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Myc is a powerful transcription factor implicated in epige-
netic reprogramming, cellular plasticity, and rapid growth as
well as tumorigenesis. Cancer in skeletal muscle is extremely
rare despite marked and sustained Myc induction during
loading-induced hypertrophy. Here, we investigated global,
actively transcribed, stable, and myonucleus-specific tran-
scriptomes following an acute hypertrophic stimulus in mouse
plantaris. With these datasets, we define global and Myc-spe-
cific dynamics at the onset of mechanical overload-induced
muscle fiber growth. Data collation across analyses reveals an
under-appreciated role for the muscle fiber in extracellular
matrix remodeling during adaptation, along with the contri-
bution of mRNA stability to epigenetic-related transcript levels
in muscle. We also identify Runx1 and Ankrd1 (Marp1) as
abundant myonucleus-enriched loading-induced genes. We
observed that a strong induction of cell cycle regulators
including Myc occurs with mechanical overload in myonuclei.
Additionally, in vivo Myc-controlled gene expression in the
plantaris was defined using a genetic muscle fiber-specific
doxycycline-inducible Myc-overexpression model. We deter-
mined Myc is implicated in numerous aspects of gene expres-
sion during early-phase muscle fiber growth. Specifically, brief
induction of Myc protein in muscle represses Reverbα, Reverbβ,
and Myh2 while increasing Rpl3, recapitulating gene expres-
sion in myonuclei during acute overload. Experimental,
comparative, and in silico analyses place Myc at the center of a
stable and actively transcribed, loading-responsive, muscle
fiber–localized regulatory hub. Collectively, our experiments
are a roadmap for understanding global and Myc-mediated
transcriptional networks that regulate rapid remodeling in
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postmitotic cells. We provide open webtools for exploring the
five RNA-seq datasets as a resource to the field.

Myc is a transcription factor known to drive cellular plas-
ticity (1, 2), epigenetic reprogramming toward stemness as a
Yamanaka factor (3–6), and rapid growth via proliferative and
nonproliferative mechanisms (7–9). A proto-oncogene that
dimerizes with MAX and interacts and/or complexes with
numerous other proteins, (10, 11) MYC protein is a “universal
amplifier” and “supermanager” of transcription with intricate
and multifaceted functionality (12–14). Evidence for a role of
MYC in syncytial muscle fiber growth emerged 20 to 30 years
ago (15–17). A decade ago, MYC was hypothesized to be a key
aspect of skeletal muscle adaptation to exercise (18). We
recently found that the promoter region of Myc was hypo-
methylated in myonuclei following short-term mechanical
overload of the mouse plantaris muscle (19). MYC protein
binds the ribosomal DNA promoter during muscle overload
(20), consistent with its influence on ribosome biogenesis and
protein synthesis in striated muscle (21, 22). We also report
that MYC-associated areas of ribosomal DNA are differentially
methylated in murine myonuclei and human muscle tissue
after acute loading (23). Dysregulation of Myc results in tumor
development and maintenance in mononuclear cells (8, 9).
Even transiently elevated MYC can cause tumors in some cells
(24); however, Myc transcript and protein (MYC) may be
elevated for up to 2 weeks during continuous mechanical
overload in mouse muscle without an overt deleterious effect
(23, 25–28). MYC protein abundance in human muscle after
resistance training also associates with the magnitude of hy-
pertrophic adaptation (29). The unique multinuclear, termi-
nally differentiated postmitotic nature of muscle fibers likely
explains how muscle is resistant to developing cancer (30–33)
and why sustained MYC is tolerated in this tissue. Although
the role of MYC in proliferative cells is well studied, its
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ACCELERATED COMMUNICATION: Myc in muscle during hypertrophy
function as a transcription factor in postmitotic myonuclei
during muscle growth is incompletely defined.

