
micromachines

Article

A High-Precision Implementation of the Sigmoid Activation
Function for Computing-in-Memory Architecture

Siqiu Xu 1,2 , Xi Li 1,*, Chenchen Xie 1, Houpeng Chen 1, Cheng Chen 1,2 and Zhitang Song 1

����������
�������

Citation: Xu, S.; Li, X.; Xie, C.; Chen,

H.; Chen, C.; Song, Z. A

High-Precision Implementation of the

Sigmoid Activation Function for

Computing-in-Memory Architecture.

Micromachines 2021, 12, 1183.

https://doi.org/10.3390/mi12101183

Academic Editor: Jung Ho Yoon

Received: 16 August 2021

Accepted: 27 September 2021

Published: 29 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and
Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
sqxu1022@mail.sim.ac.cn (S.X.); xcc@mail.sim.ac.cn (C.X.); chp6468@mail.sim.ac.cn (H.C.);
chencheng1@shanghaitech.edu.cn (C.C.); sztztsong@mail.sim.ac.cm (Z.S.)

2 The University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: ituluck@mail.sim.ac.cn

Abstract: Computing-In-Memory (CIM), based on non-von Neumann architecture, has lately received
significant attention due to its lower overhead in delay and higher energy efficiency in convolu-
tional and fully-connected neural network computing. Growing works have given the priority to
researching the array of memory and peripheral circuits to achieve multiply-and-accumulate (MAC)
operation, but not enough attention has been paid to the high-precision hardware implementation
of non-linear layers up to now, which still causes time overhead and power consumption. Sigmoid
is a widely used non-linear activation function and most of its studies provided an approximation
of the function expression rather than totally matched, inevitably leading to considerable error. To
address this issue, we propose a high-precision circuit implementation of the sigmoid, matching the
expression exactly for the first time. The simulation results with the SMIC 40 nm process suggest
that the proposed circuit implemented high-precision sigmoid perfectly achieves the properties of
the ideal sigmoid, showing the maximum error and average error between the proposed simulated
sigmoid and ideal sigmoid is 2.74% and 0.21%, respectively. In addition, a multi-layer convolutional
neural network based on CIM architecture employing the simulated high-precision sigmoid acti-
vation function verifies the similar recognition accuracy on the test database of handwritten digits
compared to utilize the ideal sigmoid in software, with online training achieving 97.06% and with
offline training achieving 97.74%.

Keywords: computing-in-memory; circuit implementation; diode; high-precision sigmoid; non-linear
activation function; neural networks

