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Simple Summary: Inadequate feed inhibits the potential performance of birds, and giving birds
excess nutrients or levels higher than the requirement reduces production profits and may lead to
negative effects on performance. Although recently there has been an expanding market worldwide
for slower growing chickens to meet the consumer demand for a better tasting meat, little effort has
gone into optimizing their dietary nutrient levels. Using fiv e different dietary energy levels, this
study evaluated the optimal requirement of dietary energy for maximal growth rate, feed:gain ratio,
meat quality indices, and blood metabolites of a Chinese yellow-feathered breed.

Abstract: A dose-response study was conducted to investigate the metabolizable energy (ME)
requirement for Lingnan chickens from 9 to 15 weeks of age. One thousand two hundred 8-week-old
slow-growing yellow-feathered male chickens were allotted to five dietary ME levels (2805, 2897, 2997,
3095 and 3236 kcal/kg). The results revealed that the daily metabolizable energy intake increased
(p < 0.01), whereas the feed intake and feed:gain ratio decreased linearly (p < 0.01) with the increment
in dietary ME level. The final body weight and daily gain of the highest ME treatment tended
(p > 0.05) to be greater than those obtained with the lower ME levels. The fat content in breast muscle
showed a quadratic response (p < 0.05) to the increase in dietary energy level. The shear force values
of breast muscle in the 2897, 3095 and 3236 kcal/kg treatments were lower (p < 0.05) than those of the
2997 kcal/kg treatment. In conclusion, among the tested ME levels, 3095 kcal/kg was adequate for
feed intake, shear force, and plasma uric acid, and 3236 kcal/kg tended to increase the body weight,
body gain, and feed conversion ratio of Lingnan males between 9 and 15 weeks of age; further studies
are still required for testing higher levels.

Keywords: energy requirement; meat quality; growth performance; slow-growing broilers;
nutrient deposition

1. Introduction

In poultry production enterprises, feed cost accounts for around 70% of the total costs involved in
production. Among the different feed-stuffs used in formulating poultry diets, the source of dietary
energy resources is a major cost; 70% of the total poultry diet content are energy sources. Optimizing the
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dietary energy level, therefore, is important for lowering the feed cost per unit of poultry products [1].
Increasing dietary energy level provides fundamental benefits in the feed conversion ratio (FCR) of
broilers, mostly by decreasing feed consumption [2–4]. On the other hand, using excessive energy or a
level higher than the requirement can increase the deposition of undesirable abdominal fat in broiler
carcass, considered to be an economic loss as it is often counted as a waste product [2]. The dietary
energy can be optimized for both growth performance and for enhanced meat quality. Dietary nutrient
levels alter meat color, energy content, and histological makeup as well as the metabolic characteristics
of broiler muscles [5–7].

The optimal dietary energy for broilers has been estimated in several previous studies [8,9],
but existing data require verification for modern genotypes [10]. In contrast, little effort has gone
into optimizing the dietary energy level for slow-growing meat-type chickens. Recently, there has
been an expanding market worldwide for slower growing meat-type chickens, giving them a place
in contemporary production. This is mainly to meet the consumer demand for better tasting meat
and for fulfilling organic production conditions [11], as well as avoiding some problems with the
fast-growing broilers, such as sensitivity to environmental conditions, leg problems, metabolic failure,
ascites, sudden death, and an increased mortality rate occurring during the finishing phase [12–14].
This relatively new interest in slow-growing meat chicken breeds is increasing worldwide, though it is
associated with higher costs of production [11].

China is the second-largest global producer of chicken meat, almost half of which is from Chinese
yellow-feathered breeds [15]; Chinese annual production of such breeds exceeds four billion birds.
The distinct flavor and favorable color of the meat are highly desired by local consumers in China and
in neighboring countries [16]. There are three types of such chickens [17], broadly classified as fast-
(marketable around 8–10 weeks, 1.47–2.30 kg weight), medium- (marketable 9–14 weeks, 1.00–2.27 kg
weight), and slow-growing (marketable 12–25 weeks, 1.06–1.88 kg weight). The increasing commercial
importance of these indigenous birds means that comprehensive work is needed to improve their
feeding standards. As the dietary energy requirement for slow-growing yellow broilers has not been
estimated or optimized, the present study has evaluated the effects of different dietary ME levels on
growth performance, blood biochemical variables, carcass quality, body composition, rate of energy
deposition, and fat content in breast and thigh muscles.

2. Materials and Methods

2.1. Chickens, Diets and Management

The experimental conditions were approved by the Animal Care and Use Committee of the Institute
of Animal Science, Guangdong Academy of Agricultural Sciences, China, with the approval number
GAASISA-2015-011. The yellow-feathered male chickens (Lingnan breed, a meat-type breed that
originated in South China) were obtained from a commercial hatchery (Guangdong Wiz Agricultural
Science and Technology Co., Guangzhou, China) and were raised from day 1 to 8 weeks of age on
a common, typical diet, provided ad libitum. One thousand two hundred birds were weighed at
8 weeks of age and randomly allocated to 30 equally-sized (4.55 m2) floor pens of 40 birds, having a
similar average body weight (BW) (771.25 ± 10.23 g). Five dietary treatments, each with six replicates,
consisting of graded metabolizable energy (ME) levels (2900, 3000, 3100, 3200 and 3300 kcal ME/kg,
calculated), were pelleted and provided ad libitum, as was water. These experimental diets (Table 1)
were formulated to provide the nutrient requirements of Chinese yellow-feathered broilers [18], except
for the ME level. The gross energy of the diets was analyzed according to the guidelines of Association
of Official Analytical Chemists [19], and the ME was determined and calculated according to the
methods and the equation of Jiang et al., [20], which showed 2805, 2897, 2997, 3095 and 3236 kcal/kg,
respectively. The 2997 kcal/kg was considered to be the control dietary energy level diet according to
the previously determined value [18]. The birds were raised under artificial lighting providing 18 h
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light:6 h dark. Relative humidity and average room temperature were approximately 70.0% and 18 ◦C
throughout the 7-week experimental period (9–15 weeks of age).