In the current investigation, we generated four interrelated
murine muscle RNA-sequencing (RNA-seq) datasets using a
proven hypertrophic loading stimulus (34, 35) to understand
muscle tissue and myonucleus-specific transcriptional dy-
namics at the onset of rapid muscle growth. We focused on the
effects of Myc given its (1) established role in driving non-
proliferative tissue growth and overall cellular plasticity in
nonmuscle cell types (1, 7) and (2) proposed role in human
(23, 29, 36) and rodent (17, 20, 22, 25–28) loading-induced
skeletal muscle hypertrophy. We then performed a geneti-
cally driven muscle fiber–specific in vivo Myc overexpression
experiment along with in silico chromatin immunoprecipita-
tion sequencing (ChIP-seq) analysis to provide focused insight
on how Myc may contribute to global gene expression during
rapid muscle remodeling.
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Figure 1. Experiment 1: RNA-sequencing of total RNA from plantaris musc
the conditions of Experiments 1 to 5. B, pathway analysis of upregulated genes
sham. D, Myc mRNA levels in sham and overload determined by RNA-seq. E, dig
from Oprescu et al. (43) to delineate cellular contributions to the global transcr
5-Ethenyl uridine; OV, overload.
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Results
Figure 1A is a study design schematic. Experiment 1 defines

the global transcriptome using RNA-seq after 72 h of synergist
ablation mechanical overload of the mouse plantaris muscle.
Experiments 2 and 3 used the tissue from Experiment 1 to
provide information on the contribution of active transcription
versusmRNA stability to global gene expression with overload.
Experiment 4 details the myonucleus-specific transcriptome
during overload to identify muscle fiber–enriched genes,
which is further informed by Experiments 2 and 3. Myonuclei
only comprise �30% of all nuclei after short-term mechanical
overload (19), so defining the transcriptome specifically in
myonuclei is critical for understanding muscle fiber adapta-
tion. The transcriptional regulation and localization of Myc
and its impact on muscle gene expression were explored using
data from Experiments 1 to 4. Experiment 5 utilized a
doxycycline-inducible muscle fiber–specific in vivo Myc pulse
E

le after 72 h of mechanical overload. A, study design schematic showing
in OV versus sham. C, pathway analysis of downregulated genes in OV versus
ital deconvolution of muscle overload data using CIBERSORTx (42) and data
iptome. Normalized gene count, gene counts normalized using DESeq2. EU,



ACCELERATED COMMUNICATION: Myc in muscle during hypertrophy
in the plantaris to understand what genes Myc controls within
muscle fibers and how this relates to myonuclear gene
expression during overload (Experiment 4); we corroborated
the results from these analyses using computational ChIP-seq
(37). All transcriptome data are publicly available for browsing:

Experiments 1 to 3 https://liuzhengye.github.io/Hypertrophy/
interactive_MA_PLOT_Eu.html

Experiment 4 https://liuzhengye.github.io/Hypertrophy/
interactive_MAplot_myonuclei.html

Experiment 5 https://liuzhengye.github.io/Hypertrophy/
interactive_MA_MYC.html

Experiment 1: The global plantaris transcriptome after 72 h of
mechanical overload

Pathway analysis of differentially regulated genes (false dis-
covery rate adjusted p value [adj. p] < 0.05) in plantaris tissue
after overload revealed extracellular matrix (ECM), inflamma-
tory, histone (RNA Pol I), and RHO-GTPase gene expression
were higher relative to sham (Fig. 1B) (Table S1 and S2). A large
proportion of downregulated genes were related to oxidative
metabolism (Fig. 1C) (Table S3). This repressed gene signature
could contribute to a “Warburg effect” that occurs during rapid
overload-induced muscle hypertrophy, marking a shift toward
“aerobic glycolysis” for rapid biomass accumulation (38–41).
Consistent with our priormurine studies (19, 25, 26) and human
resistance exercise time course data (23), Myc was higher after
overload (Log2FC = 2.0, adj. p = 0.006) (Fig. 1D).

To provide insight on what cell types contribute to global
gene expression profiles in sham and overload, we conducted
digital deconvolution analysis with CIBERSORTx using
Experiment 1 transcriptome data (42). The analysis algorithm
was trained using single cell RNA-seq data from a 10 days
muscle regeneration dataset (43) (Fig. 1E). The interstitial cell
proportion in muscle increases at the onset of overload, out-
numbering myonuclei (19). Despite this shift, the largest
contribution to gene expression in muscle was predicted to be
from muscle fibers (i.e., myonuclei) after 72 h of overload. The
second largest contributions were from muscle stem cells
(satellite cells) and fibro-adipogenic progenitors (Fig. 1E). We
recently reported that successful ECM remodeling during the
first 96 h of overload determines the long-term hypertrophic
response (44). Early stage ECM remodeling is strongly influ-
enced by satellite cells and fibro-adipogenic progenitors (44,
45); it follows that these cell types are major contributors to
early-phase gene expression during growth.

