
models do not have molecular weights as found in the SEC-MALS data, it is informative to compare
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the theoretical SAXS profiles to the experimental SEC-SAXS data. As shown in Figure 11 models of
tSA, ASA-IgG2, ASA-IgG2—tSA and ASA-IgG2—(tSA)2 are not in agreement with the experimental
data as x* > 150 for all models for each ensemble, as shown in Figure 11A-D. Note that the blue
volumetric densities represent the physical space occupied for each simulation and the single structure
depicted within each density plot represents the single best structure from that ensemble determined
by comparison of the theoretical SAXS profile to the experimental data. The ensemble of structures of
two ASA-IgG2 plus one tSA molecule contained configurations that were by themselves consistent
with the SAXS profiles (see Figure 11E) but have to be ruled out based on the measured molecular
weight by SEC-MALS.

Evaluation of monodentate (Figure 11F) and bidentate (Figure 11G) models indicates that both
contain structures that are in agreement with the SEC-SAXS data. The comparison of the scattering
profiles from the structural models to SEC-SAXS profiles indicates that larger extended structures are
not consistent with the experimental data and that the most likely set of configurations are compact
monodentate or bidentate structures.
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Figure 11. Structures and comparisons of the experimental and simulated scattering profiles. (A) tSA;
(B) ASA-IgG2; (C) One ASA-IgG2 and one tSA molecule; (D) One ASA-IgG2 and two tSA molecules;
(E) Two ASA-IgG2 and one tSA molecule; (F) Two ASA-IgG2 and two tSA molecules in monodentate
configuration; (G) Two ASA-IgG2 and two tSA molecules in bidentate configuration. Blue mesh
represents the configurational space samples by the ensembles referenced to one Fc. “Goal” represents
the experimental data; “Best” represents the best match to the experimental data; and “Worst”
represents the worst match to the experimental data. The plots in the right column represent the
goodness-of-fit of the models to the experimental data in terms of reduced x? as a function of the size
of the models via radius of gyration (Ry).

3. Discussion

We have applied SEC-MALS, and SEC-SAXS with molecular docking and modeling to derive
models of the complex formed by a monoclonal antibody and an antigen with the propensity to bind
two Fab domains simultaneously. As expected for antibody-antigen complexes, the obtained Kp was
in the nanomolar range for tSA and ASA-IgG2. The engineered mutations in mSA significantly affected
the binding affinity with the ASA-IgG2 and no binding was observed up to micromolar concentrations
of the antigen in its monomeric form. Combining SEC with a light scattering detector provided the
stoichiometry of the main complex formed by the antibody—antigen complex and the suitable ratios of
the free species for the SAXS measurements.

The use of SEC-SAXS improved the homogeneity and monodispersity of the samples, which
enabled the evaluation of the structure of the complex using high resolution atomistic models. By using
ensembles of viable models obtained from simulation, we were able to explore the specificity of
SEC-SAXS to evaluate atomistic models consistent with the solution scattering data. Knowledge of the
molecular weight of the species provided discriminating information to rule out models of the two
ASA-IgG2 molecules and single tSA molecule in the case where the theoretical SAXS profiles were in
agreement with the experimental data.

Finally, we found that compact models of monodentate and bidentate complexes were consistent
with the SEC-SAXS data, although further discrimination of whether the monodentate and bidentate
complexes are in equilibrium is not available without further experimental constraints. Thus, the use
of SEC-SAXS and detailed ensemble modeling is a viable method to characterize antibody-antigen
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complexes and could have impact for those cases where stoichiometry and/or symmetry allows a
discrimination of scattering profiles for putative models. Furthermore, the use of modern docking
protocols to create physics-based structures to calculate SAS data in order to compare to SEC-SAXS
data is a valuable orthogonal constraint that can be useful in modeling such data.

4. Materials and Methods

4.1. Sample Preparation

ASA-IgG2 was provided by Amgen in frozen solutions of 10 mM sodium acetate buffer, 10 mM
acetic acid, 9% w/v sucrose, with pH 5.2 at concentrations of 30 mg/mL. The tSA (product number
54762 Sigma-Aldrich, St. Louis, MO, USA) was received as a lyophilized powder and stored at —80 °C.
The mSA (product number 1385, Kerafast, Boston, MA, USA) is an engineered protein with high
affinity to biotin that prevents multivalent interactions. mSA was provided in a 50-mM Tris (pH 7.5)
with 150 mM of NaCl buffer and stored at 4 °C for up to two weeks. Frozen samples were thawed
overnight at 4 °C one day before usage.