1. Introduction

Convolutional Neural Network (CNN) [1] has shown a satisfying performance on
recognition/classification tasks owing to its characteristics of weight sharing, multi-core
convolution, and local perception [2]. Figure 1 presents a typical basic architecture named
LeNet-5, which consists of two convolutional layers (C1, C2), two max-pooling layers
(S1, S2), and three fully connected layers (F1, F2, F3). Moreover, there is an activation func-
tion after F3. CNN plays a crucial role in the artificial intelligence (AI) world, but a massive
amount of data transfers back and forth between CPU and memory causes high power
consumption for conventional all-digital implemented CNN computation, which is called
“memory bottleneck” [3–5] resulting from von-Neumann computing architecture. A variety
of works aim to solve this problem. Among them, the Computing-In-Memory (CIM) [4–7]
architecture was spotlighted because of its extraordinary advantages, one is the great re-
duction of the data transmission, while the other is the substantially improved parallelism.
Plenty of previous works have demonstrated the design methods and results of CIM, which
greatly showed the superiority of CIM architecture [8–13]. For instance, [9] adopting a
mode of 1bit-input-3bit-weight illustrates the time-cost of a MAC operation is 11.75 ns per
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cycle by using 3 × 3 kernels, and the system achieved an 88.52% inference accuracy on
the CIFAR-10 dataset. The measured peak energy efficiency is 53.17TOPS/W in the binary
mode of 1bit-input, 3bit-weight, 4bit-MAC-out and 21.9TOPS/W in the multi-bit mode
of 2bit-input, 3bit-weight, 4bit-MAC-out using CIM peripheral circuits and a reference
generator. Ref. [12] proposed a hybrid-training method to deal with device imperfections,
which is proved to be effective and fast. The result showed that the precision of recognition
in the MNIST dataset achieving more than 96% with a five-layer memristor-based CNN.
Ref. [13] illustrated the in situ training of a five-level CNN, which could self-adapt to
the non-idealities of the array of memristors to complete classification task and avoid
suffering from the “memory bottleneck” by reducing about 75% trainable parameters with
the method of sharing weights, meanwhile ensuring similar classification accuracy as the
memristor-based multilayer perceptron. A recent work experimentally proved function-
ality (>98% accuracy) in the MNIST dataset [14], using 6-b inputs/outputs. In addition,
they achieved similar or better power efficiency by reducing data transfers compared to
full-digital implementations. In the paper, the adopted structure of the network is LeNet-5,
involving two fully connected layers, F5, F6, and a non-linear ReLU layer between F5 and
F6. Thus, the data needs to move on between memory and CPU to compute the ReLU
layer, which also leads to a considerable amount of power dissipation and time overhead.
Only by using a MAC operation and nonlinear activation function in circuits together,
could we obtain a minimum consumption either in latency or power. Whereas most CIM
works used the array on-chip to implement convolution/fully-connected (CONV/FC)
layers, few studies have investigated the non-linear layers implemented in the software,
which highlights that little is known about the hardware implementation of the activation
functions in CIM.
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An activation layer is essential for a neural network to add nonlinear factors to improve
the expressive ability of the linear model, furthermore, a high-precision activation function
is crucial for a neural network model to realize the fast convergence. There are various
kinds of activation functions, such as ReLU, softmax, sigmoid [15], etc. Sigmoid is popular
because of its smoothness and its ability to control the output data of the network layer
between 0 and 1. In addition, it is convenient for backpropagating to calculate the gradient
thanks to the function is continuously differentiable. Hence, it is of great significance to
design a high-precision circuit implementation of the sigmoid activation function.

In this paper, we focus on designing a high-precision circuit implementation of the
sigmoid activation function used in the CIM architecture for the first time, which is mainly
composed of diodes. The sigmoid function expression can be obtained by configuring
the connection method of the diodes based on the I–V equation of a diode. It is demon-
strated that the circuit implemented high-precision sigmoid has all of the key properties
of conventional software implemented sigmoid, with insignificant error. In other words,
the high-precision activation function layers also can be implemented on-chip, which
contributes to less delay overhead and power consumption. To further substantiate the
performance of the proposed circuit, firstly, we export an enormous number of simulated
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points of the proposed circuit to encapsulate them as a function in the software, then we
construct a multi-layer CNN based on CIM architecture employing the new sigmoid func-
tion replacing former sigmoid expression to complete the recognition task on the MNIST
hand-written dataset and compare it with the sigmoid implemented on software in CIM
architecture.

This paper is organized as follows. Section 2 introduces the overall detailed structure
of the high-precision sigmoid function circuit. Section 3 shows the simulation results of the
designed circuit implementation of the sigmoid activation function. Section 4 presents the
application of the circuit implementing a high-precision sigmoid function to CNN on the
MNIST dataset. Finally, the summary of the research is presented in Section 5.

2. Circuit Architecture Design
2.1. Core Circuit

Sigmoid is a common activation function, whose typical expression is shown as follow:

y =
1

1 + e−x (1)

For a diode, when a forward voltage is performed across the diode and VBE > (5 ∼ 10)VT, the
current and voltage formula of a diode is:

IC = ISe
VBE
VT (2)

where IS is the reverse saturation current of a diode, VBE is the forward voltage across a
diode, and VT is the voltage equivalent of temperature, which is 26 mV at room temperature
(T = 300 K). The equivalence of Equation (2) is depicted in Figure 2, becoming a critical step
in constructing the sigmoid function.
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To gain expression of the sigmoid, we use three identical diodes connected simply, as
shown in Figure 3. According to (2), the current of diode D1 is

IC1 = IS1e
VBE1

VT (3)

similarly, the I–V formula of diode D2 is

IC2 = IS2e
VBE2

VT (4)
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the reverse saturation current IS1 = IS2 = IS thanks to we use three identical diodes. So,
the current of diode D3