Experiments 2 and 3: Nascent and stable mRNA
transcriptomes after 72 h of mechanical overload

Most transcription in skeletal muscle is rRNA (46), and
rRNA levels are further augmented specifically in myonuclei
during overload (25). We conducted mRNA profiling to un-
derstand global transcriptional dynamics in the non-rRNA
pool during growth using 5-Ethenyl uridine (EU) metabolic
labeling (25) (Tables S4–S9). In the EU (nascent, Experiment
2) and non-EU (not actively transcribed and presumably sta-
ble, Experiment 3) mRNA fractions, ECM remodeling was
among the most upregulated processes during the last 5 h of
overload versus sham (Fig. 2, A and B) (Tables S4–S6, and S8).
Myc was also significantly higher in nascent and stable frac-
tions relative to sham (Fig. 2C). Active Myc transcription
during overload could be facilitated by hypomethylation of its
promoter in myonuclei (19). Thus, ECM and Myc gene
expression are highly regulated during the acute phase of
muscle loading. In addition, RHO-GTPase genes were higher
in both fractions with overload relative to sham (Fig. 2, A and
B). RHO-GTPases are implicated in muscle mass regulation,
but their role in load-induced hypertrophy is still being defined
(47). Genes related to epigenetic control of gene expression
(specifically histones and Dnmt1) were enriched in the non-EU
fraction with overload (Fig. 2, D and E). Myonuclear histone
turnover (48) and dynamic regulation of DNA methylation in
myonuclei (19, 23, 49) likely facilitates hypertrophic gene
expression and adaptation in muscle fibers.

In the EU and non-EU fractions, oxidative metabolism-
related gene expression was lower during overload (Fig. 2, F
and G) (Tables S7 and S9); these data inform the findings from
Experiment 1. Pgc1α (Ppargc1a), a core regulator of mito-
chondrial biogenesis (50, 51), was among genes that were
lower in both fractions during overload (Tables S4 and S5).
Apart from epigenetic-related genes, most mRNA differences
between sham and overload at the pathway level were attrib-
utable to differences in both nascent transcription and, pre-
sumably, enhanced mRNA stability.
Experiment 4: The myonuclear transcriptome after 72 h of
mechanical overload

To understand what genes were specifically regulated in
muscle fibers during rapid muscle growth, we conducted
RNA-seq on fluorescent activated nuclear-sorted (FANS)-
purified myonuclei using the HSA-GFP mouse (Fig. 3A) (19,
52). Relative to sham, genes related to ECM remodeling
(primarily collagens, matrix metalloproteinases, and secreted
factors) and immune signaling (namely chemokines) were
most highly enriched in myonuclei from overloaded muscle
(Fig. 3B) (Tables S10 and S11). We and others have re-
ported that matrix metalloproteinase 9 (Mmp9) is responsive
to loading in skeletal muscle and is a key component of
muscle growth (53–55). We confirm here that Mmp9 is
enriched in myonuclei during overload in vivo (Fig. 3C).
Interstitial cells of the muscle microenvironment are
generally viewed as the primary contributors to ECM
deposition and turnover. Emerging evidence suggests that
muscle fibers also play a major role in ECM remodeling (53,
56–58), which the current data reinforces.

