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Abstract: Fecal microbiota transplant (FMT) holds significant promise for patients with Autism
Spectrum Disorder (ASD) and gastrointestinal (GI) symptoms. Prior work has demonstrated that
plasma metabolite profiles of children with ASD become more similar to those of their typically
developing (TD) peers following this treatment. This work measures the concentration of 669
biochemical compounds in feces of a cohort of 18 ASD and 20 TD children using ultrahigh performance
liquid chromatography-tandem mass spectroscopy. Subsequent measurements were taken from
the ASD cohort over the course of 10-week Microbiota Transfer Therapy (MTT) and 8 weeks after
completion of this treatment. Univariate and multivariate statistical analysis techniques were used to
characterize differences in metabolites before, during, and after treatment. Using Fisher Discriminant
Analysis (FDA), it was possible to attain multivariate metabolite models capable of achieving a
sensitivity of 94% and a specificity of 95% after cross-validation. Observations made following
MTT indicate that the fecal metabolite profiles become more like those of the TD cohort. There was
an 82-88% decrease in the median difference of the ASD and TD group for the panel metabolites,
and among the top fifty most discriminating individual metabolites, 96% report more comparable
values following treatment. Thus, these findings are similar, although less pronounced, as those
determined using plasma metabolites.

Keywords: fecal metabolites; ASD; microbiome; gastrointestinal symptoms; Fisher Discriminant
Analysis

1. Introduction

Autism spectrum disorder (ASD) encompasses a large group of early onset neurological conditions
that result in impairments in social behavior and communication, which are estimated to affect 1
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in 54 children under the age of eight in the United States [1]. Despite this high rate of occurrence,
the understanding of the pathophysiology of ASD is still poor, and it is believed that at least in some
cases ASD begins prenatally as a result of complex interactions between environmental and genetic
factors [2,3]. Although diagnosis of this disorder is only made through behavioral evaluations, many
systems of the body are strongly affected by this condition. A diverse range of physiological mechanisms
have been observed to be perturbed in ASD including the immune, endocrine, and gastrointestinal (GI)
systems [4,5]. Notably, the prevalence of GI symptoms co-occurring with ASD (~46%) lends significant
credence to investigating the relationship of ASD to the GI system [6].

In recent years, there have been growing efforts to study the effect of the microbiome on the
Gut-Brain Axis in the context of ASD etiology. Some studies have shown that the gut microbiome
of individuals with GI issues varies significantly from those without such complications [7-9].
However, the microbiota of individuals with ASD without the presence of GI issues have also
consistently been found to be distinct from their typically developing (TD) peers [10,11]. Certain
genera such as Prevotella and Coprococcus have been shown to be significantly less prevalent in the
gut of children with ASD [12,13]. Furthermore, it has been proposed that the microbiota differences
in children with ASD give rise to metabolomic differences that can be quantitatively evaluated to
distinguish them from their TD peers [14,15].

Some previous work involving fecal metabolites identified isopropanol, p-cresol, acetyl-carnitine,
free carnitine and neurotransmitters-gamma-Aminobutyrate (GABA) as metabolites that have
significantly different concentrations between the ASD and TD cohorts [14,16,17]. There have also
been mixed results regarding the fecal concentrations of short chain fatty acids. While some studies
show that the fecal concentration of acetic, propionic and butyric acids were higher in children with
ASD [18-20], other investigations found that the concentration of these short chain fatty acids were
lower or comparable to their TD peers [21-23].

As the role of the microbiome in ASD is being in more detail, the question is raised as to whether
using fecal microbiota transplant (FMT) can mitigate the severity of GI and other symptoms of ASD.
In one notable study, offspring of germ-free mice subject to microbiome transfer from individuals with
ASD exhibited more ASD-like behaviors and produced different metabolome profiles when compared
to offspring of germ-free mice subject to microbiome transfer from TD controls [24]. The use of FMT
has shown considerable potential in its capability to alleviate not only symptoms associated with GI
complications, but also in some cases to reduce the severity of certain behavioral symptoms in children
with ASD. For example, Kang et al. demonstrated in an open-label study that through a modified FMT
(called, Microbiota Transfer Therapy (MTT)), there was an 80% reduction in GI symptoms and a 24%
initial reduction in core ASD symptoms, with greater improvement in ASD symptoms at a two-year
follow-up [25,26]. Probiotic intervention has also shown potential to have a positive influence on
ameliorating both behavioral and GI symptoms in individuals with ASD [27,28].