Table 1. Composition and nutrient levels of the experimental diets (%, as fed basis).

Item
Metabolizable Energy Levels (Kcal/kg, Calculated 2)

2900 3000 3100 3200 3300

Ingredients
Corn (yellow) 70.26 70.26 70.26 70.26 70.26
Soybean meal 16.23 16.23 16.23 16.23 16.23
Corn gluten meal 3.8 3.8 3.8 3.8 3.8
Soybean oil 1.05 2.25 3.44 4.64 5.83
Limestone 1.12 1.12 1.12 1.12 1.12
Di-calcium phosphate 1.10 1.10 1.10 1.10 1.10
Salt 0.30 0.30 0.30 0.30 0.30
Vitamin-mineral premix 1 1.00 1.00 1.00 1.00 1.00
L-Lysine HCL (78%) 0.27 0.27 0.27 0.27 0.27
DL-Methionine (99%) 0.09 0.09 0.09 0.09 0.09
Corn cob meal 4.78 3.58 2.39 1.19 0.00
Total 100.00 100.00 100.00 100.00 100.00

Calculated composition 2

Metabolizable energy (Kcal/kg) 3 2805 2897 2997 3095 3236
Crude protein (%) 16.00 16.00 16.00 16.00 16.00
Calcium (%) 0.80 0.80 0.80 0.80 0.80
Crude fiber 3.07 2.59 2.12 1.64 1.16
Total phosphorus (%) 0.56 0.56 0.56 0.56 0.56
Non-phytate phosphorus (%) 0.37 0.37 0.37 0.37 0.37
Lys (%) 0.85 0.85 0.85 0.85 0.85
Met (%) 0.37 0.37 0.37 0.37 0.37
Met+Cys (%) 0.65 0.65 0.65 0.65 0.65

1 Supplied per kilogram of diet: VA 5000 IU, VD3 500 IU, VE 20 IU, VK 0.5 mg, VB1 2.4 mg, VB2 4.0 mg, VB6 3.5 mg,
VB12 0.01mg, niacin 30 mg, D-calcium pantothenate 10 mg, folic acid 0.55 mg, biotin 0.15 mg, choline chloride
1200 mg, Fe 80 mg, Zn 65 mg, Cu 7 mg, Mn 60 mg, I 0.35 mg, Se 0.3 mg. The vitamins and minerals in the diet
were supplied exactly as stated by the Ministry of Agriculture of the People’s Republic of China [18]. 2 Values were
calculated from data provided by the Feed Database in China [21]. 3 Analyzed values.

2.2. Growth Variables

The amounts of provided and refused feed were measured weekly on a replicate basis to calculate
the average daily feed intake (ADFI), including adjustments for any dead birds. Mortality of birds was
recorded daily. The initial BW, final BW (FBW), average daily body weight gain (ADG), and feed:gain
ratio (g/g) (FCR) were measured on a per replicate basis. Metabolic BW was calculated according to
the following equation: [(Initial weight + final weight)/2] 0.75.

2.3. Sampling

At 15 weeks of age, after 12 h of feed-withdrawal, blood samples were collected in 5 mL heparinized
tubes from the jugular vein of 12 birds per treatment (2/replicate) who had BW values within ± 10 g
of the average; plasma was obtained by centrifugation at 1000× g for 15 min at 4 ◦C. The birds were
slaughtered by approved methods for subsequent analyses. The right and left breast muscles were
separately sampled, clear of observable connective tissues, and stored at −20 ◦C until analyses; the
right breast muscle (Pectoralis major and minor) was sampled for meat quality determinations, and the
left muscle was used in measuring the chemical composition.

2.4. Carcass Trait Determinations

Dressing percentage (bled and defeathered carcass weight (CW), including head and feet, expressed
as a percentage of BW), semi-eviscerated (CW minus weights of trachea, crop, esophagus, intestine,
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pancreas, spleen, gallbladder, gonads, contents of the proventriculus, and gizzard lining, expressed as
a percentage of BW), and eviscerated proportions (semi-eviscerated weight minus neck, head, liver,
heart, gizzard, shank, abdominal fat, and proventriculus, expressed as a percentage of BW) were
calculated. In addition, the relative weights of de-boned thigh muscle, breast muscle, and abdominal
fat, expressed relatively to BW, were calculated following the methods of the Chinese National Poultry
Breeding Committee [22]. The breast and thigh muscles were placed in polyethylene bags and stored
at −22 ◦C until chemical analysis.