Numerous cell cycle regulators were enriched in myonuclei
after overload (Fig. 3B) which included Myc (top 30 upregu-
lated gene, adj. p = 0.0136 × 10−7) (Fig. 3C) (Table S11). Runx1,
another transcription factor, was highly abundant and
enriched in myonuclei by overload (Log2FC = 4.1, adj. p =
0.05 × 10−14) (Fig. 3E); it was also markedly higher in total
RNA, EU, and non-EU fractions (Tables S1, S4 and S5). Runx1
induction during overload is intuitive since it regulates muscle
J. Biol. Chem. (2022) 298(11) 102515 3
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Figure 2. Experiments 2 and 3: RNA-sequencing of EU- and Non-EU–labeled mRNA from plantaris after 72 h of mechanical overload. A, pathway
analysis of genes upregulated in the EU-labeled fraction in OV versus sham. B, pathway analysis of genes upregulated in the Non-EU–labeled fraction in OV
versus sham. C, MycmRNA levels in the EU and Non-EU fractions. D, histone genes elevated in the Non-EU fraction during overload. E, Dnmt1mRNA levels in
EU and Non-EU fractions. F, pathway analysis of genes downregulated in the EU-labeled fraction in OV versus sham. G, pathway analysis of genes
downregulated in the Non-EU–labeled fraction in OV versus sham. EU, 5-Ethenyl uridine; OV, overload.
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mass, myofibrillar organization, and autophagy in myofibers
(59). RUNX1 is also known to interact and complex with MYC
(60, 61). Ankrd1 (Marp1, also Carp1) was the most upregu-
lated gene with overload in myonuclei (Log2FC = 6.0, adj. p =
0.0127 × 10−62) as well as the EU fraction (Log2FC = 5.1, adj.
p = 0.038 × 10−60) (Fig. 3F) (Tables S4, S5, and S10); however,
it was only the 1495th most differentially regulated gene in the
total RNA dataset (Table S1). Ankrd10 was also among the
most upregulated genes in myonuclei and the EU fraction.
Ankrd1 localizes in myotendinous junction myonuclei (62) and
is induced by eccentric exercise in rodent and human muscle
(63, 64). Perhaps Ankrd1 upregulation during mechanical
overload is partially explained by muscle lengthening and/or
myotendinous junction remodeling (35, 65). These results
highlight the power of EU-labeling and myonucleus-specific
transcriptomics for identifying potentially important genes
for muscle growth. Our findings also provide impetus for
further investigation of Ankrd1 during muscle hypertrophy.
The category of genes most downregulated during overload in
myonuclei was oxidative metabolism (Fig. 3G) (Table S12).
Thus, the total mRNA and EU results are likely driven by
changes within the myofiber.
4 J. Biol. Chem. (2022) 298(11) 102515
Experiment 5: The Myc-controlled transcriptome in plantaris
muscle fibers

We generated a doxycycline-inducible HSA-Myc mouse to
experimentally define the MYC regulatory network in plantaris
muscle fibers. A pulse of Myc was driven via doxycycline in
water overnight followed by a 12-h period without doxycy-
cline. Principal component analysis revealed stark differences
between control and Myc overexpression (Fig. 4A). At the
pathway level, ribosome biogenesis-related genes such as ri-
bosomal proteins and eukaryotic initiation factors were most
upregulated relative to controls (Fig. 4B) (Table S13). A MYC
pulse induced gene expression of the large ribosomal subunit
protein Rpl3 (Log2FC = 1.95, adj. p = 0.00053) (Fig. 4C). Rpl3
was also higher in myonuclei during overload, and its muscle-
specific paralog Rpl3l was lower (adj. p < 0.05) (Table S10).
Upregulation of Rpl3 has been implicated in robust hyper-
trophy in mouse (26) and human muscle (29). Rpl3 may in-
fluence growth via ribosome specialization (66), but more
work is needed in this area. The induction of Rpl3 by overload
and Myc alongside increased levels of the rRNA transcription-
associated genes Bop1 (67, 68), Ftsj3 (69), Polr3g (70), Rpl10a
(71), and Rps19 (72), could also be a sign of enhanced
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Figure 3. Experiment 4: RNA-sequencing of myonuclear RNA from plantaris muscle after 72 h of mechanical overload. A, image showing myonuclear
GFP labeling, DNA (DAPI), and dystrophin via histochemistry in a doxycycline-treated HSA-GFP mouse (see refs. (19) and (99)); the scale bar represents
100 μm. B, pathway analysis of upregulated genes specifically in FANS-isolated myonuclei in OV versus sham. C, myonuclear Mmp9mRNA levels in sham and
overload determined by RNA-seq. D, Myc mRNA levels in sham and overload determined by RNA-seq. E, Runx1 mRNA levels in sham and overload
determined by RNA-seq. F, Ankrd1 (Marp1) mRNA levels in sham and overload determined by RNA-seq. G, pathway analysis of downregulated genes
specifically in FANS-isolated myonuclei in OV versus sham. FANS, fluorescent activated nuclear-sorted; OV, overload.
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ribosome biogenesis. In total, 31 upregulated genes were
common to Myc overexpression in muscle fibers and myo-
nuclei with overload (Fig. 4D).