Past work in analyzing metabolites prior and subsequent to MTT therapy have also yielded
promising results. Children with ASD who underwent MTT presented changes in their plasma
metabolite profiles to resemble more closely those of their typically developing peers [29,30]. The work
presented in this paper builds on the analysis of this same study [25], but focuses on fecal metabolites
instead of plasma metabolites. Univariate assessment of the fecal metabolites examined in this study
have previously shown limited capability for differentiating between ASD and TD cohorts when
corrected for multiple hypotheses [30]. Thus, here we explored the use of multivariate techniques to
detect underlying relationships that may have been otherwise missed.

2. Materials and Methods

2.1. Study Design

The purpose of this study was to examine the differences in gut metabolites between children with
ASD and GI problems vs. typically developing children without GI problems, and determine the effects
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of gut microbiota transfer therapy on the fecal metabolites of the ASD group. The study involved
38 children, aged 7-16 years, 18 of these professionally diagnosed with ASD by a healthcare provider
(verified with the Autism Diagnostic Interview-Revised) and 20 determined to be typically developing.
The participants with ASD were required to have moderate to severe GI problems, and the range of
Gl issues included constipation, diarrhea, and alternating diarrhea/constipation. GI symptoms were
assessed biweekly with the Gastrointestinal Severity Rating Scale (GSRS) and daily with a Daily Stool
Record using the Bristol Stool Form scale [25]. The study consisted of 2 weeks of antibiotic therapy,
1 day of bowel cleans, and a high major initial dose and 7-8 weeks of lower maintenance doses of FMT
treatment followed by evaluation at 8 weeks post treatment. The TD group did not undergo MTT,
but instead was used as a comparison group whose measurements were taken at the same time as the
ASD group before treatment. The MTT experimental protocol and details of the study population are
outlined in Kang et al. [25].

The pre-treatment protocol consisted of two weeks of oral vancomycin, which is a broad spectrum
non-absorbable antibiotic. This treatment was intended to reduce pathogenic bacteria and prime
the GI system for MTT. The dose of vancomycin administered was individualized to the weight of
each participant at 40 mg/kg, with a maximum dose of 2 g [25]. Participants were then subjected to
one day of fasting and a bowel cleanser (MoviPrep) in order to remove the vancomycin and further
reduce levels of intestinal bacteria. Standardized Human Gut Microbiota (SHGM) consisted of a full
spectrum of highly purified microbiota from healthy, carefully screened donors. The ASD cohort was
split into two groups, each one following a different initial high dose (2.5 x 10'2 cells/day) SHGM
treatment. One MTT treatment consisted of a single dose administered rectally (n = 6) while the other
involved doses administered orally on two days (1 = 12). Both techniques were followed by a lower
concentration SHGM maintenance dosage (around 2.5 x 107 cells) given orally, with treatment ending
8 weeks after the initial high dose [25]. However, the protocol differed slightly for both groups of ASD
children as those that received SHGM rectally waited for one week prior to beginning low dose SHGM.

2.2. Metabolite Measurements

Once the study had concluded, aliquots of the fecal samples were shipped overnight on dry ice to
Metabolon (Durham, NC, USA). Both the control and autism samples were blinded and randomized
prior to being shipped. Metabolon utilized ultrahigh performance liquid chromatography-tandem mass
spectroscopy (UHPLC-MS/MS) instruments for obtaining metabolomic information on 669 metabolites.
A detailed overview regarding this protocol can be found in Long et al. [31]. By using this technique,
it is possible to determine a signal intensity corresponding to a metabolite’s presence in a sample.
Subsequently, the signal intensity is used to derive the relative abundance of each metabolite. For this
objective, peak area integration using the area under the curve was utilized. In the case of missing
values, imputation was performed by taking the lowest value of each compound measurement divided
by the square root of 2.