IC3 = IC1 = IC2 = IS

(
e

VBE1
VT + e

VBE2
VT

)
(5)

Now we calculate the current ratio of diode D1 and D3

IC1

IC3
=

IS1e
VBE1

VT

IS

(
e

VBE1
VT + e

VBE2
VT

) =
1

1 + e
VBE2−VBE1

VT

(6)

It is noted that we successfully construct a form like sigmoid.
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2.2. Peripheral Circuits

We use the three exactly same diodes before, and then we design peripheral circuits
for copying current and conversing the ratio of current into the ratio of voltage. The overall
architecture of the sigmoid is shown in Figure 3. In our approach (Figure 4a), the current of
D3 is copied to the current of MOSFET—M5, and the current of D1 is copied to the current
of M3 due to the feature of the Current Mirror. Moreover, the forward voltage of diode D2
VBE2 minus the forward voltage of diode D1 VBE1 is equal to −Vin, which is because of the
virtual short characteristic of the operational amplifier. Consequently, Equation (6) can be
further simplified as (7),

IC1

IC3
=

1

1 + e
VBE2−VBE1

VT

=
1

1 + e
−Vin

VT

(7)

It may be noted that achieving the conversion of current and voltage becoming easy,
as long as make sure that the two resistors in the circuit with the same resistance. After
that, we should consider how to design the device of a divider in Figure 4. We combine
Gilbert Unit and the feedback loop to complete voltage division in this paper, which is
shown in Figure 4b. Actually, there are several kinds of circuit units to achieve division
operation besides Gilbert. Therefore, we obtain the expression for the output of the whole
circuit, as shown in the following (8):

Vout =

∣∣∣∣VA
VB

∣∣∣∣ = R1 ∗ IC1

R2 ∗ IC3
=

1

1 + e
−Vin

VT

(8)

which successfully converts the ratio of I to the ratio V by two resistors with the same
resistance as said above.
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Although the expression (8) matches the sigmoid expression well, it should be dis-
cussed the limitation of the actual circuit. It can be observed that the (8) is only adapted to
the situation of the forward voltage of the diode VBE � VT , whereas the three diodes are
not always on as the input changes from −2 V to 2 V in this paper. To facilitate analysis, we
assume the voltage of the cathode of the diode 1/2 is VX0 when input is −2 V, and measure
the turn-on voltage of the diode is 0.7 V. It is divided into three phases according to the
region of the three diodes. At the first phase, the forward voltage of D1 is Vin − VX0 < 0V,
D2, D3 and M4 combined as a pathway, so the state of D1 is off, the D2 and D3 are on-state,
meaning that the output voltage is 0. The voltage of D1 increases with the growth of input
voltage until Vin −VX0 = 0.7V, and during this period, the voltage VX0 remains. In phase 2,
the voltage of D1 reaches turn-on voltage, thus, the three diodes are all on-state, indicating
the output changes following (8). It comes to phase 3 when Vin = −(VX0 + 0.7V) because
of the symmetry of the sigmoid, and the forward voltage of D2 is less than 0.7V. So D2 is
off-state, D1 and D3 are on-state, declaring that the output voltage is 1 V. According to the
analysis, it is known that the turning point of the output is closely related to VX0, and VX0
is interrelated to the current of D3, which demonstrated the slope of the simulated circuit
is adjustable. The above analysis is summarized in Table 1. Thus, the output of the circuit
could be corresponding to the ideal sigmoid precisely.

Table 1. The three phases of the region for diodes.

Vin [V]
Region of Diodes

Vout [V]
D1 D2 D3

−2 ∼ (VX0 + 0.7) OFF ON ON 0

(VX0 + 0.7) ∼ −(VX0 + 0.7) ON ON ON Formula (8)

−(VX0 + 0.7) ∼ 2 ON OFF ON 1

3. Simulation Results and Discussions

We use virtuoso of Cadence to simulate the proposed circuit with SMIC 40 nm process
at supply voltage is 3.3 V. A simple simulated sigmoid curve with a mark point is revealed
in Figure 5, illustrating that the output voltage is 0.5 V when the input voltage is 0 V. The
voltage of the cathode of the diode 1/2, VX0 is −950 mV in the situation ( W

L of M4 is 10
1 ).

