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Abstract

Manganese superoxide dismutase (MnSOD) is a nuclear encoded and mitochondrial matrix 

localized redox enzyme that is known to regulate cellular redox environment. Cellular redox 

environment changes during transitions between quiescent and proliferative cycles. Human 

MnSOD has two poly(A) sites resulting in two transcripts: 1.5 and 4.2 kb. The present study 

investigates if the 3'-untranslated region (UTR) of MnSOD regulates its expression during 

transitions between quiescent and proliferating cycles, and in response to radiation. A preferential 

increase in the 1.5 kb MnSOD transcript levels was observed in quiescent cells, while the 

abundance of the longer transcript showed a direct correlation with the percentage of S-phase 

cells. Log transformed expression ratio of the longer to shorter transcript was also higher in 

proliferating normal and cancer cells. Deletion and reporter assays showed a significant decrease 

in reporter activity in constructs carrying multiple AU-rich sequence that are present in the 3'-UTR 

of the longer MnSOD transcript. Overexpression of the MnSOD 3'-UTR representing the longer 

transcript enhanced endogenous MnSOD mRNA levels, which was associated with an increase in 

MnSOD protein levels and a decrease in the percentage of S-phase cells. Irradiation increases the 

mRNA levels of the 1.5 kb MnSOD transcript, which was consistent with a significant increase in 

reporter activity of the construct carrying the 3'-UTR of the shorter transcript. We conclude that 

the 3'-UTR of MnSOD regulates MnSOD expression in response to different growth states and 

radiation.
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Introduction

Manganese superoxide dismutase (MnSOD) is a nuclear encoded and mitochondrial matrix 

localized redox enzyme that converts mitochondrial generated superoxide to hydrogen 

peroxide (McCord and Fridovich, 1969). Human MnSOD has two poly(A) sites resulting in 

two transcripts with the same open reading frame: 1.5 and 4.2 kb. The majority of research 

is focused on transcriptional control of MnSOD expression, while very little is known about 

the post-transcriptional mechanisms regulating MnSOD expression (Clerch, 2000; St Clair 

and Oberley, 1991; Wan et al., 1994; Xu et al., 1999).

Post-transcriptional regulation of mRNAs is known to be governed by the non-coding 

sequence present in the 5'- and 3'-ends of mRNAs (Chen and Shyu, 1995; Goswami et al., 

2000; Guo et al., 1994; Mazumder et al., 2003; Rouault et al., 1988; Shaw and Kamen, 

1986). A computational analysis suggests that the average length of the 3'-untranslated 

region (UTR) of mRNAs in humans is approximately four times longer than the average 

length of the 5'-UTR (Mazumder et al., 2003). It is worth noting that the length of the 5'-

UTR remains relatively constant from fungi to plants and from invertebrates to vertebrates, 

while the length of the 3'-UTR increases during evolution and with species complexity. This 

‘evolutionary expansion’ supports the hypothesis that the 3'-UTRs regulate mRNA levels 

and translation (Mazumder et al., 2003).

The 3'-UTR harbors not only the polyadenylation signal (PAS) for termination of 

transcription, but also cis-acting elements like the AU-rich elements (AREs) and microRNA 

binding sites (Chen and Shyu, 1995; Chivukula and Mendell, 2008; Lewis et al., 2005; 

Wang and Blelloch, 2009). More than half of human genes are known to have multiple PAS 

(Edwalds-Gilbert et al., 1997; Lutz, 2008; Tian et al., 2005) resulting in multiple transcripts. 

The presence of multiple transcripts has often been suggested as a possible mechanism of 

evolution for phenotypic complexity in mammals (Edwalds-Gilbert et al., 1997). Recent 

studies have identified a preferential accumulation of transcripts correlating with cellular 

transformation status. Cancer cells express higher levels of oncogenes that were associated 

with an increase in the abundance of the transcripts carrying the shorter 3'-UTRs compared 

to non-transformed cells (Mayr and Bartel, 2009; Sandberg et al., 2008). The mRNA levels 

of oncogenes carrying the shorter 3'-UTRs correlated with a higher abundance of their 

corresponding protein levels. These previous reports suggest that transcript selection could 

be a major regulatory pathway influencing the mRNA levels of growth-promoting genes.

MnSOD activity negatively regulates cellular proliferation (Oberley, 2001; Oberley et al., 

1995; Sarsour et al., 2005; Sarsour et al., 2008). The present study investigates if a 

preferential accumulation of MnSOD transcript is associated with differences in cellular 

growth states and following treatment with ionizing radiation. Cells in quiescent state and 

growth-arrest induced by ionizing radiation exhibited an increase in the 1.5 kb MnSOD 

transcript, which correlated with a higher level of MnSOD protein and activity. A direct 

correlation was observed between the 4.2 kb MnSOD mRNA levels and percentage of S-

phase cells. Results from a luciferase reporter assay exhibited a significant decrease in 

reporter activity in cells transfected with plasmid DNAs carrying the longer 3'-UTR of 

MnSOD. These results suggest that a preferential selection of the longer MnSOD transcript 
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and subsequently a decrease in MnSOD protein levels and activity could shift the cellular 

redox environment towards a more oxidizing state favoring proliferation.