Fecal samples were taken at four time points from the participants with ASD (Figure 1). Parents
were instructed to freeze these sample immediately after collection for up to 3 days, and the samples
were then transported to Arizona State University on dry ice where they were stored in a =80 °C
freezer. Initial fecal samples were collected from all participants at Week 0. Samples were also taken
from ASD participants at the Week 3 mark from the beginning of the treatment (after about five days
of microbiota transplant) and at the end of MTT treatment (Week 10). The ASD group was sampled
again 8 weeks after administration of SHGM ceased (Week 18). In total, 18 ASD participants collected
samples at all time points aside from Week 3, where only 17 samples were collected. The TD group
received no treatment and 20 were sampled at the beginning (Week 0).

2.3. Statistical Analysis

The data collected for each of the metabolites underwent various forms of statistical analysis to
assess differences between the ASD + GI and TD cohort. By comparing the differences observed for
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metabolites before and after MTT, it might be possible to gain some understanding of the role that this
therapy could play in altering metabolic processes. Both univariate and multivariate techniques were
used in this regard, and the implementation of the analysis routines was done in MATLAB.

Week 10
Week 2 Week 3 ASD+GI Sampled

Oral vancomycin ends for ASD+GI ASD+GI Sampled Low dose SHGM ends (n=18)
9

|

Week D) = TS RS Week 18
TD Sampled ASD+GI Sampled

ASD+GI Sampled
Oral vancomycin begins for ASD+GI

Day 18
Low dose oral SHGM (n = 18)

Day 17

High oral dose SHGM (n = 12)

Day 16
p One day high rectal dose SHGM(n =6
High oral dose SHGM (n=12)

\ A Day 15
One day ASD+GI Fast

Figure 1. Timeline for the experimental protocol, which can be divided into three main phases.
From Week 0 to Week 3, the Autism Spectrum Disorder (ASD) cohort is primed for Microbiota Transfer
Therapy (MTT). From Week 3 to Week 10 the ASD cohort receives low dose fecal microbiota (FM)
or is prepared for low dose FM, and finally from Week 10 to Week 18 no treatment is given to the

individuals. A closeup is provided of Week 2-3 as this is when Standardized Human Gut Microbiota
(SHGM) is initialized.

2.3.1. Preprocessing

In order to ensure continuous distribution of values across all participants, metabolites with too
many values below the detection limit at their initial stool sample (Week 0) were removed. The detection
limit for a metabolite was determined to be the minimum value recorded for that metabolite. If less
than 40% of all measurements were above the detection limit, the metabolite was removed from
subsequent analysis. This step accounted for the possibility that a measurement could be almost
entirely below the detection limit in one cohort, while simultaneously being above the limit in the other
cohort. The remaining metabolites were then normalized such that for each metabolite the median
value was 1.0 in the Week 0 TD cohort.

2.3.2. Univariate Analysis

Univariate analysis identifies metabolites that are differentially expressed between the ASD and TD
cohorts. Using this information, it is possible to examine common correlations and relationships across
different measurement quantities. In turn, this has the potential to identify underlying mechanisms of
ASD etiology as well as provide guidance for the development of a multivariate model that can more
accurately distinguish between both groups. As there are 669 metabolites under investigation, there is
significant concern related to overfitting of statistical models if many or all these measurements are
used to develop a multivariate model. By reducing the number of measurements to a smaller subset,
it is possible to alleviate some of the concerns related to overfitting.

Metabolites were individually analyzed for their ability to classify between the ASD and TD
cohorts at their Week 0 measurements. The area under the receiver operator curve (AUROC) served as
an assessment of the potential of a metabolite to distinguish between ASD and TD groups. This metric
is defined as the false positive rate against the false negative rate at different ASD/TD classification
thresholds. An AUROC of 1.0 indicates the capacity for perfect separation, while an AUROC of 0.5
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indicates that there is no ability to distinguish between the groups. Metabolites with an AUROC value
above 0.6 were selected as candidates for use in multivariate analysis in this work.