2.5. Meat Quality Determinations

Meat pH, color (a* redness, b* yellowness and L* lightness), and drip loss were measured
following the methods of Jiang et al. [23]. Meat pH was measured in the major right Pectoralis using a
portable pH meter (version HI8424; Beijing Hanna Instruments Sci. & Tech. Co., Ltd., Beijing, China).
Three readings of breast meat color were scored with a Chroma Meter (CR-410; Minolta Co., Ltd., Suita,
Osaka, Japan) at different, but consistent, locations on the medial side of each muscle then averaged.
Meat color scores, using L* a* b* color scales, were measured; L* is lightness (0 = black to 100 = white),
a* is green (a*) to red (+a*), and b* is blue (b*) to yellow (+b*). Drip loss was estimated following a
method modified from Shang et al. [24]. Briefly, about 11 g (fresh weight) of regular-shaped muscle
section (4 cm (length) × 2 cm (width) × 1.5 cm (thickness)) cut from the same location in the breast
muscle was weighed and suspended on a steel wire hook, without any contact, in a plastic bag inflated
with air and stored at 4 ◦C for 24 h. The muscle samples were re-weighed to evaluate the drip loss
percentage, according to the following equation: [(initial weight − final weight)/initial weight] × 100%.
Finally, the shear force of cooked breast muscles was measured according to the methods described by
Jiang et al. [23], using an Instron Universal Mechanical Machine (Instron model 4411, Instron Corp,
Canton, MA, USA).

2.6. Composition of Body, Breast and Thigh Muscles, and Deposition Rate of Energy and Protein

The frozen samples of left breast and thigh muscles were dissected into small pieces and finely
homogenized in a blender at −10 ◦C. To measure the fat and protein content, deposition rate of energy
and protein in the whole body, ten birds at the age of 8 weeks (at the beginning of this experiment)
and two additional birds per replicate at the age of 15 weeks were selected and prepared according to
the methods of Zhou et al. [25] and Xi et al. [26]. Contents of crude protein (CP), crude fat, and gross
energy were analyzed according to the guidelines of AOAC [19]. The deposition rate of protein and
energy was estimated following the methods of Xi et al. [26].

2.7. Blood Biochemical Variables

The plasma contents of uric acid (UA), triglycerides (TG), and cholesterol (CHOL) were measured
colorimetrically using a spectrophotometer (Biomate 5, Thermo Electron Corporation, Rochester, NY,
USA) and commercial kits (Nanjing Jiancheng Institute of Bioengineering, Nanjing, China).

2.8. Statistical Analysis

Each pen (replicate) served as the experimental unit. The effects of dietary ME levels were
examined for each variable by ANOVA (JMP Ver. 8.0.2, 2009; SAS Institute Inc., Cary, NC, USA).
Whenever significant effects of treatment were detected, Duncan’s multiple range tests were used to
compare the means. Where appropriate, orthogonal polynomial contrasts were used to estimate the
linear and quadratic effects of the increasing levels of ME, and a probability level of 0.05 was applied
to test significance (SPSS software version 17.0.1., IBM, Armonk, NY, USA). Based on the key indices
(ADFI, feed:gain ratio, daily ME intake, uric acid, fat content of breast muscle, and fat content of thigh
muscle), quadratic regression equations were used to determine the optimal dietary ME requirement
of Chinese yellow-feathered chickens [27]. Data are expressed as means for each diet.
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3. Results

3.1. Growth Performance

Daily ME intake increased, but ADFI and FCR decreased as linear responses to the increment in
dietary energy level. The FBW, ADG, metabolic BW, and mortality rate were not affected (p > 0.05) by
the dietary ME level, but the 3236 kcal/kg diet tended to have greater FBW and ADG than those of the
lower ME levels (Table 2).

3.2. Carcass Quality

The tested dietary ME levels did not exhibit any significant effect on the carcass quality traits in
terms of dressing percentage, eviscerated and semi-eviscerated proportions, relative weights of breast
muscle, thigh muscle, and abdominal fat (Table 3).

3.3. Composition of Body, Breast and Thigh Muscles

As shown in Table 4, the fat content in thigh muscle increased linearly (p < 0.05) with the increase
in dietary energy level, whereas the fat content in breast muscle showed a quadratic response (p < 0.05),
and the highest value was obtained with the level 2997 kcal/kg. The protein, fat and energy content in
the whole body as well as the energy and protein deposition were not affected by the dietary ME level.
According to the regression model, the highest fat contents (%) in the breast and thigh muscles were
obtained with diets containing 3047 and 3135 kcal/kg (Table 5).

3.4. Breast Meat Quality

The results of breast meat quality as affected by the dietary ME level are shown in Table 6. The 2897,
3095 and 3236 kcal/kg diets resulted in lower shear force values (p < 0.05) than those of the control
diet, and those of the 2805 kcal/kg diet had an intermediate value (p > 0.05). The pH value, drip loss
percentage, and meat color grades L*, a* and b* did not differ (p > 0.05) among the tested diets.

3.5. Blood Biochemical Variables

The results shown in Table 7 indicated that plasma UA decreased linearly (p < 0.01) with the
increase in dietary ME level. The CHOL and TG concentrations were not affected by the diets.
The regression model indicated that the optimal plasma UA was obtained with a diet containing
3200 kcal/kg (Table 3).
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Table 2. Effect of dietary metabolizable energy level on average daily metabolizable energy intake and the performance of Chinese yellow-feathered chickens from
9–15 weeks of age.