Results

Preferential selection of MnSOD transcripts in proliferating human normal and cancer cells

MnSOD protein levels and activity are higher in quiescence (G0) compared to proliferation 

(Oberley et al., 1989; Oberley et al., 1995; Sarsour et al., 2005; Sarsour et al., 2008). 

Human MnSOD has two transcripts 1.5 and 4.2 kb carrying the same open reading frame 

(Figure 1A). The significance of these two transcripts during transitions between quiescence 

and proliferation is currently unknown. To determine whether growth-state related changes 

in MnSOD protein levels and activity could be due to a preferential selection of MnSOD 

transcripts, a quantitative RT-PCR assay was applied to measure MnSOD mRNA levels in 

quiescent and proliferating normal human fibroblasts (NHFs). Contact inhibited NHFs were 

replated at a lower cell density and total cellular RNA isolated at different times post-

plating. Cells from duplicate plates were analyzed for cell cycle phase distributions by 

performing flow cytometry measurements of DNA content. MnSOD mRNA levels were 

significantly higher (3-fold) in cells with a lower percentage of S-phase (Figure 1B). 

MnSOD mRNA levels decreased as the percentage of S-phase cells increased. Next, we 

determined if this inverse correlation between MnSOD mRNA levels and the percentage of 

S-phase cells could be due to a preferential selection of the two transcripts. The quantitative 

RT-PCR assay was repeated using primer-pairs designed to distinguish between the two 

MnSOD transcripts (Figure 1A). The abundance of the 4.2 kb MnSOD transcript was 

evaluated by designing primer-pairs specific to the 3'-UTR of the longer transcript, while an 

anchored oligo-(dT)15 reverse primer to the proximal PAS was included in the PCR 

reactions designed to measure the abundance of the 1.5 kb transcript. These results showed a 

direct correlation between the 4.2 kb MnSOD transcript levels and the percentage of S-phase 

cells (R2=0.84). Quiescent cells exhibited an increase in the mRNA levels of the shorter 

MnSOD transcript (Figure 1C).

The observation of the S-phase-dependent selection of the 4.2 kb MnSOD transcript was 

also evident from results obtained from a semi-quantitative RT-PCR assay (Figure 2A). 

Total cellular RNA isolated from quiescent and exponential cultures of MCF-10A human 

non-malignant mammary epithelial cells were reverse transcribed and PCR amplified 

simultaneously to measure mRNA levels of MnSOD and GAPDH. MnSOD mRNA levels 

were higher in quiescent compared to exponential cultures. These results were comparable 

to results obtained from a quantitative RT-PCR assay (Figure 2B). It is interesting to note 

that the distributions of the individual MnSOD transcripts was significantly different in 

quiescent compared to proliferating cells. The abundance of the 1.5 kb MnSOD transcript 

was significantly higher in quiescent cells, while the abundance of the 4.2 MnSOD transcript 

was higher in exponential cultures. The higher abundance of the longer MnSOD transcript in 

proliferating cells was associated with lower MnSOD protein levels (Figure 2C). Cells with 

lower percentage of S-phase exhibited higher MnSOD protein levels coinciding with an 

increase in the 1.5 kb MnSOD transcript levels. In contrast, an increase in the percentage of 

S-phase cells was associated with an increase in the 4.2 kb MnSOD transcript levels, and a 
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decrease in MnSOD protein levels. The preferential selection of MnSOD transcripts and 

abundance of MnSOD protein levels were associated with a higher MnSOD activity during 

quiescence (lower S-phase) compared to proliferation (higher S-phase) (Figure 2D).

To determine the generality of this phenomenon, the abundance of the two MnSOD 

transcripts was measured in exponential cultures of human oral squamous (Cal27, SQ20B, 

FaDu), lung (A549, H292), and breast (MB-231, Sum159) cancer cells (Table 1). 

Expression ratio of the longer (4.2 kb) to shorter (1.5 kb) transcript was calculated following 

the method described by Mayr and Bartel et al. (Mayr and Bartel, 2009). These results 

showed that the abundance of the 4.2 kb MnSOD transcript was higher in exponential 

cultures of non-malignant and malignant cells (Table I). These results (Figures 1 and 2, and 

Table I) suggest that the higher abundance of the 4.2 kb MnSOD transcript is a general 

phenomenon associated with cellular proliferation (percent S-phase) rather than the 

transformation status of cells.

MnSOD 3'-UTR regulates luciferase activity in a reporter assay

A dual-luciferase assay was used to determine if the 3'-UTR of MnSOD regulates its mRNA 

and protein levels. 3'-UTR sequence representing the 1.5 kb MnSOD transcript and deletion 

constructs carrying 2 and 5 AU-rich (AREs) sequence of the 4.2 kb MnSOD transcript were 

cloned downstream of a renilla luciferase gene in psiCHECK-2 plasmid DNA (Promega). 