A phosphate buffer solution was prepared using sodium phosphate dibasic anhydrous (product
number MSX0720-1, EMD Millipore, Burlington, MA, USA) and potassium phosphate monobasic
(product number 231-913-4, Sigma-Aldrich, St. Louis, MO, USA) in Millipore SuperQ water, adjusting
the pH to 6.5. Solutions were buffer exchanged using Slide-A-Lyzer dialysis cassettes (product number
66330, Thermo Scientific, Grand Island, NY, USA) with a 3.5-K molecular weight cutoff for mSA.
For ASA-IgG2 and tSA samples, solutions were buffer-exchanged using Float-a-Lyzer dialysis devices
(product number G235031, SpectrumLabs, Rancho Dominguez, CA, USA) with a 8-10 K molecular
weight cutoff. The samples were immersed for at least 10 hours in fresh buffer up to three times
while stirring to reach more than 99.9% of the final desired buffer composition. Solutions at pH 3.0
were prepared using a buffer with sodium phosphate dibasic anhydrous (product number MSX0720-1,
EMD Millipore, Burlington, MA, USA) and phosphoric acid (product number 79617, Sigma-Aldrich,
St. Louis, MO, USA) in Millipore SuperQ adjusted to pH 3.0.

Sample concentration was performed using Amicon Ultra-0.5 centrifugal filters (product number
UFC501096, EMD Millipore, Burlington, MA, USA) with a 10-kDa molecular weight cutoff in a swinging
bucket centrifuge (product number 75003181, Thermo Scientific, Grand Island, NY, USA) at 4000 relative
centrifugal force until reaching the desired concentration. Final protein concentration was measured
with a Nanodrop 2000 spectrometer (ND-2000, Thermo Scientific, Grand Island, NY, USA) using percent
extinction coefficients (epercent) of 24.1, 31.7, and 16.0 for the mSA, tSA, and ASA-IgG2, respectively.

4.2. Binding Measurements

Binding affinity was assessed using the Biacore 3000. A protein A sensor chip (product number
29127558, GE Healthcare, Pittsburg, PA, USA) was used with a pre-immobilized recombinant protein
A that has high affinity for the Fc region of antibodies. A solution of ASA-IgG2 at a concentration
of 30 pg/mL was flowed through the cell until reaching a steady-state response, that was used as
a baseline. Solutions containing antigen were then injected at concentrations from 1 to 1000 nM for
60 s. Samples and buffer were filtered using a 0.2-pm filter and degassed prior to the measurements.
Size exclusion chromatography was performed using a Superdex200 10/300 GL column with an AKTA
Purifier system (GE Healthcare, Pittsburg, PA, USA). All measurements were performed at 25 °C.
This system was used for fractionation, collecting 1 mL of volume(s), and the resulting fractions were
concentrated to 2 mg/mL for the SAXS measurements as described above.

High-performance liquid chromatography coupled with multi-angle light scattering was
performed using a Thermo Scientific/Dionex U3000. Samples were injected onto a TSKgel G3000SWxl1
column (product number 08541, Tosoh Bioscience, South San Franciso, CA, USA) and absorbance
was measured at 280 nm. After equilibrating the system and the column with the mobile phase,
the flow rate was set to 0.8 mL/min for the measurements. Phosphate buffer at pH 6.5 was used as the
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mobile phase. Light scattering was performed with a DAWN HELEOS II detector (Wyatt Technology,
Santa Barbara, CA, USA) at a wavelength of 664 nm. An Optilab T-rEX instrument (Wyatt Technology;,
Santa Barbara, CA, USA) was used for differential refractive index detection. Data were analyzed with
the ASTRA®V software (Wyatt Technology, Santa Barbara, CA, USA).