Variables
Dietary Metabolizable Energy Levels (Kcal/kg), Analyzed Content

SEM p Linear Quadratic
2805 2897 2997 3095 3236

Final body weight (g) 1386.6 1375.09 1408.08 1385.39 1430.12 16.85 0.0629
Average daily gain (g) 12.82 12.58 13.27 12.79 13.73 0.35 0.0629
Daily feed intake (g) 78.15 a 78.32 a 77.59 a 75.28 b 76.06 b 0.59 0.0005 0.000 0.002
Feed: Gain ratio (g/g) 6.10 ab 6.24 a 5.86 bc 5.90 b 5.56 c 0.13 0.0025 0.001 0.002
Daily metabolizable energy Metabolizable energy intake (kJ/d) 219.21 d 228.45 c 232.53 bc 233.52 b 246.06 a 5.69 <0.0001 0.000 0.000
Metabolic body weight (g) 188.25 189.04 189.79 188.60 190.71 1.98 0.5248
Mortality (%) 3.33 4.16 5.12 6.67 4.17 2.06 0.6668

Means within a row with different superscripts differ significantly (p < 0.05). SEM = pooled standard error mean. Metabolic body weight = [(Initial weight + final weight)/2] 0.75.

Table 3. Effects of dietary metabolizable energy level on the carcass quality of Chinese yellow-feathered chickens at 15 weeks of age.

Variables
Dietary Metabolizable Energy Levels (Kcal/kg), Analyzed Content

SEM p
2805 2897 2997 3095 3236

Dressing percentage (%) 89.68 88.93 88.98 87.89 88.84 1.01 0.1116
Semi-eviscerated proportion (%) 83.10 82.80 82.31 82.01 82.16 1.27 0.5329
Eviscerated proportion (%) 68.99 68.51 68.74 67.63 68.05 1.01 0.2321
Breast muscle (%) 15.60 14.62 14.95 15.19 14.23 0.63 0.0906
Thigh muscle (%) 18.87 19.05 18.42 19.12 18.89 1.71 0.9304
Abdominal fat (%) 1.10 0.87 1.29 1.71 1.63 0.29 0.0889

SEM = pooled standard error mean.
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Table 4. Effect of dietary metabolizable energy levels on the compositions of body, breast and thigh muscles, and deposition rates of energy and protein in slow-growing
Chinese yellow-feathered chickens at 15 weeks of age.

Variables
Dietary Metabolizable Energy Levels (kcal/kg), Analyzed Content

SEM p Linear Quadratic
2805 2897 2997 3095 3236

Composition of body
Crude protein (%) 65.31 62.56 62.43 60.58 60.77 8.90 0.4481
Fat (%) 22.73 25.06 24.19 25.85 27.14 7.95 0.5656
Energy (kJ/g) 23.20 24.18 24.02 24.05 24.05 0.44 0.4839

Intramuscular fat content (%)
In breast muscle 0.94 b 1.12 ab 1.64 a 1.37 ab 1.31 ab 0.056 0.0441 0.386 0.016
In thigh muscle 5.12 b 5.56 ab 6.86 a 6.18 ab 6.64 a 0.36 0.0288 0.025 0.033

Nutrient deposition rate (%)
Energy 12.71 14.82 14.80 15.48 15.18 0.85 0.0755
Protein 25.03 25.58 26.21 25.01 26.88 1.41 0.2732

Means within a row with different superscripts differ significantly (p < 0.05). SEM = pooled standard error mean.

Table 5. Dose-response regressions for Chinese yellow-feathered chickens fed diets with different metabolizable energy levels from 9–15 weeks of age.

Variable Model 1 Regression Equation 2 Response 3 p R2

Uric acid (mmol/L) QP 1 y = 21.494x2
− 575.47x + 3984 3200 0.012 0.144

Fat content of breast muscle (%) QP 1 y = −0.572x2 + 14.587x − 91.435 3047 0.016 0.142
Fat content of thigh muscle (%) QP 1 y = −0.715x2 + 18.765x − 116.62 3135 0.033 0.116

1 QP = quadratic polynomial; QP model = Y = α + β × X + γ × X2, where Y is the response variable, X is the dietary metabolizable energy (ME), α is the intercept; β and γ are the linear
and quadratic coefficients, respectively. 2 Regression equations obtained using the analyzed metabolizable energy in the diets (2805, 2897, 2997, 3095 and 3236 Kcal/kg). 3 The response was
obtained by −β/(2 × γ).
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Table 6. Effects of dietary metabolizable energy levels on the breast meat quality of slow-growing Chinese yellow-feathered chickens at 15 weeks of age.

Variables
Dietary Metabolizable Energy Levels (Kcal/kg), Analyzed Content

SEM p Linear Quadratic
2805 2897 2997 3095 3236

pH 6.11 6.00 6.08 6.06 6.02 0.009 0.736
Drip loss (%) 2.06 2.22 2.19 2.06 2.08 0.076 0.948
Shear force (kgf) 3.06 ab 2.49 b 3.52 a 2.31 b 2.62 b 0.001 0.023 0.241 0.487
Meat color

L* value 55.54 55.99 55.91 54.01 55.96 1.649 0.399
a* value 15.02 15.24 16.46 15.76 14.77 0.572 0.136
b* value 20.16 20.54 21.98 19.19 21.58 2.278 0.279

Means within a row with different superscripts differ significantly (p < 0.05). SEM = pooled standard error mean.

Table 7. Effects of dietary metabolizable energy levels on plasma variables of slow-growing Chinese yellow-feathered chickens at 15 weeks of age.