Approximately, 100 genes were downregulated (adj. p <
0.05) by MYC in the plantaris (Table S13). MYC strongly
regulates microRNA expression (8, 73–77). Repressed genes
with MYC induction are potentially attributable to MYC-
controlled microRNA-mediated mRNA destabilization and
degradation. MYC may also repress gene expression via
regulating DNA methylation and chromatin remodeling (3, 4,
12), as well as through specific protein-protein interactions
(10, 11). The abundant myosin heavy chain type 2a gene Myh2
was repressed by MYC (Log2FC = −0.75, adj. p = 0.013)
(Fig. 4E), similar to what occurred in myonuclei during over-
load (Table S10). Type 2a myosin is associated with oxidative
metabolism in murine muscle (78, 79). Lower Myh2 may be
part of a Warburg-like program that accompanies rapid
muscle growth (38, 39). Reverbα (Nr1d1, Log2FC = −1.36, adj.
p = 0.065) and Reverbβ (Nr1d2, Log2FC = −1.31, adj. p =
0.044) mRNA levels were lower with MYC overexpression
(Fig. 4F) and in myonuclei with overload (Table S10). In cancer
cells, MYC promotes Reverbα and Reverbβ expression (80)
which affects the core clock gene Bmal1 (80, 81), circadian
rhythm, and cell metabolism (80). Thus, MYC control of Re-
verbs could be unique in muscle fibers. In total, 35 down-
regulated genes were common to MYC overexpression in
muscle fibers and myonuclei with overload (Fig. 4G).

To corroborate MYC regulation of target genes in muscle,
we compared our overload myonuclear and Myc over-
expression RNA-seq data to published MYC ChIP-seq data
from myogenic cells (77). Of genes regulated by both overload
and MYC (Fig. 4, D and G), Anp32b, Aqp4, Atp1a1, Cdkn1b,
Cntfr, Epas1, Ftsj3, Jak2, Ncl, Nr1d2/Reverbβ, P2ry1, Pcmtd1,
Rpl3, and Slc7a5 featured MYC occupancy in myogenic cells.
After differentiation, MYC-binding peaks on all these genes
except Aqp4, Atp1a1, and P2ry1 were altered, indicating
regulation by MYC in dynamic conditions. Of note, MYC
binding to Ankrd1 increased during myotube formation (77).
Brief Myc overexpression in the soleus did not induce Ankrd1,
so MYC may function cooperatively with another factor that is
induced during overload to regulate this gene (14, 82). To
confirm MYC transcription factor binding of myonuclear
J. Biol. Chem. (2022) 298(11) 102515 5
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Figure 4. Experiment 5: RNA-sequencing of total RNA from plantaris muscle of HSA-Myc mice following a single pulse of Myc. A, PCA plots from
doxycycline-treated HSA-Myc versus littermate HSA-rtTA (Control) mice (generated using DESeq2 normalized gene counts). B, pathway analysis of upre-
gulated genes after Myc overexpression. C, Rpl3 mRNA levels after Myc overexpression. D, genes upregulated by Myc in muscle and also enriched in
myonuclei during 72 h of overload. E, Myh2mRNA levels after Myc overexpression. F, Reverbα (Nr1d1) and Reverbβ (Nr1d2) afterMyc overexpression. G, genes
upregulated by Myc in muscle also enriched in myonuclei during 72 h of overload. OV, overload; PCA, principal component analysis.
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DNA during mechanical overload, we utilized our RNA-seq
data to perform epigenetic Landscape In Silico deletion
Analysis (Lisa) (37). Lisa incorporates transcriptome input data
with an extensive library of publicly available transcription
factor ChIP-seq and global chromatin accessibility profiles to
infer transcriptional regulators. Leveraging our MYC over-
expression RNA-seq data as a control (Experiment 5), MYC/
MYCN was the highest ranked transcription factor driving
upregulated genes (Table S14), confirming the accuracy of
Lisa. Using the first 500 differentially regulated genes in each
direction from Experiment 4, MYC was in the top 5% of
transcription factors controlling upregulated genes (p = 1.7 ×
10−24) in myonuclei during overload and the top 10% for
controlling downregulated genes (p = 2.4 × 10−11) (Table S15).
Motif target prediction suggested that MYC regulates Rpl3 in
myonuclei during overload (top 45% of genes targeted by
Figure 5. Summary of key findi
MYC) (Table S16). Ribosome biogenesis-associated Bop1 (top
15%), Ftsj3 (top 15%), Polr3g (top 1%), and Rps19 (top 15%)
had high regulatory potential by MYC during overload ac-
cording to H3k27ac ChIP-seq (promoter/enhancer) informa-
tion; Ncl was also in the top 1% (Table S17). MYC had
regulatory potential for Nr1d2/Reverbβ during overload (top
35% of gene targets) (Table S18). All together, these data
suggest that MYC controls gene expression in myonuclei
during loading-induced hypertrophy.
Discussion