Control and transfected cells were harvested at 48 h post-transfection and luciferase activity 

was measured. Renilla-luciferase activity decreased approximately 40% in cells transfected 

with plasmid DNA carrying 2 AREs compared to cells transfected with plasmid DNA 

carrying 3'-UTR from the 1.5 kb MnSOD transcript (Figure 3A). Cells transfected with 

plasmid DNA carrying 5 AREs showed approximately 60% decrease in renilla luciferase 

activity.

Overexpression of the reporter construct carrying 5 AREs of the 4.2 kb MnSOD transcript 

enhanced endogenous mRNA levels of the longer MnSOD transcript (Figure 3B), suggesting 

a “decoy” function for the transfected MnSOD 3'-UTR. This increase in MnSOD mRNA 

levels was also associated with an increase in MnSOD protein levels (Figure 3C). It is worth 

noting that the “decoy” function for the transfected MnSOD 3'-UTR, and its subsequent 

enhancement of MnSOD mRNA and protein levels resulted in a significant decrease in the 

percentage of S-phase cells (Figure 3D). These results suggest that AREs in the 3'-UTR of 

MnSOD regulate its mRNA levels.

Preferential selection of MnSOD transcripts in irradiated cells

Several studies showed environmental stress agents, e.g. radiation and polychlorinated 

biphenyls, perturb MnSOD mRNA levels (Akashi et al., 1995; Chaudhuri et al.; Chaudhuri 

et al.; Oberley et al., 1989). Initially, we determined if ionizing radiation alters MnSOD 

expression in MB-231 human mammary epithelial cancer cells. Exponential cultures of 

MB-231 were irradiated with 2-8 Gy and total cellular RNA isolated at 48 h post-irradiation. 

Results from a quantitative RT-PCR assay showed approximately 2-3 fold increase in 

MnSOD mRNA levels in 6 and 8 Gy irradiated cells (Figure 4A). MnSOD mRNA levels 

increased approximately 2-fold at 24 h post-irradiation and 8-fold at 72 h post-irradiation in 
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8 Gy irradiated MB-231 cells (Figure 4B). Next, we determined if the radiation-induced 

increase in MnSOD mRNA levels could be due to a preferential selection of MnSOD 

transcripts. The quantitative PCR assay was repeated using primer-pairs specific to the 1.5 

and 4.2 kb MnSOD transcripts. Radiation treatments did not alter the abundance of the 4.2 

kb transcript during 24-72 h post-irradiation in 8 Gy irradiated MB-231 cells (Figure 4C). 

However, the abundance of the 1.5 kb transcript increased approximately 2-fold at 24 h 

post-irradiation and 6-fold at 72 h post-irradiation (Figure 4D). Radiation-induced increase 

in the 1.5 kb MnSOD transcript was also associated with approximately 2-fold increase in 

MnSOD protein levels at 48-72 h post-irradiation (Figure 5A). MnSOD activity increased to 

40 U/mg protein at 72 h vs. 18 U/mg protein in un-irradiated cells (Figure 5B).

A regulatory role of the 3'-UTR contributing to the preferential selection of MnSOD 

transcripts in irradiated MB-231 cells was also evident from the results presented in Figure 

5C. MB-231 cells were transfected with plasmid DNAs carrying 0, 2, and 5 AREs of 

MnSOD 3'-UTR. Cells were irradiated with 8 Gy and luciferase activity measured at 48 h 

post-irradiation. Relative renilla-luciferase activity decreased approximately 50% in 

irradiated cells expressing 5-AREs, while cells overexpressing 2-AREs showed no 

significant change in renilla-luciferase activity. The reporter activity of the plasmids 

carrying the 3'-UTR of the shorter MnSOD transcript without an ARE showed 

approximately 2-fold increase in renilla-luciferase activity in irradiated vs. un-irradiated 

control cells. These results showed that irradiation increased the mRNA levels of the 1.5 kb 

MnSOD transcript, which correlated with an increase in MnSOD protein levels and activity.

Discussion

MnSOD is a redox enzyme that is known to regulate cellular redox environment. MnSOD 

activity and mitochondrial-generated ROS have been shown to regulate transitions between 

quiescence and proliferation (Sarsour et al., 2010; Sarsour et al., 2008). The present study 

investigates whether MnSOD 3'-UTR influences MnSOD expression in quiescent and 

proliferating cells as well as in response to irradiation. Human MnSOD has two transcripts 