Variables
Dietary Metabolizable Energy Levels (Kcal/kg), Analyzed Content

SEM p Linear Quadratic
2805 2897 2997 3095 3236

Cholesterol (mmol/L) 3.12 3.19 3.22 3.09 3.13 0.07 0.9687
Triglycerides (mmol/L) 0.32 0.33 0.377 0.37 0.33 0.002 0.3375
Uric acid (mmol/L) 197.00 a 159.83 ab 156.13 ab 117.21 b 134.79 b 3.81 0.0109 0.005 0.012

Means within a row with different superscripts differ significantly (p < 0.05). SEM = pooled standard error mean.
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4. Discussion

4.1. Growth Performance

The present study tested five dietary ME levels (kcal/kg), consisting of a control level (2997),
two lower levels (2805 and 2897), and two higher levels (3095 and 3236), respectively. The increase
in dietary energy level did not affect the FBW or ADG of the slow-growing male yellow-feathered
chickens, but the highest ME treatment (3236 kcal/kg) tended to result in greater FBW and ADG than
lower ME levels. The daily ME intake increased, whereas ADFI and FCR decreased as linear responses
to the increment in dietary energy level. Birds typically eat to fulfil their energy requirement [11,28],
which can explain the reduced ADFI for the highest two dietary energy levels. The improved FCR
for the highest ME level is attributable to the reduced ADFI and the relatively increased ADG.
Supporting results were reported by Infante-Rodríguez et al. [4], indicating that BW and ADG were
not affected by the dietary energy; however, ADFI was reduced by a high caloric level, and FCR was
improved with a moderate increase in dietary energy. The present results were consistent with the
findings of Kim et al. [29], who observed a reduced ADFI with higher energy levels than the standard
diet. Other studies differed [30], where final BW and FCR in broilers increased with higher energy
levels (2994 to 3013 and 3081 to 3111 kcal/kg ME, starter and finisher phases). Contrary to the present
results, Houshmand et al. [31] found that broilers fed low-energy diets were heavier than those fed
a standard diet. The results of Ferreira et al. [3] showed that a dietary energy close to 3000 kcal/kg
did not affect BW in broilers, but a lower caloric level reduced BW, and a higher caloric level reduced
ADFI. These varied responses to dietary energy levels in previous studies result from using different
genotypes at different ages. Kim et al. [29] reported different responses to energy level with different
strains of broilers. The results obtained here with slow-growing Chinese yellow chickens favor the
increase in energy level over the control (2997 kcal/kg) and lower levels; the highest calorie intake
occurred with the most energy-dense diet. Touchburn et al. [32] similarly noted that caloric intake
increased as dietary ME level increased.

4.2. Carcass Characteristics

For the slow-growing Chinese yellow chickens studied here, dietary ME level had no significant
effect (p > 0.05) on the dressing percentage, eviscerated and semi-eviscerated proportions, relative
weights of breast muscle, thigh muscle nor abdominal fat. Supporting results were reported by
Infante-Rodríguez et al. [4], who tested dietary energy levels (2960 to 3160) close to those used here;
there was no influence on carcass weight, breast, drumstick and thighs, wings and back fat weight or
carcass yields. Rosa et al. [33] used diets with 2950, 3200 and 3400 kcal/kg ME, but observed no effect
on breast weight, carcass yield or back fat, despite the increase in energy concentration depressing the
yield of thigh and drumstick and increasing abdominal fat. A preliminary study of Waldroup et al. [34]
indicated no effect of dietary caloric level on growth performance or abdominal fat, although a higher
energy level increased dressing percentage in females, but not in males. The present results with
male chickens are consistent with that of the latter study. Others [35,36], similarly, found no effect of
dietary energy level on carcass yield and abdominal fat. In contrast, Zhao et al. [37] found that dressing
percentage, breast and thigh muscles, and abdominal fat content were greater with dietary energy
and lysine levels higher than those in their controls. Marcu et al. [38] reported an improved growth
performance and carcass yield for the main cuts of broiler chickens fed diets with high energy and
protein contents. The preponderant previous findings on the effect of dietary energy level in broilers
were inconclusive, but the results of the latter two studies showed that increased dietary energy along
with increased CP or amino acids may result in a higher meat yield.
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4.3. Composition of Whole Body, Breast and Thigh Meat

In the present study, dietary energy level did not influence the protein, fat or energy content in the
whole body, but the fat content in thigh muscle increased linearly with increased caloric level, whereas
the fat content showed a quadratic response and the highest value was obtained with the 2997 kcal/kg
diet. Other studies showed similar results, with dietary energy level having no effect on the chemical
composition of broiler’s carcass muscles [39,40]. Ferreira et al. [3] indicated that using reduced dietary
energy levels lowered the intramuscular fat in broilers. The present results are in partial agreement
with those of Infante-Rodríguez et al. [4], who found that increased dietary energy had no effect on CP
content in breast muscle, although the lower ME levels (2960 and 3040 kcal/kg) resulted in more lipids
in breast meat than with higher caloric levels (3080 and 3160 kcal/kg). In another study, Marcu et al. [41]
found that decreasing dietary ME level reduced CP and increased the lipid content of broiler breast
and thigh muscles. The results here showed that the fat (Table 5) content in the whole body was not
affected by the dietary energy. The latter results agree with our results, which suggest that increasing
dietary energy content for broilers may not increase meat lipids in the thigh and pectoral muscles.

In commercial Ross 308 broilers, Rosa et al. [33] reported that increasing the dietary ME level
reduced carcass CP and increased its lipid content. Marcu et al. [42] found that increasing dietary energy
and protein levels increased breast weight and muscle mass, and reduced fat content, but reducing
nutrient level decreased protein content and elevated fat content in pectoral muscle. The discrepant
results could be attributable to using different strains in the previous studies. Díaz et al. [43] and
Rosa et al. [33] reported different changes in meat quality and carcass composition among different
genetic groups fed graded levels of dietary energy.