Figure 6 displays the dc simulated output voltages (Vout) over an input voltage (Vin) range
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from −2 V to 2 V from seven different W
L of the MOSFET whose serial number is M4.

The result demonstrates that we can change the current flowing through the diode D3
branch to derive the sigmoid function with different slopes, as the analysis of Section 2.
Furthermore, the smaller the current flowing through the diode D3 branch, the greater
the slope of the sigmoid function. Additionally, the outputs of seven curves are all 0.5 V
when the input voltages are 0, and the output is monotonically increasing between 0 and 1,
which is outstandingly corresponding to the various law of the sigmoid function.
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L of M4 getting smaller.

To evaluate the error between the simulated high-precision curve and the ideal func-
tion, a function expression is necessary for this experience, which is fitting with a large
number of simulated data points (4k) by MATLAB exported from the simulated curve,
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depicting in Figure 7a. The fitted curve has an expression with a fitting coefficient of
sigmoid, which is

y =
1

1 + e−19.58x (9)

The simulated curve with an appropriate W
L of M4 ( W

L = 10
2 ), the orange curve is

the ideal one and the blue one represents the simulation. It is clear that there is a slight
difference between the two curves, which can be attributable to the inaccuracy of the current
replication of MOSFETs. Both of them are smooth but the orange one is more symmetrical
than the blue one. As mentioned in Section 1, there are two critical characteristics of the
sigmoid, one is continuously differentiable, the other is the output value is between 0 and
1, which are contained by simulated high-precision sigmoid totally.
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The error using the numerical difference between the fitting curve and the simulated
curve is calculated to evaluate the fitting accuracy of the fitted curve, showing in Figure 7b.
According to the definition of error in (10) and Figure 7b, the maximum error between
the fitting sigmoid and the simulated sigmoid reaching 2.74% comes at −0.05 V of the
input voltage, and the average error is 0.21%, which could be considered that the error is
negligible. Therefore, the unmarkable difference of the simulation result and the fitting
curve for the sigmoid could not affect the accuracy of a network recognition theoretically,
furthermore, it can degrade the energy dissipation and delay overhead by reducing data
transfer between CPU and memory according to our reasoning.

Error =

∣∣∣Vout − Sigmoid f unction

∣∣∣
Amplitude

(10)

Corner analysis is simulated with SS (Slow NMOS Slow PMOS), FF (Fast NMOS Fast
PMOS), SF (Slow NMOS Fast PMOS), and FS (Fast NMOS Slow PMOS) for the proposed
high-precision circuit implementation of the sigmoid function (the size of M4 is the same
as Figure 7, i.e., W

L = 10
2 in corner analysis), and they are combined with supply voltage

change (±10%, i.e., 3 V, 3.3 V, and 3.6 V), showing in Figure 8a of 15 curves. We could
easily observe that only five curves could be distinguished clearly, illustrating the change
of supply voltage almost has no impact on our simulated results. For process corners, the
maximum output voltage of the third phase occurs in the SS corner with the supply voltage
of 3.6 V is 1.06 V, the minimum output voltage of the third phase occurs in the FF corner
with the supply voltage of 3 V is 0.93 V, so the maximum difference between Figure 8a and
the ideal curve is 70 mV in phase 3. In phases 1 and 2, the 15 curves coincide almost. All in
all, our circuit is robust with the process corner and supply voltage change. Moreover, the
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maximum error and the average error are 7% and 3.39% respectively in the worst case of
FF with 3 V by calculating.
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Additionally, we explore the process and mismatch analysis using Monte Carlo simu-
lation. It is performed by 40 nm mc models and then runs 1000 trials, showing in Figure 8b.
It is seen that mismatch and process make a slight effect on the output of the circuit. When
the diode D1 is close in the first phase, the output of the curves ranging from 19 mV to
−20 mV. In the second phase with the three diodes turned on, the 1 k curves have little
difference and are close to the ideal curve. In phase 3, the error is slightly larger, varying
from 1.04 V to 0.95 V due to the mismatch of the current mirrors and so on.