Univariate analysis techniques evaluated whether significant changes had occurred among the
metabolites between the beginning and end of the study for the ASD cohort. For this purpose,
the metabolite measurements at Week 0 and Week 18 were compared using a parametric or
non-parametric test, depending upon their distribution. An Anderson-Darling test for normality was
used at both time points to determine the distribution of each set of measurements. Subsequently,
either a Wilcoxon signed-rank test or a paired t-test was performed on the ASD group, comparing
measurements from Week 0 to Week 18. A relatively normal distribution employs the parametric
paired t-test; otherwise, the non-parametric Wilcoxon signed-rank test is used. The resulting p-value
indicates how significantly the concentration of the metabolite changed for the cohort over the course
of the study.

As there were a considerable number of quantities measured per study participant, it was
imperative that multiple hypothesis correction tests were utilized. Subsequently, a false discovery rate
(FDR) for each individual metabolite was computed using leave-n-out (n =1, 2, 3) cross validation
(see Table Al). Leave-n-out is an iterative process and involves removing n individual data points
from the total dataset and rerunning the univariate analysis on this subset. This procedure is repeated
so that all possible combinations with n removed individuals are assessed. The FDR is calculated as
the proportion of univariate results that were not deemed significant.

2.3.3. Multivariate Analysis

Fisher discriminant analysis (FDA), metabolites that had been identified as having an AUROC
value above 0.6 were used to develop a multivariate model for distinguishing between the ASD and
TD cohorts. FDA is a dimensionality reduction technique that seeks to separate classes of data by
determining a projection where such separation is maximized [32]. This is achieved by maximizing
the ratio between the between-class variability Sgp and the within-class variability Sy for a weight
vector W. ,

W) = e
w

In the case of K classes with n number of samples and m measurements, Sg is defined as follows,
where ¥ denotes the global mean, X denotes the local class mean, and 7, is the number of samples
within class k:

K
Sp = Z (X — %) (% - %)
=1

In contrast, the within-class covariance matrix Syy is defined as the following, where x; corresponds
to an individual sample:

gl

me Y (% - %) (% — %)

k=1 ick

Sw =

Thus, FDA simultaneously maximizes the scatter between classes and minimizes the scatter
within each class to find k-1 vectors that maximize the objective function. Subsequently, the eigenvector
corresponding to the k-1 largest eigenvalue of SpSyy corresponds to the optimum weight vector.

For this dataset, the objective of FDA is to separate the ASD and TD cohorts with a combination of
metabolites. The initial stool samples (Week 0) were used to develop these models, so that the model
classifies individuals before any treatment.

The previously mentioned preprocessing and univariate analysis steps were performed to reduce
the set of metabolites considered for FDA. An FDA model could potentially be created with all
669 metabolites, but this model would likely overfit the data. To account for this, only metabolites that
passed the preprocessing step and achieved a univariate AUROC of over 0.6 remained in consideration.
This resulted in 165 metabolites under further investigation.
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An exhaustive search was performed through all possible combinations of 2, 3, or 4 metabolites
of the reduced set of 165 metabolites to determine the models which best separate the ASD and
TD groups at Week 0. The AUROC was used here as well, measuring how well the multivariate
models classify the two groups. Using kernel density estimation, the probability density function
of each model was computed. Iterating through all combinations, the models were assessed, and
the combination of metabolites was determined for each number of variables. For each number of
metabolites, the 1000 models that had achieved the highest possible AUROC were recorded. To derive
the five-metabolite models, all 1000 four metabolite models that had achieved the highest AUROC
were augmented with each of the remaining 161 metabolites that had an AUROC greater than 0.6.
The top 1000 five metabolite models that had the highest AUROC were then subjected to leave-one-out
cross validation.