4.4. Breast Meat Quality

The color of raw broiler meat is highly affected by dietary nutrient factors [5]. Meat color is an
important attribute for consumers; the greater a* score of meat indicates better meat quality and the
lower L* and b* scores implies less pale meat. Boulianne and King [44] reported that pale fillets have
higher L* and b* values, and a lower a* value than normal fillets. No available information could be
found on possible effects of dietary energy level on breast meat color. The most important finding
in the present study is related to the shear force measured on the breast muscle, which decreased in
the 2897, 3095 and 3236 kcal/kg diets. Increased shear force is associated with increased connective
tissue and decreased fat content in meat [45,46]. This implies a reduced content of connective tissue in
the breast meat of birds fed the 2897, 3095 and 3236 kcal/kg diets. The measured fat contents for the
3095 and 3236 levels were consistent with this interpretation to some extent. The control level (2997)
had relatively higher (p > 0.05) breast fat; however, it unexpectedly showed a high shear force value.
The reason behind this increased shear force with this energy level is not clear, or it might imply a
high content of connective tissue in this treatment. Low drip loss and shear force indicate higher meat
quality. Higgins et al. [47] and Min and Ahn [48] reported that increased drip loss and decreased meat
color a* score reflects lipid peroxidation, leading to loss of pigments and deterioration of meat quality.
Drip loss, meat color, and meat pH were not affected here by the dietary caloric levels used.

4.5. Blood Biochemical Variables

The evaluation of blood biochemistry in poultry shows metabolic alterations due to a number of
factors, such as the physiological status, feeding standards, weather change, genetic type, age, housing
conditions, and exposure to diseases [49–51]. The modification of dietary nutrient concentration can
initiate stresses that induce dramatic changes in blood biochemistry [51,52]. In the present study,
the increase in dietary ME level led to a linear decrease in plasma UA concentrations, likely reflecting
changes in protein catabolism in the body [52]. The plasma UA values obtained here were comparable
to those of Wang et al. [53], with the same chicken breed. According to the regression model, the lowest
plasma UA was obtained with the 3200 kcal ME/kg diet, suggesting therefore that this level was optimal
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or most adequate for the efficient use of protein. This confirms that high caloric levels (3236 kcal/kg)
are more adequate than the lower levels, which led to higher plasma UA content. This is consistent
with Rosebrough, McMurtry, & Vasilatos-Younken [54,55], who found that reducing dietary energy
increased broiler’s plasma UA content, and partially agreed with Rezaei and Hajati [52], who found in
broilers at 21 d of age that a 40% reduction in dietary nutrients increased the concentrations of plasma
UA; in contrast, they also found reduced plasma concentrations of CHOL and TG.

5. Conclusions

The increase in dietary energy level showed some benefits, with lowered ADFI, FCR, plasma
UA, and shear force; without any adverse effect on the other meat quality variables, i.e., meat yield,
nutrient deposition, mortality rate, or abdominal fat content. Under the conditions of this study,
the 3095 kcal/kg diet was adequate for the best feed intake, shear force, and plasma uric acid, and the
3236 kcal/kg diet tended to increase the body weight and daily gain and reduce the feed conversion ratio
of Lingnan males between 9–15 weeks of age; further studies are still required for testing higher ME
levels. The regression analyses revealed that the optimal dietary ME levels for plasma UA, fat content
in breast muscle, and fat content in thigh muscle were 3200, 3047, and 3135 kcal/kg, respectively.

Author Contributions: K.F.M.A., Y.W., W.W., X.L., L.L., Z.G. and Q.F. participated in the acquisition of data,
and the analysis and/or interpretation of data; K.A., Y.W. and S.J. participated in drafting the manuscript.

Funding: This study was supported by National Key R&D Project (2018 YFD0500600), the “Twelve-Five” National
Science and Technology Support Program (2014BAD13B02), China Agriculture Research System (CARS-41-G10)
from the Ministry of Agriculture, Scientific and Technological Project (2017B020202003) from the Department
of Science and Technology of Guangdong Province, and Grant No. 201804020091 from Guangzhou Science
Technology and Innovation Commission, Presidential Foundation of the Guangdong Academy of Agricultural
Sciences (201620, 201805, 201807B, 201809B and 201908), China.

Acknowledgments: The authors thank W. Bruce Currie (Emeritus Professor, Cornell University, Ithaca, NY, USA)
for his valuable suggestions on the presentation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fan, H.P.; Xie, M.; Wang, W.W.; Hou, S.S.; Huang, W. Effects of dietary energy on growth performance and
carcass quality of white growing Pekin ducks from two to six weeks of age. Poult. Sci. 2008, 87, 1162–1164.
[CrossRef] [PubMed]

2. Ghaffari, M.; Shivazad, M.; Zaghari, M.; Taherkhani, R. Effects of different levels of metabolizable energy and
formulation of diet based on digestible and total amino acid requirements on performance of male broiler.
Int. J. Poult. Sci. 2007, 6, 276–279.