Interrelated RNA-seq datasets define the early phase of
growth processes in differentiated muscle fibers (Fig. 5). Lower
oxidative metabolism-related gene expression during the onset
of rapid muscle growth is due to changes in mRNA
ngs from Experiments 1 to 5.

J. Biol. Chem. (2022) 298(11) 102515 7
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transcription and stability and occurs specifically in myonuclei.
The overload datasets also revealed an under-appreciated role
for muscle fibers in ECM remodeling during adaptation.
Regulation of several collagens and remodeling enzymes such
as Mmps by active transcription, transcript stability, and in
myonuclei emphasizes the importance of ECM dynamics for
muscle hypertrophy (56). The non-EU RNA-seq data suggests
elevated epigenetic-related gene expression during overload
reflects greater mRNA stability; the mechanism underlying the
change in mRNA stability in muscle during hypertrophy de-
serves further investigation. We identified key genes that are
actively transcribed in muscle and enriched in myonuclei
during in vivo muscle growth, such as Runx1 and Ankrd1.
RUNX1 regulates muscle mass (59) and participates in ribo-
some biogenesis (83), as well as interacts with MYC (60, 61).
ANKRD1 associates with titin’s N2A element, a major
mechanosensory and signaling hub in skeletal muscle (84, 85).
It also locks titin to the thin filament, regulates passive force,
and protects the sarcomere from mechanical damage (86).
Some evidence suggests ANKRD1 inhibits TNFα-induced
NFκB signaling (87) and affects androgen receptor signaling
(88) in myogenic cell culture. Given these functions, ANKRD1
may be critical for successful muscle hypertrophy. Ankrd1 was
not among the most differentially expressed genes in the total
RNA dataset but emerged in the nascent and myonuclear
RNA-seq as the most highly responsive gene to mechanical
overload. This mismatch highlights the utility of evaluating
transcriptional dynamics and myonuclear-specific gene
expression for understanding muscle adaptation. Furthermore,
Runx1 and Ankrd1 are typically upregulated after muscle
denervation (59, 87), suggesting a compensatory response to
counteract atrophy in that condition.