(1.5 kb and 4.2 kb) with the same open reading frame but different 3'-UTR length. The 

levels of the shorter transcript increased in quiescent NHFs and MCF-10A cells, while the 

longer transcript was more abundant in proliferating cells (Figures 1 and 2, Table I). A direct 

correlation was observed between the levels of the longer MnSOD transcript and percentage 

of S-phase cells (Figure 1C, R2 = 0.84). The longer MnSOD transcript was more abundant in 

exponential cultures of malignant and non-malignant human epithelial cells (Table I), 

suggesting that the selection of the 4.2 kb MnSOD transcript is related to cellular 

proliferation vs. transformation status. A preferential selection of the longer MnSOD 

transcript in proliferating cells was associated with a decrease in MnSOD protein levels and 

activity, while the selection of the shorter transcript during quiescence correlated with an 

increase in MnSOD protein levels and activity (Figure 2). A decrease in MnSOD activity 

during proliferation is anticipated to increase the steady-state levels of superoxide 

facilitating proliferation, while an increase in MnSOD activity is anticipated to decrease the 

steady-state levels of superoxide supporting a quiescent state. This hypothesis is also 

consistent with our previously published results (Sarsour et al., 2008).
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Recent reports demonstrate a growth-state dependent selection of mRNA isoforms in mouse 

and human cells (Mayr and Bartel, 2009; Sandberg et al., 2008). Using a genome-wide 

approach, Sandberg et al. have shown that the abundance of the growth-promoting 

transcripts truncated at the first PAS increased significantly in proliferating primary murine 

CD4+ T lymphocytes compared to resting cultures (Sandberg et al., 2008). The increase in 

the abundance of the shorter transcripts in stimulated cells correlated with a corresponding 

increase in their protein levels. Mayr et al. have reported similar observation in cancer cells 

(Mayr and Bartel, 2009). mRNA levels of oncogenes containing multiple PAS (e.g. cyclin 

D2, FGF2, and IMP-1) are enriched with the shorter transcripts during proliferation 

coinciding with higher protein levels.

Unlike oncogenes that promote proliferation, MnSOD is a negative regulator of 

proliferation. MnSOD expression is significantly reduced in proliferating SV40 transformed 

WI-38 human embryonic lung fibroblasts as well as cancer cells (Church et al., 1993; 

Oberley, 2001; Oberley et al., 1989; Weydert et al., 2003; Zhong et al., 1997). Ectopic 

expression of MnSOD has been shown to significantly inhibit cancer cell proliferation both 

in in vitro cell cultures and in vivo mouse xenograft of human cancers (Church et al., 1993; 

Weydert et al., 2003; Zhong et al., 1997). Therefore, a preferential selection of the longer 

transcript is anticipated to decrease MnSOD protein levels and activity facilitating 

proliferation, while selection of the shorter MnSOD transcript is anticipated to support a 

quiescent state. Our results that were obtained using semi-quantitative and quantitative PCR 

assays were also comparable to a previous report where the authors used northern blotting to 

demonstrate variations in the abundance of the two MnSOD transcripts in normal and SV40 

transformed WI38 human lung fibroblasts (St Clair and Oberley, 1991). These authors 

showed that the 4.2 kb MnSOD transcript was more abundant in SV40 transformed vs. 

normal WI38 cells. The levels of the shorter transcript was higher in normal vs. SV40 

transformed WI38 cells. While the significance of these previous observations was not 

addressed, our results showed that a higher level of the 4.2 kb MnSOD transcript correlates 

with proliferation and an increase in the 1.5 kb MnSOD transcript levels correlated with 

quiescence or slow growth. A preferential selection of the longer transcript of growth 

inhibitory genes during proliferation is also reported for the Prohibitin gene (Jupe et al., 

1996a; Jupe et al., 1996b). The longer (1.9 kb) transcript of Prohibitin was more abundant 

during proliferation compared to the shorter 1.2 kb transcript. Overexpression of the 3'-UTR 

of Prohibitin inhibited progression from quiescent to proliferative state in CF3 human 

fibroblasts. These results suggest that a preferential selection of the shorter transcripts 

(truncated at the first PAS site) of the growth inhibitory genes would support quiescence (or 

slowly proliferating cells), while selection of the longer transcripts (truncated at the distal 

PAS) would facilitate proliferation.

AU-rich (ARE) sequence in the 3'-UTR is known to regulate mRNA levels both positively 

(e.g. HuR protein binding to AREs) and negatively (e.g. AUF1 protein binding to AREs). 

Human MnSOD 3'-UTR has multiple AU-rich (AREs) sequence between the two PAS: 

A(U)3A, A(U)5A, and A(U)6A (Church, 1990). The shorter MnSOD transcript contains only 

a single A(U)3A motif. Results from a luciferase-reporter assay showed that the reporter 

activity of cells transfected with plasmid DNA carrying two ARE-motifs of MnSOD 3'-UTR 
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was approximately 40% lower than cells transfected with plasmid DNA carrying MnSOD 3'-

UTR sequence without an ARE (Figure 3A). Reporter activity decreased approximately 

60% in cells transfected with plasmid DNA carrying five ARE-motifs that are present 

between the two PAS in MnSOD 3'-UTR (Figure 3A). These results suggest that the AREs 

between the PAS regulate MnSOD mRNA levels.