3. Ferreira, G.D.; Pinto, M.F.; Neto, M.G.; Ponsano, E.H.; Goncalves, C.A.; Bossolani, I.L.; Pereira, A.G.
Accurate adjustment of energy level in broiler chickens diet for controlling the performance and the lipid
composition of meat. Ciênc. Rural 2015, 45, 104–110. [CrossRef]

4. Infante-Rodríguez, F.; Salinas-Chavira, J.; Montaño-Gómez, M.F.; Manríquez-Nuñez, O.M.;
González-Vizcarra, V.M.; Guevara-Florentino, O.F.; Ramírez-De León, J.A. Effect of diets with different
energy concentrations on growth performance, carcass characteristics and meat chemical composition of
broiler chickens in dry tropics. Springerplus 2016, 5, 1937–1942. [CrossRef] [PubMed]

5. Smith, D.P.; Lyon, C.E.; Lyon, B.G. The effect of age, dietary carbohydrate source, and feed withdrawal on
broiler breast fillet color. Poult. Sci. 2002, 81, 1584–1588. [CrossRef] [PubMed]

6. Lyon, B.G.; Smith, D.P.; Lyon, C.E.; Savage, E.M. Effects of diet and feed withdrawal on the sensory descriptive
and instrumental profiles of broiler breast fillets. Poult. Sci. 2004, 83, 275–281. [CrossRef] [PubMed]

7. Zhao, J.P.; Zhao, G.P.; Jiang, R.R.; Zheng, M.Q.; Chen, J.L.; Liu, R.R.; Wen, J. Effects of diet-induced differences
in growth rate on metabolic, histological, and meat-quality properties of 2 muscles in male chickens of
2 distinct broiler breeds. Poult. Sci. 2012, 91, 237–247. [CrossRef]

8. NRC. Nutrient Requirements of Poultry, 9th rev. ed.; The National Academies Press: Washington, DC, USA, 1994.

http://dx.doi.org/10.3382/ps.2007-00460
http://www.ncbi.nlm.nih.gov/pubmed/18493006
http://dx.doi.org/10.1590/0103-8478cr20130206
http://dx.doi.org/10.1186/s40064-016-3608-0
http://www.ncbi.nlm.nih.gov/pubmed/27917336
http://dx.doi.org/10.1093/ps/81.10.1584
http://www.ncbi.nlm.nih.gov/pubmed/12412928
http://dx.doi.org/10.1093/ps/83.2.275
http://www.ncbi.nlm.nih.gov/pubmed/14979580
http://dx.doi.org/10.3382/ps.2011-01667


Animals 2019, 9, 461 12 of 14

9. Rostagno, H.S.; Albino, L.F.T.; Donzele, J.L.; Gomes, P.C.; de Oliveira, R.F.; Lopes, D.C.; Ferreira, A.S.;
Barreto, S.L.T.; Euclides, R.F. Brazilian Tables for Poultry and Swine: Composition of Feedstuffs and Nutritional
Requirements, 3rd ed.; Rostagno, H.S., Ed.; Federal University Viҫosa: Viҫosa, Brazil, 2011.

10. Applegate, T.J.; Angel, R. Nutrient requirements of poultry publication: History and need for an update.
J. Appl. Poult. Res. 2014, 23, 567–575. [CrossRef]

11. Lusk, J.L. Consumer preferences for and beliefs about slow growth chicken. Poult. Sci. 2018, 97, 4159–4166.
[CrossRef]

12. Julian, R.J. Rapid growth problems, ascites and skeletal deformities in broilers. Poult. Sci. 1998, 77, 1773–1780.
[CrossRef]

13. Bessei, W. Welfare of broilers: A review. World Poult. Sci. J. 2006, 62, 455–466. [CrossRef]
14. De Jong, I.; Berg, C.; Butterworth, A.; Estevéz, I. Scientific Report Updating the EFSA Opinions on

the Welfare of Broilers and Broiler Breeders. Supporting Publications EN-295. 2012. Available online:
www.efsa.europa.eu/publications (accessed on 26 May 2019).

15. Gou, Z.Y.; Jiang, S.Q.; Jiang, Z.Y.; Zheng, C.T.; Li, L.; Ruan, D.; Chen, F.; Lin, X. Effects of high peanut meal
with different crude protein level supplemented with amino acids on performance, carcass traits and nitrogen
retention of Chinese Yellow broilers. J. Anim. Phys. Anim. Nutr. 2016, 100, 657–664. [CrossRef] [PubMed]

16. Jiang, S.; Gou, Z.; Li, L.; Lin, X.; Jiang, Z. Growth performance, carcass traits and meat quality of
yellow-feathered broilers fed graded levels of alfalfa meal with or without wheat. Anim. Sci. J. 2018,
89, 561–569. [CrossRef]

17. Ministry of Agriculture of the People’s Republic of China. Feeding Management Regulations of Yellow-Feathered
Chicken (NY/T 1871-2010); China Agriculture Press: Beijing, China, 2010.

18. Ministry of Agriculture of the People’s Republic of China. Nutrient Requirements of Chinese Color-Feather
Chicken, 2nd ed.; Feeding standard of chicken; China Agriculture Press: Beijing, China, 2004.

19. Association of Official Analytical Chemists. Official Methods of Analysis of the Aoac International, 17th ed.;
AOAC International: Gaithersburg, MD, USA, 2000.

20. Jiang, S.; Ding, F.; Lin, Y.; Yu, D.; Yang, X. Study on requirement of metabolizable energy for 0–21 day old
lingnan yellow broiler chicks. J. South Chin. Agric. Univ. 2003, 24, 73–76.

21. Feed Database in China. Tables of feed composition and nutritive values in China-fifteenth edition. Chin. Feed
2016, 21, 33–43.

22. Chinese National Poultry Breeding Committee. The names and calculation methods of poultry growth
performance parameters. Chin. Poult. 1984, 4, 25–27.