MYC protein localizes in myonuclei during loading-induced
skeletal muscle growth (15, 27). Genetic Myc induction re-
capitulates diverse aspects of the loading response in muscle
fibers. These changes include downregulation of Reverbα,
Reverbβ, and Myh2, along with increased Rpl3. Published
ChIP-seq data in myogenic cells (77) as well as in silico tran-
scriptional regulator analysis (37) using our myonuclear RNA-
sequencing data corroborates the association of MYC with
Reverbβ and Rpl3, along with numerous other genes. The
ChIP-seq also revealed a potential interaction with Ankrd1
(77) that did not emerge in our muscle-specific MYC over-
expression experiment. Lower levels of Reverbs during over-
load could have implications for circadian regulation and
metabolism in muscle fibers (80); this is salient since MYC is
exercise-responsive and exercise shifts the circadian rhythm in
skeletal muscle (89–92). Perhaps an exercise-mediated shift in
muscle circadian rhythm is controlled by MYC, but more work
is needed in this area, especially with respect to resistance
exercise. Altered Rpl3 by mechanical overload and MYC
expression could facilitate muscle-specific growth via ribo-
some specialization (66, 93). MYC is also known to be a potent
driver of ribosome biogenesis in muscle (21, 22). We previ-
ously reported that ribosome biogenesis increases in total and
nascent RNA pools following 72 h of synergist ablation in the
mouse (20, 23, 25, 94). Thus, MYC appears central to the
8 J. Biol. Chem. (2022) 298(11) 102515
regulation of rRNA synthesis and ribosome assembly, pro-
cesses hypothesized to be necessary for sustained hypertrophy
in response to loading (95–97). MYH2 protein and oxidative
fiber proportion increases after prolonged muscle overload
(98). MYC-mediated and early Myh2 downregulation during
overload may relate to an acute glycolytic preference during
rapid hypertrophy (38).

The induction of MYC in instances of attenuated muscle
plasticity such as aging, where MYC activity may be blunted
during hypertrophy (15), could restore adaptive potential and
increase muscle mass. Future experiments involving simulta-
neous muscle-specific inducible knockout of c-Myc and its
several analogous family members (99), myonuclear MYC
ChIP-seq, and MYC protein–protein interactome analysis
during overload will provide more granular insight on the
MYC regulatory network during muscle hypertrophy. Since
differentiated myofibers can sustain high levels of oncogene
expression without tumor formation, we suggest that MYC in
muscle fibers induced by loading is a core component of rapid
yet functional adaptive remodeling. Collectively, our data are a
rich resource for understanding transcriptional dynamics and
MYC regulation during the onset of loading-induced muscle
fiber growth.
Experimental procedures

Animals and animal procedures

All animal procedures were approved by the University of
Kentucky and the University of Arkansas IACUC. Mice were
housed in a temperature and humidity-controlled room,
maintained on a 14:10-h light-dark cycle, and food and water
were provided ad libitum throughout experimentation. Ani-
mals were sacrificed via a lethal dosage of sodium pentobar-
bital injected intraperitoneally or CO2 asphyxiation followed
by cervical dislocation.

Female C57BL6/J mice were obtained from the Jackson
Laboratory for Experiments 1 to 3. Female HSA-rtTA+/−-;TRE-
H2B-GFP+/− (HSA-GFP) mice were generated as previously
described by us (19, 52) for Experiment 4. The TRE-H2B-GFP
mouse was originally obtained from the Jackson Laboratory
(005104, bred to homozygosity by our laboratory) (100). For
Experiment 5, male HSA-rtTA+/−-;TRE-Myc+/− (HSA-Myc)
were generated by crossing homozygous HSA-rtTA mice (52)
with heterozygous TRE-Myc mice (101); HSA-rtTA littermate
mice were used as controls. All mice were genotyped as
described (52, 102). HSA-GFP mice were treated with low-
dose doxycycline (0.5 mg/ml doxycycline in drinking water
with 2% sucrose) for 5 days to label myonuclei with GFP. HSA-
Myc and littermate control mice were treated with doxycycline
water overnight, and this water was replaced with unsupple-
mented water for 12 h prior to being euthanized. All mice were
at least 2 months of age at the time of experimentation.

For Experiments 1 to 4, synergist ablation overload of the
plantaris was performed as described (19, 34). Synergist abla-
tion involves removal of �50% of the gastrocnemius–soleus
complex while under anesthesia, followed by ambulatory
cage behavior for 72 h. Sham surgery (control condition)
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involved all the steps of synergist ablation but without removal
of muscle. For Experiments 1 to 3, mice were injected with EU
5 h prior to being euthanized (25). Briefly, mice were given an
intraperitoneal injection of 2 mg of EU (Jena Biosciences)
suspended in sterile PBS. For Experiment 4, myonuclei were
isolated via FANS (19). Plantaris muscles were harvested
immediately after being euthanized. Muscle was minced and
homogenized via Dounce in a sucrose buffer with RNAse in-
hibitors. After straining through 40 μm filters, the nuclear
suspension was pulsed with propidium iodide to label DNA.
GFP+/PI+ myonuclei were sorted using FANS into TRIzol LS
for RNA isolation.