Considering that the output of the simulation, i.e., Equation (8) could be affected by
temperature, we only test the temperature vary from 10 ◦C to 60 ◦C with a step of 10 ◦C to
minimize the error caused by the formula. The results are shown in Figure 8c, indicating
that temperature has little effect on the output result in a certain temperature range.

The form of Voltage Input–Voltage Output in this circuit is corresponding to the input
signal and output signal of a linear layer of most CIM architecture, meaning that it could
reduce energy dissipation by eliminating the conversion between current and voltage
compares with another form such as I–I, I–V and so on. The comparison of this work with
former works is concluded in Table 2. All of the references [16–19] constructed a sigmoid by
dividing the ideal expression into several parts to approximate, contributing to perceptible
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error. We achieve <(1/2) × maximum error rate, <(1/5.5) × maximum error rate of the
corner and <(1/19) × improvement in average error rate, <(1/11) × improvement in
average error rate of the corner compared to [16] due to our expression matches the ideal
sigmoid expression totally. We achieve similar simulated accuracy using fewer MOSFETs
in the core circuit as [17], in addition, it cannot be applied to practical applications due
to the output range of the sigmoid is between 0–1 uA, and compared to [18], we achieve
higher simulated accuracy with fewer MOSFETs in the core function circuit. As for [19],
although the MOSFETs of the core circuit and maximum error are similar to our work, the
ranges of input and output are in the order of milli-voltage, making it difficult to apply in
real work.

Table 2. Comparison of this work and former works.

Ref Supply VoltAge
(V)

Tech
(nm)

MOS Number
of Core Function

Circuit

Maximum Error
(%)

Average Error
(%)

Form of
Input-Output

Corner Analysis
Maximum Error

(%)

[16] 1.2 90 6 7.67 4.12 I–V 37.42

[17] 1.8 180 9 1.76 / I–I /

[18] 3.3 350 12 5 / V–V /

[19] 1.2 90 6 3 / V–V /

This work 3.3 40 7 2.74 0.21 V–V 7

4. Applying the Proposed Circuit to CNN on the MNIST Dataset

To evaluate the performance of the hardware-implemented sigmoid activation func-
tion in a typical situation, we apply it (the size of M4 is 10

2 , and the corner is TT condition)
to a multi-layer CNN in the CIM architecture to complete a hand-written recognition task
with the MNIST dataset [20]. In the first place, choosing the construction of a CNN, which
is shown in Table 3.

Table 3. The architecture of CNN for the experience.

CNN Layers

1 Conv 8 Conv

2 Activation(sigmoid) 9 BN

3 Sub_sampling 10 Flatten

4 BN 11 Dense

5 Conv 12 BN

6 Sub_sampling 13 Dense

7 BN 14 BN

15 Activation (softmax)
BN = Batch_Normalization.

The CNN we used consists of three convolution layers, two sub_sampling layers, three
fully-connected layers, five batch_normalization layers, and two activation layers. The filter
weights would be trained to be +1/−1 in binary-weight-network (BWN), [21], which is
needed in most CIM operations owing to the limitation of the principle of memory storage,
has fueled an active interest in choosing BWN to complete this handwritten recognition
task. BWN is different from full-precision neural network and binary-neural network
(BNN). Not only the weight but also the input of BNN is binary, which leads to a much
smaller storage capacity than BWN, but the recognition accuracy is not optimistic enough.
In order to achieve a good compromise, we use BWN in the CIM architecture to reduce the
parameters of a network while ensuring the recognition accuracy of a small network in this
experience. Because BWN only cares about the binarization of weights and does not change
the input of the network and the intermediate value between layers, it retains the original
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accuracy and is still critical to make use of a full-precision activation function. Additionally,
there are two kinds of training patterns in the CIM architecture, online training and offline
training. Online training means not only inference but also training of the model occurred
on the chip, but for offline training, the parameters of the model such as weights will be
trained on the software, when the training of the model converges, the parameters trained
before can be stored on the chip for the inference step, which denotes that the weights
would not be changed on the chip. In this paper, we accomplish the circuit implementation
of the sigmoid activation but not the hardware implementation of other network layers, so
we use the method of exporting the circuit simulation curve into a function in the software
to simplify this experiment.