23. Jiang, Z.Y.; Jiang, S.Q.; Lin, Y.C.; Xi, P.B.; Yu, D.Q.; Wu, T.X. Effect of soy isoflavone on performance, meat
quality and antioxidation in male broilers. Poult. Sci. 2007, 86, 1356–1362. [CrossRef]

24. Shang, H.M.; Song, H.; Jiang, Y.Y.; Ding, G.D.; Xing, Y.L.; Niu, S.L.; Wu, B.; Wang, L.N. Influence of
fermentation concentrate of Hericium caput-medusae (Bull.: Fr.) Pers. on performance, antioxidant status,
and meat quality in broilers. Anim. Feed Sci. Technol. 2014, 198, 166–175. [CrossRef]

25. Zhou, G.; Jiang, Z.; Lin, Y.; Jiang, S.; Ding, F.; Yu, D.; Yang, X. Study of requirement of metabolizable energy
for 22–42 days Yellow broilers. Acta Zoonutrimenta Sin. 2004, 16, 57–64.

26. Xi, P.B.; Jiang, S.Q.; Jiang, Z.Y.; Zhou, G.L. Establishment of technical regulation for evaluation of meat
quality of Yellow-feathered broilers. Chin. J. Anim. Sci. 2011, 47, 72–76.

27. Corzo, A.W.; Dozier, A.; Kidd, M.T. Dietary lysine needs of late-developing heavy broilers. Poult. Sci. 2006,
85, 457–461. [CrossRef] [PubMed]

28. Leeson, S.; Summers, J.D. Commercial Poultry Nutrition, 3rd ed.; Nottingham University Press: Nottingham,
UK, 2008; p. 80.

29. Kim, J.S.; Kwon, J.T.; Harim, L.; Kim, J.H.; Oh, S.K.; Lee, B.K.; Zheng, L.; Konkuk-Jung, M.S.; An, B.K.;
Kan, C.W. Performance and carcass characteristics of two different broiler strains by different levels of
metabolizable energy. Korean J. Poult. Sci. 2012, 39, 195–205. [CrossRef]

30. Orduña-Hernández, H.M.; Salinas-Chavira, J.; Montaño-Gómez, M.F.; Infante-Rodríguez, F.;
Manríquez-Núñez, O.M.; Vázquez-Sauceda, M.L.; Yado-Puente, R. Effect of frying fat substitution by
vegetable oil and energy concentration on diets for productive performance of broilers. CienciaUAT 2016, 10,
44–51.

http://dx.doi.org/10.3382/japr.2014-00980
http://dx.doi.org/10.3382/ps/pey301
http://dx.doi.org/10.1093/ps/77.12.1773
http://dx.doi.org/10.1079/WPS2005108
www.efsa.europa.eu/publications
http://dx.doi.org/10.1111/jpn.12420
http://www.ncbi.nlm.nih.gov/pubmed/27401885
http://dx.doi.org/10.1111/asj.12968
http://dx.doi.org/10.1093/ps/86.7.1356
http://dx.doi.org/10.1016/j.anifeedsci.2014.09.011
http://dx.doi.org/10.1093/ps/85.3.457
http://www.ncbi.nlm.nih.gov/pubmed/16553276
http://dx.doi.org/10.5536/KJPS.2012.39.3.195


Animals 2019, 9, 461 13 of 14

31. Houshmand, M.; Azhar, K.; Zulkifli, I.; Bejo, M.H.; Kamyab, A. Effects of nonantibiotic feed additives on
performance, nutrient retention, gut pH, and intestinal morphology of broilers fed different levels of energy.
J. Appl. Poult. Res. 2011, 20, 121–128. [CrossRef]

32. Touchburn, S.; Simon, J.; Leclercq, B. Evidence of a glucose-insulin imbalance and effect of dietary protein
and energy level in chickens selected for high abdominal fat content. J. Nutr. 1981, 111, 325–335. [CrossRef]
[PubMed]

33. Rosa, P.S.; Faria Filho, D.E.; Dahlke, F.; Vieira, B.S.; Macari, M.; Furlan, R.L. Effect of energy intake on
performance and carcass composition of broiler chickens from two different genetic groups. Braz. J. Poult. Sci.
2007, 9, 117–122. [CrossRef]

34. Waldroup, P.W.; Tidwell, N.M.; Izat, A.L. The effects of energy and amino-acid levels on performance and
carcass quality of male and female broilers grown separately. Poult. Sci. 1990, 69, 1513–1521. [CrossRef]

35. Nunes, J.O.; Bertechini, A.G.; de Brito, J.A.G.; Makiyama, L.; Mesquita, F.R.; Nishio, C.M. Evaluation of
cysteamine associated with different energy patterns in diets for broiler chickens. Braz. J. Anim. Sci. 2012, 41,
1956–1960. [CrossRef]

36. Duarte, K.F.; Junqueira, O.M.; Borges, L.L.; Rodrigues, E.; da Filardi, R.S.; Praes, M.F.; de laurentiz, A.C.; de
Domingues, C.H.F. Performance, carcass traits, and body composition of broilers fed different linseed oil
levels between 21 and 56 days of age. Braz. J. Poult. Sci. 2014, 16, 55–60. [CrossRef]

37. Zhao, L.H.; Ma, Q.G.; Chen, X.D.; Hu, X.X.; Ji, C. Effects of dietary energy levels and lysine levels on
performance and carcass characteristics in Arbor Acres broilers. Chin. J. Anim. Sci. 2008, 44, 35–44.
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