4.3. Small-Angle X-ray Scattering Measurements

SAXS measurements were performed using an in-house Rigaku X-ray source and the SAXSLab
Ganesha platform at the Institute for Bioscience and Biotechnology Research. Samples were loaded
into a 96-well plate and sealed with tape to prevent solvent evaporation. Then, 20 pL of each sample
was loaded into a 1.3-mm capillary by an automated robot. Sample to detector distance was varied
from 0.7 to 1.7 m and a wavelength of 1.5418 A was used to cover the range 0.005 A~' < Q < 0.45 A~
Scattered photons were detected with a two-dimensional Pilatus 300 K detector (Dectris, Baden-Dattwil,
Switzerland). Data reduction was performed using RAW [58]. This setup was used for all samples,
with the exception of those measurements for the complex that were coupled with SEC. Pair distribution
functions and Guinier fits were calculated using RAW [58].

SAXS was also performed at BioCAT (beamline 18ID at the Advanced Photon Source, Chicago,
IL, USA) with in-line size exclusion chromatography (SEC-SAXS) to separate the species of interest
from other species and contaminants, thus ensuring optimal sample quality. Samples were loaded
onto a Superdex-200 Increase 10/300 GL column (GE Healthcare, Pittsburg, PA, USA), which was run
at 0.75 mL/min, and the eluate, after passing through the UV monitor, was directed through a SAXS
flow cell. The SAXS flow cell had a 1.5-mm quartz capillary with 10-um walls. Scattering intensity
was recorded using a Pilatus3 1M detector (Dectris, CH) that was placed ~3.5 m from the sample
resulting in a g-range of 0.0057 to 0.36 A~ 0.5 s exposures were acquired every 2 s during elution
and data was reduced by the beam line specific pipeline that uses the ATSAS program suite [59].
Exposures corresponding to the regions flanking the elution peak were averaged to generate a buffer
file which was subtracted from all the exposures. The buffer-subtracted exposures corresponding to
the elution peak were used for subsequent analysis. This setup was used for the antigen-antibody
complex and the antibody.

The profiles for ASA-IgG2 were consistent between the two SAXS instruments and methods.
No radiation damage was observed when using the in-house source or the synchrotron facility.
This was confirmed by collecting short exposures as the sample eluted and comparing the radius of
gyration and low-Q scattering profile of the initial and final exposures. The free species were measured
at concentrations of 1 and 2 mg/mL. No inter-particle interaction effects were observed at the highest
concentration used. The complex sample was obtained by mixing the free-species using a molar ratio
of 1:1 and separated using SEC-SAXS and fractionation as described in the results.

Certain commercial equipment, instruments, materials, suppliers, or software are identified in this
paper to foster understanding. Such identification does not imply recommendation or endorsement by
the National Institute of Standards and Technology, nor does it imply that the materials or equipment
identified are necessarily the best available for the purpose.

4.4. Molecular Modeling

A sequence homology model of the ASA-IgG2 with 19,668 atoms, from an earlier study [18],
was energy-minimized for 2500 steps, and subject to 1 ns dynamics as described previously. Note that
the disulfide bonds in this model correspond to the IgG2-A form [60] characterized by structurally
independent Fab domains and hinge region. The resulting structure was used as a starting structure
for torsion-angle Monte Carlo (TAMC) studies. The program SASSIE [61] was used to generate
47,319 non-overlapping configurations by sampling backbone angles ® or ¥ of the amino acid residues
212-214 of the upper hinge region of the heavy chain. Details of the TAMC method applied to
ASA-IgG2 are described elsewhere [18].
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A model of the tSA protein was created using the coordinates from the crystal structure (PDB ID:
1SWB) [62] obtained from the protein data bank [63] where all missing atoms were added using the
program PSFGEN distributed as part of NAMD [64]. The complete model was energy-minimized for
2500 steps with the molecular dynamics program NAMD [64] using the CHARMM?22 force field [65].
Subsequently, the structure was immersed in a previously equilibrated 200 A cubic box of water (using
the TIP3P water model [66]) and overlapping waters were removed and a neutralizing number of ions
were added. The system was equilibrated at 300 K and 1 bar followed by a production run for 2 ns in
the isothermal-isobaric (NPT) ensemble and compared to the SEC-SAXS data shown in Figure 11A.