For the online training in this experiment, we train the ideal model with ideal acti-
vation function with epoch = 6, as for the simulated curve, it can be trained using the
fitting function (9) rather than exported multi-point from the simulated circuit due to back-
ward propagation is needed for online training and the insignificant error of (9) analyzed
above. Thus, the function expression (9) should be packaged into a new activation function
in software for easy calling. The change in accuracy of the training process is shown
in Figure 9a. It could be noted that the accuracy of recognition of the model with ideal
activation is approximated to the model with fitting one at the beginning with epoch ≤ 2,
as the increased number of the epoch, the gap of training accuracy between the two models
gradually increases, but when the epoch = 6, the simulated one achieving 97.04% and the
ideal one achieving 96.06% which illustrate that using our simulated activation function
almost has no effect on the training recognition results for on-line training on the MNIST
training dataset. In addition, the comparison of the accuracy of the two models in the
inference period for online training in the MNIST test dataset is shown in Figure 9b, i.e.,
the ideal one is 97.32%, and the simulated one is 97.06%.
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Figure 9. (a) Measured the training accuracy of recognition in the MNIST training dataset, with the ideal sigmoid and with
the simulated sigmoid. (b) Measured the inference accuracy of recognition in the MNIST test dataset, with the ideal sigmoid
and with the simulated sigmoid, setting epoch = 6.

For the offline training, during the training stage, we train the two models using the
ideal sigmoid activation function equally, and then the weights information of the models
should be saved in a file. After this, the inference phase of the ideal model is the same as
online training, except the information of the weights should load to memory, and then it is
accomplished on-chip. The simulated one must be inferred on a new model, which is only
replacing the former activation layer to a simulated activation layer encapsulating with 4 k
simulated data points exported in hardware. The results likewise show in Figure 9b. The
accuracies of inference of offline training between the two functions are 97.32% and 97.74%,
respectively. These results are consistent with the theoretical inferences for the application
of the simulated function in Section 3. It is easily noted that the inference of accuracy
between the two training types with the ideal sigmoid is equal due to the fact that the
error caused by MAC operation on a chip is ignored to make the comparison of the results
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more intuitive in the experiment. Whether with online training or with offline training, the
experimental results have shown unprecedented performance on the recognition task with
the MNIST test dataset.

To test the robustness of our circuit, we select the three curves with the largest errors
in the simulation results in Figure 8. One is the simulation curve under the supply voltage
of 3.6 V and SS corner, the other is the simulation curve under the voltage of 3 V with FF
corner, and the last is the one in the Monte Carlo curve that deviates the furthest from
the fitted curve. For online training, there are only slight differences from the typical case:
97.28%, 97.01%, 97.11%, respectively because of the minimal differences between them and
the fitted curve. For offline training, the classification accuracies are 96.46%, 97.28%, and
97.19%. It is easy to be seen that our actual circuit structure is sufficiently robust.

5. Conclusions

The high-precision sigmoid activation function implemented with the circuit using
the index formula of I-V of diodes to address the existing problem of implementation
for non-linear activation function in the CIM architecture is presented in this paper. We
demonstrated features of the sigmoid function with adjustable slope by simulating the
high-precision sigmoid circuit with the SMIC 40 nm process, achieving the output value
close to the ideal sigmoid, which means the simulated sigmoid function is high-precision,
so it will theoretically not reduce the classification accuracy of the neural network. To
provide further support for the correctness of this theory, the proposed simulated high-
precision sigmoid circuit is applied to accomplish the task of recognizing the MNIST
hand-written dataset utilizing a multi-layer CNN based on CIM architecture. The results
demonstrate that using the proposed high-precision circuit implemented sigmoid has
almost no effect on the accuracy of the network, suggesting it is in accordance with the
theory. In addition, compared to prior CIM works of the sigmoid activation function
implemented on software, our approach can dramatically reduce data transfer back and
forth and latency by putting the circuit of sigmoid into CIM architecture. It is of great
significance for the hardware-implemented sigmoid to realize fully customized hardware
neural network accelerators with CIM architecture for specific applications. To sum up,
it is indicated that the proposed high-precision circuit implementation of sigmoid shows
promising results, which can be applied to ultra-low-power and high-accuracy AI products
because of its further degradation of energy consumption in CIM architecture.
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