Overexpression of the longer MnSOD 3'-UTR significantly increased the endogenous 

mRNA levels of the 4.2 kb MnSOD transcript, which correlated with a corresponding 

increase in MnSOD protein levels (Figure 3B and 3C). These results suggest that the 

exogenous MnSOD 3'-UTR serves as a “decoy” and titrate out trans-factors from binding to 

the endogenous transcript, which resulted in an increase in the mRNA levels of the 4.2 kb 

MnSOD transcript. mRNA stabilizing and destabilizing proteins, e.g. HuR and AUF1, have 

been detected in ribonucleoprotein complexes (Lal et al., 2004). It was suggested that the 

stability and translation of HuR and AUF1 containing ribonucleoprotein complexes will 

depend on the target mRNA of interest, abundance of the RNA-binding proteins, subcellular 

compartment, and cellular environment. Consistent with this hypothesis, we have shown 

previously that protein binding to Topoisomerase II-alpha 3'-UTR varies during the cell 

cycle correlating with its changes in mRNA and protein levels (Goswami et al., 2000). 

Future studies will determine if the abundance of RNA binding proteins in ribonucleoprotein 

complexes containing MnSOD transcripts varies during quiescence and proliferation, and if 

such a mechanism could account for the preferential abundance of the two MnSOD 

transcripts. Furthermore, because MnSOD 3'-UTR also has microRNA target sequence 

(based on TargetScan bioinformatics evaluation), the decoy function of the exogenous 

MnSOD 3'-UTR may relieve the 4.2 kb MnSOD transcript from mRNA turnover and/or 

translation inefficiency leading to increases in its mRNA and protein levels. An additional 

mechanism for a preferential selection of MnSOD transcripts during quiescence and 

proliferation could be due to a differential selection of the two polyadenylation sites (PAS). 

Cell cycle dependent changes in the polyadenylation regulatory pathways, e.g. abundance of 

the 64 kDa subunit of the cleavage stimulatory factor complex, have been correlated with a 

preferential selection of PAS in the eIF-2α transcript (Martincic et al., 1998).

Because MnSOD is a negative regulator of proliferation, a decoy-induced increase in 

MnSOD mRNA and protein levels is anticipated to slow proliferation. In fact, this is what 

we observed. The percentage of S-phase decreased in cells overexpressing the longer 

MnSOD 3'-UTR (Figure 3D). Thus, a preferential selection of the shorter MnSOD transcript 

during quiescence would protect MnSOD mRNA from a post-transcriptional repression, 

which would increase MnSOD mRNA and protein levels as well as its activity. In contrast, 

selection of the longer transcript during proliferation would be amenable to post-

transcriptional regulation leading to a decrease in MnSOD protein levels and activity.

The preferential selection of the shorter MnSOD transcript was also observed in response to 

radiation induced growth arrest. MnSOD mRNA levels increased approximately 2- to 3-fold 

in 6 and 8 Gy irradiated MB-231 cells (Figure 4). While radiation did not change the 

abundance of the 4.2 kb MnSOD transcript, mRNA levels of the shorter transcript increased 

approximately 6-fold at 72 h post-irradiation (Figure 4B and 4C). Radiation induced 

increase in the mRNA levels of the shorter MnSOD transcript was associated with an 
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increase in MnSOD protein levels and activity (Figure 5A and 5B), which corresponds to a 

delay in cellular proliferation (data not shown). The role of 3'-UTR regulating MnSOD 

mRNA levels in irradiated cells was further evident from the results presented in Figure 5C. 

Luciferase activity increased approximately 2-fold in irradiated cells transfected with 

plasmid DNA carrying the 3'-UTR of the shorter MnSOD transcript compared to un-

irradiated transfected cells.

In summary, our results showed a preferential selection of the 1.5 kb MnSOD transcript in 

quiescent and radiation-induced growth arrested cells. A direct correlation was observed 

between the abundance of the 4.2 kb MnSOD transcript and percentage of S-phase cells. The 

increase in the shorter MnSOD transcript levels during quiescence correlated with a higher 

level of MnSOD protein and activity, while the selection of the longer transcript during 

proliferation correlated with a lower level of MnSOD protein and activity (Figure 6). The 

mechanisms regulating MnSOD expression are complex: transcriptional, e.g. AP1, SP1, and 

NFkB transcription factor binding to MnSOD promoter; post-translational: e.g. 

phosphorylation; and transcript selection (this study). The role of transcript selection and 3'-

UTR adds a new level of complexity to MnSOD expression. We hypothesize that such a 

complex mode of transcript selection is necessary to fine-tune the cellular redox 

environment during transition from quiescent through the proliferative cycle.

Materials and Methods

Cell culture

Normal human fibroblasts (Coriell cell repository), MCF-10A non-malignant and MDA-

MB-231 malignant human mammary epithelial cells (ATCC) were cultured following our 

previously published protocols (Chaudhuri et al., 2010b; Sarsour et al., 2005; Menon et al., 

2005). Human oral squamous cell carcinoma (Cal 27, SQ20B, and FaDu), mammary cancer 

cells (Sum159), and pulmonary carcinoma cells (H292 and A549) were cultured following 

ATCC protocols. MDA-MB-231 cells were irradiated using a cesium-137 source; dose rate: 

0.83 Gy/min.

Flow cytometry measurements of DNA content

Flow cytometry measurements of DNA content and percentage of cells in each phase of the 

cell cycle were determined following our previously published method (Chaudhuri et al., 

2010b; Sarsour et al., 2005).