For clarity, in the remainder of this section, Fab refers to ASA-IgG2 Fab domain and Fc refers to
ASA-2 IgG2 Fc domain. Starting with coordinates taken from the TAMC ensemble for the ASA-IgG2
and the final tSA structure from the solvated molecular dynamics simulation, a starting structure
for docking was constructed. This structure consisted of a Fab subunit and the tSA protein initially
positioned near the Fab paratope region. The Fab subunit consisted of the light chain and residues
1-211 of the heavy chain. The RosettaDock [67] full protocol was used to create 150,000 docking decoys
by generating random reorientations of both the Fab and tSA proteins independently. Optimization of
side chain conformations of both partners were performed prior to docking using the RosettaDock
pre-packing protocol. Subsequent post-analysis involved ranking the decoys using clustering. The set
of decoys were sorted by score and the top 10,000 decoys were selected for clustering analysis.
The Calibur program [68] was used for clustering with the Rosetta option selected for finding the
clustering threshold. The largest cluster was selected, that contained 383 structures.

Assembly of the complexes shown in Figures 9 and 10 involved alignment using the heavy chain
of Fab. Structural alignment was carried out using the Align module in SASSIE. For these alignments,
care was taken to retain, specifically, the heavy chain which was originally interfaced with tSA from
the docking protocol. Moreover, the region of the heavy chains used for alignment was selected to
exclude residues which comprised or were near the interfacial region between the tSA and Fab binding
site defined by the predictions from docking. Following alignment, atom distances between the pair
of aligned molecules were monitored and if any of these distances were less than 8.0 A, the aligned
structure was rejected.

Fab-tSA-Fab complexes (Fab2-tSA) comprising the ensemble shown in Figure 9D were derived
by symmetric replication of tSA from the ensemble of Figure 9C. The Fc and secondary Fab were then
added to the complex by alignment of the heavy chains of both the full-length ASA-IgG2 structure
from the TAMC ensemble (Figure 9A) and the Fab2-streptavidin (SA) complex to give the full-length
Fab2-tSA 2 ASA-IgG2 complex shown in Figure 10A. The monodentate ASA-IgG2—tSA complex
(Figure 9B) was then constructed by aligning Fab heavy chains of Fab2—tSA structures from the
ensemble of Figure 9C and the Fab2-SA 2 ASA-IgG2 complex (Figure 10A). The resulting structures
were energy-minimized and subjected to 10 ps Born implicit solvent molecular dynamics (MD). These
structures were then used to generate approximately 50,000 accepted configurations in a TAMC
simulation. Each TAMC configuration was energy minimized for 2500 steps, and then subjected to
10 ps MD to relax the structural ensemble to compare to SEC-SAXS data shown in Figure 11F.

To construct the bidentate complex, a subset of the TAMC ensemble of full-length ASA-IgG2
with Fab-Fc-Fab angles between 70 and 90 degrees was first collected to provide structures poised to
represent more likely candidates for the general bidendate configuration. Subsequently, Fab heavy
chains of Fab2—tSA structures from the ensemble of Figure 9C were aligned with heavy chains of both
Fab subunits of the selected subset of ASA-IgG2. Only structures with distances between C-alpha
atoms of residue 211 of less than 40 A were retained. Fc structures were then added. The resulting
structures were energy-minimized for 2500 steps, and then subjected to 10 ps MD to relax the structural
ensemble. A single structure from the ensemble was used for a 10 ns generalized Born MD simulation
to provide a trajectory to compare to the SEC-SAXS data shown in Figure 11G.

Theoretical SAS profiles were calculated using the SasCalc [69] module within SASSIE.
These profiles were then filtered by calculating reduced x? values for each of the SAS profiles relative to
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a SAS profile calculated for the experimental SAXS data. Nineteen grid points of momentum transfer,
Q, between 0 and 0.19 A~! were used. All the images of protein structures were generated using visual
molecular dynamics [70].
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Abbreviations

The following abbreviations are used in this manuscript:

SAXS small-angle X-ray scattering
SANS small-angle neutron scattering
SAS small-angle scattering

SEC size-exclusion chromatography

SEC-SAXS  size-exclusion chromatography coupled with small-angle X-ray scattering
SEC-MALS  size-exclusion chromatography coupled with multi-angle light scattering

SPR surface plasmon resonance
MD molecular dynamics

MC Monte Carlo

Fab antigen-binding region

Fc fragment crystallizable region
IgG immunoglobulin

SA streptavidin
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