RNA isolation and sequencing

For Experiments 1, 2, 3, and 5, plantaris RNA was isolated
using TRI Reagent (Sigma-Aldrich). Tissue was homogenized
using beads and the Bullet Blender Tissue Homogenizer (Next
Advance) or the Fisher Bead Mill (Fisher). Following homog-
enization, RNA was isolated via phase separation by addition
of bromochloropropane or chloroform and then by centrifu-
gation. The aqueous phase was transferred to a new tube and
further processed on columns using the Direct-zol Kit (Zymo
Research) (23). For Experiment 4, RNA was isolated by Nor-
gen. Experiments 1, 4, and 5 utilized Poly-A enrichment. For
Experiments 2 and 3, RNA was depleted of rRNA using the
NEBNext rRNA Depletion Kit (New England Biolabs) prior to
isolation of EU- and non-EU–labeled RNA. A total of 4 × 1 μg
RNA reactions were used per sample for rRNA depletion and
pooled for the EU pulldown. The EU- and non-EU–labeled
RNA fractions were isolated using the Click-iT Nascent RNA
Capture kit (ThermoFisher) per the manufacturers protocol.
cDNA libraries were constructed using NEBNext Ultra# II
RNA Library Prep kit with NEBNext Multiplex Oligos for
Illumina (New England Biolabs). EU pulldowns were unsuc-
cessful for one sham experiment, so sequencing for that group
was n = 2. Library preparation for Experiment 4 was low input
and utilized the SMARTer pico kit (TaKaRa), as described by
the National Genomics Infrastructure at SciLifeLab. RNA for
Experiments 1, 2, 3, and 5 were sequenced by Novogene on an
Illumina HiSeq using 150 bp paired-end sequencing, as we
have done previously (79, 103). Experiment 4 was sequenced
by the SciLifeLab on a NovaSeq 6000 (150 bp paired-end).

Transcriptomic analyses

Raw counts from RNA-seq were used as inputs into R
(Version 4.1.0) or Partek Flow. Alignment was performed us-
ing STAR with mmu39. After filtering low-expressed genes,
DESeq2 (Version 1.34.0) was used for normalization and dif-
ferential analyses of RNA-seq data to identify differentially
expressed genes (DEGs) with pairwise comparisons (104).
DEGs were identified with a false discovery rate (Benjamini-
Hochberg method) adjusted p-value <0.05. DEGs with a log2
fold change (Log2FC) over 1 and adj. p < 0.05 were used for
downstream functional analysis in Experiments 1 to 4. A fold-
change cut-off was not used for Experiment 5. Kyoto Ency-
clopedia of Genes and Genomes and Reactome (https://
reactome.org/) were utilized for pathway analysis. We uti-
lized clusterProfiler (Version 4.4.1), ReactomePA, ggplot2
(3.15), and ConcensusPathDB (105) with mouse as the refer-
ence organism.

Digital cell sorting with CIBERSORTx

CIBERSORTx (https://cibersortx.stanford.edu/) is a ma-
chine learning method that enables prediction of cell type
proportions from bulk tissue analysis using single cell RNA-
seq data (42). We used skeletal muscle single-cell data from
10 days muscle regeneration data from Oprescu et al. (43). The
datasets (10X Genomics) were reanalyzed with Seurat, and cell
clusters were identified with a resolution of 0.8 (106).
Normalized gene expression matrices of individual cells were
used to create a signature matrix of all cell types using default
settings, and cell proportions were predicted by CIBERSORTx
with 1000 permutations.

Transcriptional regulator analysis using Lisa

Lisa was run according to recommended procedures (37). In
brief, DEG lists (adj. p < 0.05) from Experiments 4 and 5 were
input into the online graphical user interface. Output files were
downloaded and the strength of MYC regulation was deter-
mined by ranking of regulatory potential in H3k27ac ChIP-seq
files. The Cauchy combination p-value test was used to
determine overall influence of MYC.

Data availability

Raw data are available in Gene Expression Omnibus
GEO213406, and all processed data are provided in Supporting
information and online webtools.
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