Antioxidant enzyme activity assay

MnSOD activity was determined by the indirect competitive inhibition assay originally 

developed by Spitz and Oberley (Spitz and Oberley, 1989).

Immunoblotting assay

Equal amounts of total cellular proteins were separated by 12.5% SDS-PAGE and 

transferred to nitrocellulose membrane. Blots were incubated with antibody to MnSOD 

(PharMingen, San Diego, California). Immunoreactive polypeptide was visualized using 

horseradish peroxidase-conjugated secondary antibodies and enhanced chemiluminescence 
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detection reagents (GE Healthcare, Waukesha, Wisconsin) following manufacturer supplied 

protocol. Blots were re-probed with antibodies to actin (Santa Cruz Biotechnology, Santa 

Cruz, California) for comparison of results. Results were quantitated using AlphaImager 

2000 (Alpha Innotech, San Leandro, California) and ImageJ software following our 

previously published protocol (Chaudhuri et al., 2010b).

Quantitative Real Time RT-PCR assay

Trizol reagent (Invitrogen, Eugene, Oregon) was used to isolate total cellular RNA. One 

microgram of RNA was reverse transcribed using the High Capacity cDNA Archive Kit 

(Applied Biosystems, Foster City, California). The cDNA was subjected to Real Time PCR 

assay using primers specific to MnSOD open reading frame, forward primer: 5'-

GGCCTACGTGAACAACCTGAA-3', reverse primer: 5'-

CTGTAACATCTCCCTTGGCCA-3', amplicon size, 70 bp. Primer-pairs specific to the 3'-

UTR were used to measure the 1.5 and 4.2 kb MnSOD transcript levels; MnSOD 4.2 kb 

transcript, forward primer: 5'-GCTTTGGTGGTGGATTGAAAC-3', reverse primer: 5'-

CATCCCTACAAGTCCCCAAAGT-3', amplicon size, 187 bp; MnSOD 1.5 kb transcript, 

forward primer: 5'-TAATGATCCCAGCAAGATAA-3', reverse primer (anchored to the 

first PAS): 5'-TTTTTTTTTTTTTTTGATGGTTG-3', amplicon size, 184 bp. 18S mRNA 

levels were used as control. The real time PCR assay was carried out with the 2x Power 

SYBR Green real time master mix (Applied Biosystems) using the following cycle 

parameters (ABI 7000 Sequence Detection System, Applied Biosystems): inactivation of 

reverse transcriptase at 95°C for 10 min followed by 40 cycles of 95°C for 15 sec and 60°C 

for 1 min. A threshold of amplification in the linear range of each sample was selected to 

calculate the cycle threshold value. The relative mRNA levels were calculated as previously 

described (Chaudhuri et al., 2010b). Log2 transformed values (Mayr and Bartel, 2009; 

Sandberg et al., 2008) were used to calculate the expression ratio of the longer to shorter 

MnSOD mRNA transcript.

Semi-quantitative RT-PCR assay

A semi-quantitative RT-PCR assay was used to simultaneously visualize the abundance of 

MnSOD and GAPDH mRNA levels in quiescent and exponential cultures of MCF-10A 

cells. Primer pairs were designed as follows: MnSOD coding sequence, forward primer 5'- 

CCCTGGAACCTCACATCAAC- 3', reverse primer 5'-CGTGGTTTACTTTTTGCAAGC 

-3', amplicon size, 566 bp; GAPDH, forward primer 5'-

TGAGAAGTATGACAACAGCCTCA -3', reverse primer 5'-

CTGTTGAAGTCAGAGGAGACCAC -3', amplicon size, 453 bp. Primer pairs used to 

selectively amplify the two MnSOD transcripts were: 4.2 kb MnSOD transcript, forward 

primer 5'-AGGCAGCTGGCTCCGGTTTT- 3', reverse primer 5'-

GGCATCCCTACAAGTCCCCAAA -3', amplicon size, 954 bp; 1.5 kb MnSOD transcript, 

forward primer 5'-AGGCAGCTGGCTCCGGTTTT- 3', reverse primer 5'-

CATCAATCCCCAGCAGTGGAATAA- 3', amplicon size, 520 bp. PCR amplified 

products were resolved by agarose gel electrophoresis and visualized by staining with 

ethidium bromide.
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Dual luciferase reporter assay

Total cellular RNA isolated from MDA-MB-231 cells was reverse transcribed, and cDNA 

pool was used to PCR-amplify 3'-UTRs specific for the short and long MnSOD transcripts. 

Primers were designed for directional cloning incorporating NotI and XhoI restriction 

enzyme sites (underlined). The primers used to amplify the 3'-UTR of the 1.5 MnSOD 

transcript were: forward primer, 5'-

TTTTCTCGAGGCACTGAAGTTCAATGGTGGTGGT-3', and reverse primer, 5'-

AAAAGCGGCCGCCCAGGACCTTATAGGGTTTTCAGTATGTACC-3', amplicon size 

520 bp. Two separate PCR amplifications were performed to amplify the 3'-UTR of the 4.2 

kb MnSOD transcript. The first PCR amplification was performed to amplify the 985 bp of 

the proximal sequence following the first PAS (Church, 1990). Primer sequences to amplify 

this sequence region were: 5'-TTTTCTCGAGGCTCATGCTTGAGACCCAAT-3', and 5'-

AAAAGCGGCCGCGCTGAGGTGGGACAATCACT-3'. The PCR amplified fragment 

contains 2 AREs. A second PCR amplification was performed to amplify 1284 bp of the 4.2 

kb MnSOD transcript that contains 5 AREs (Church, 1990). The designed primer-pairs were: 

5'-TTTTCTCGAGTCTAGGTGACTCTAACTTCCCTGGC-3', and 5'-

AAAAGCGGCCGCCTCTCACCCAGAAAGCCAAAGCA-3'. PCR amplified products 

were cloned into the multiple cloning site (NotI and XhoI) of the psiCHECK-2 reporter 

vector (Promega). All insert sequences were verified by restriction enzyme digestions and 

sequence analysis.

MDA-MB-231 cells were seeded at a density of 1 × 105 cells per well of a 24-well dish. 

Cells were transfected with Lipofectamine 2000 and 100 ng of psiCHECK 2 plasmid DNAs 

containing MnSOD 3'-UTR sequence specific to the 1.5 and 4.2 kb transcripts. Cells 

transfected with psiCHECK 2 plasmid DNA without any insert sequence were included as 

controls. Forty eight hours post-transfection, luciferase activity was measured using dual 

luciferase reporter assay system following manufacturer supplied protocol (Promega). 

Firefly-luciferase activity was measured on a Moon Light Luminometer (Pharmingen). One 

hundred microliters of the Stop and Glo reagent was added, and Renilla luciferase was 

measured. Firefly luciferase activity was used to normalize for variations in transfection 

efficiency. Fold-change was calculated first by normalizing to transfection efficiency 

followed by normalization to luciferase activity in cells transfected with psiCHECK 2 

plasmid DNA without any insert sequence, and then relative to luciferase activity in cells 

transfected with plasmid DNA carrying MnSOD 3'-UTR sequences without an ARE.

Statistics

Statistical significance was determined by one and two-way analysis of variance with 

Tukey's post hoc test and Student t-tests using GraphPad Prism, version 4 and SPSS (IBM). 

Results are presented as mean ± standard deviation with results from n ≥ 3 and p < 0.05 

considered significant.
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Figure 1. 
A direct correlation between the abundance of the 4.2 kb MnSOD transcript and percentage 

of S-phase cells. A. An illustration of the MnSOD transcript: CDS, coding sequence; PAS, 

polyadenylation signal; ARE: AU-rich sequence; arrows indicate primer sequence used in 

the quantitative PCR assay. B. Normal human fibroblasts (NHFs) were cultured for different 

days and harvested for flow cytometry analysis of the percentage of S-phase cells. Total 

cellular RNA isolated from duplicate dishes were analyzed for total MnSOD mRNA levels 

using a quantitative RT-PCR assay and primers representing the coding sequence. Fold 

change was calculated by first normalizing to 18S RNA levels and then relative to MnSOD 

mRNA levels in cells with 30 percent S-phase. Asterisks represent statistical significance 

compared to cells with 30 percent S-phase; n=3, p<0.05. C. Quantitative RT-PCR assay was 

repeated using primers designed to distinguish the mRNA levels of the two MnSOD 

transcripts (see materials and methods section).
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Figure 2. 
An inverse correlation between MnSOD activity and percentage of S-phase cells. A. A semi-

quantitative RT-PCR assay was used to measure MnSOD and GAPDH mRNA levels in 

exponential and quiescent cultures of MCF-10A human non-malignant mammary epithelial 

cells. Primers were designed from the coding sequence to measure total MnSOD mRNA 

levels (top panel), while the abundance of the two transcripts were assessed by designing 

primers specific to the 3'-UTR. The primer pairs for the 4.2 kb MnSOD transcript were 

designed from the sequence between the two PAS sites. The reverse primer for the 1.5 kb 

MnSOD transcript was designed to anchor the first PAS. PCR-amplified products were 

separated by agarose gel electrophoresis and visualized by staining with ethidium bromide. 

B. MnSOD mRNA levels in the same cDNA pools were further analyzed by using a 

quantitative RT-PCR assay using primers representing the coding sequence. C. Immunoblot 

analysis of MnSOD in cells representative of different percentage of S-phase. Blots were 

scanned and quantitated using AlphaImager 2000 and ImageJ software. Fold change 

calculated first by normalizing to actin levels in individual samples and then relative to 

MnSOD protein levels in cells with 15 percent S-phase. D. Total cellular proteins were used 

for biochemical measurements of MnSOD activity.
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Figure 3. 
MnSOD 3'-UTR regulates its mRNA levels. A. A RT-PCR assay was used to amplify 

MnSOD 3'-UTR encompassing 0, 2, and 5 AREs. PCR-amplified cDNAs were directionally 

cloned into psiCHECK-2 plasmid DNA. MB-231 control and transfected cells were assayed 

for firefly and renilla luciferase activity. Fold-change was calculated first by normalizing to 

transfection efficiency followed by normalization to luciferase activity in cells transfected 

with psiCHECK 2 plasmid DNA without any insert sequence, and then relative to luciferase 

activity in cells transfected with plasmid DNA carrying MnSOD 3'-UTR sequences without 

an ARE. Asterisks represent statistical significance relative to cells transfected with MnSOD 

3'-UTR sequences without an ARE; ¥ represents statistical significance relative to constructs 

with two AREs; n=6, p<0.05. B. A quantitative RT-PCR assay was used to measure the 

mRNA levels of the 4.2 kb MnSOD transcript in MB-231 cells transfected with plasmid 

DNA carrying MnSOD 3'-UTR with 5 AREs, and without an ARE. Fold change was 

calculated relative to cells transfected with plasmid DNA carrying MnSOD 3'-UTR without 

an ARE; n=6, p<0.05. C. Immunoblot analysis of MnSOD protein levels in MB-231 cells 

transfected with plasmid DNA carrying MnSOD 3'-UTR with 5 AREs, and without an ARE. 

D. Flow cytometry measurements of the percentage of S-phase cells in MB-231 cells 

transfected with plasmid DNA carrying MnSOD 3'-UTR with 5 AREs, and without an ARE. 

Asterisks represent statistical significance relative to cells transfected with plasmid DNA 

carrying MnSOD 3'-UTR without an ARE; n=3, p<0.05.
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Figure 4. 
Ionizing radiation selectively enriched the 1.5 kb MnSOD transcript. A. Exponential cultures 

of MB-231 cells were irradiated with 2-8 Gy and harvested at 48 h post-irradiation for 

quantitative RT-PCR measurements of MnSOD mRNA levels. Asterisks represent statistical 

significance relative to MnSOD mRNA levels in unirradiated controls; n=3, p<0.05. B. 

Control and 8 Gy irradiated MB-231 cells were harvested at indicated times and MnSOD 

mRNA levels analyzed using a quantitative RT-PCR assay. Fold change calculated relative 

to un-irradiated control at the time of irradiation (0 h). The quantitative RT-PCR assay was 

repeated to measure the abundance of the 4.2 kb and 1.5 kb MnSOD transcripts, panels C 

and D, respectively. Asterisks represent statistical significance relative to 0 h control; ¥ 

represents statistical significance relative to 24 and 48 h samples; n=3, p<0.05.
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Figure 5. 
MnSOD 3'-UTR responds to environmental stress. A. Immunoblot analysis of MnSOD 

protein levels in 8 Gy irradiated MB-231 cells at indicated times post-irradiation. Blots were 

scanned and quantitated using AlphaImager 2000 and ImageJ software. Fold change 

calculated first by normalizing to actin levels in individual samples and then relative to 

MnSOD protein levels in unirradiated control cells at the time of irradiation (0 h). B. 

Biochemical measurements of MnSOD activity at indicated times post-irradiation. Asterisks 

represent statistical significance relative to MnSOD activity in unirradiated control cells at 

the time of irradiation; ¥ represents statistical significance relative to 24 h post-irradiation; 

n=3, p<0.05. C. Luciferase reporter activity in control and irradiated cells at 48 h post-

irradiation. MB-231 cells were transfected with plasmid DNA carrying 0, 2, and 5 AREs of 

MnSOD 3'-UTR. Control and transfected cells were irradiated with 8 Gy and luciferase 

activity measured. Fold change was calculated by first normalizing to transfection efficiency 

and then relative to unirradiated control for each group. Asterisks represent statistical 

significance compared to unirradiated control for individual group; n=6, p<0.05.
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Figure 6. 
An illustration of the preferential selection of MnSOD transcripts in quiescent and 

proliferating cells. The abundance of the shorter MnSOD transcript during quiescence 

correlates with an increase in MnSOD protein levels and activity. The selection of the longer 

MnSOD transcript during proliferation is associated with a lower level of MnSOD protein 

and activity. Vertical lines represent sites for AU-rich sequences (ARE); PAS: 

polyadenylation signal.
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Table 1

Expression ratio of the longer to shorter MnSOD transcripts in malignant and non-malignant cells

Tissue types Cell lines Log2 (4.2 kb/1.5 kb)

Malignant

Head and Neck Cal 27 1.2

Head and Neck SQ20B 1.1

Head and Neck FaDu 2.3

Lung A549 1.3

Lung H292 1.5

Breast Sum159 1.4

Breast MDA-MB-231 1.2

Non Malignant

Breast MCF 10A 1.3

Fibroblast NHF 1.2
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