2.4. Cross-Validation

Leave-one-out cross-validation was performed on the optimal FDA models to evaluate robustness
and statistical independence. Cross-validation ensures that, rather than merely fitting a model to
presented data, the model obtained is also capable of classifying new data. Although cross-validation
generally has a lower accuracy than what is computed just by fitting a model to data, the cross-validation
accuracy will better reflect generalizability to new data sets, i.e., data not used for developing a classifier.
Leave-one-out cross-validation proceeds iteratively, as a single individual’s data is removed from the
total dataset, then an FDA model is computed with measurements from the remaining individuals [33].
The measurements from the removed individual are now used as a test case to determine if the model
prediction regarding classification is correct. This process is repeated for measurements from each of
the individuals in the dataset: their data are removed, a model is developed with the remaining data,
then they are classified with this model, until the data for each individual has been removed once.
A confusion matrix is computed which includes the true positive rate (TPR), or sensitivity, and the true
negative rate (TNR), or specificity. Additionally, for each model, the Type II (false negative) error (3
was modulated between 0.01, 0.05, 0.1, and 0.2 during cross-validation. The Type II error determined
the threshold value for separating the two groups. By alternating the values of §3, it was possible to
evaluate the cross-validated performances along different positions of the ASD distribution. Lowering
 meant raising the Type I error while lowering the Type II error and the converse also holds true.
Thus, each of the four models (2, 3, 4, or 5 metabolites) had cross-validation performed four times,
with corresponding computation of TPRs and TNRs.

2.5. Model Evaluation

The models obtained after cross validating at different thresholds for data collected at Week 0 were
used to make predictions about the ASD group at the other MTT time points. Specifically, measurements
at Week 3, Week 10 and Week 18 were used to monitor the change in classification performance over
the course of the MTT protocol. Data from these time points were rescaled with respect to the TD Week
0 median and standard deviation. The probability density functions were compared between the time
points, and the discriminate scores for each model as well as of their constituent metabolites were
determined. Changes resulting from MTT were quantified using the Type II error, with respect to the
threshold associated with the probability density function (PDF) of the ASD + GI cohort’s discriminant
scores at each time point. Thus, both univariate assessments were performed as well as the total
assessment of the multivariate models’ discriminant score. Additionally, correlation analysis between
significant metabolite pairs was performed to determine possible underlying relationships.
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3. Results

3.1. Univariate Analysis

In total, there were 669 fecal metabolites that were measured in the study. Through the
preprocessing step, 86 metabolites were determined not to have the prerequisite number of observations
above the detection limit for further analysis. In order to classify ASD and TD cohorts at their Week
0 measurements, the area under the AUROC was used as an assessment of the potential of a metabolite
to distinguish between ASD and TD groups. The remaining 583 metabolites were ranked according to
their univariate AUROC, and 165 metabolites with an AUROC of at least 0.6 were identified. No single
metabolite perfectly separated the cohorts (which would correspond to an AUROC = 1.0), as the
metabolite with the highest AUROC, carnitine, achieved a value of 0.77 (Table 1).

Using the 165 metabolites with an AUROC greater than 0.6, additional univariate testing was
performed to assess the degree to which measurements shifted following MTT. ASD metabolite samples
measured at Week 0 were compared to their values following MTT at Week 18 using either a paired
t-test or a Wilcoxon signed-rank test depending upon the distribution determined for the data via the
Anderson-Darling normality test. It was found that 10.9% of the metabolites significantly changed
(p < 0.05) following the MTT therapy when comparing the ASD group before and after treatment
(see Table A1). The metabolites that had a threshold AUROC value of 0.6 were subsequently used for
model discovery for the 2-, 3-, 4- and 5- metabolite models.

3.2. FDA Models

The FDA models with the greatest AUROC values for each number of constituent metabolites
are listed in Table 2. The probability density function (PDF) of discriminant scores for the 2-, 3-, 4-,
and 5-metabolite models that achieved the highest accuracy following cross validation are shown
in Figure 2. There were two distinct models that were identified, using five separate metabolites,
as having achieved the same accuracy after cross-validation. With the exception of one metabolite
which differed between them (Adenosine and Indole), the constituents of these panels are identical.
These two metabolite models are both shown in Table 2 and will be referred to as OFM-A and OFM-I,
optimized fecal model-adenosine and optimized fecal model-indole, respectively (OFM-I/A). For all
optimized metabolite panels, the TPR and TNR values for each are presented when the {3 value was
modulated. The 5-metabolite models had higher AUROCSs than the 2-, 3-, and 4-metabolite models,
so they are the focus of the following analysis, due to their higher accuracy (0.95 specificity and 0.94
sensitivity). Modulating 3 revealed that the optimal cut-offs between the ASD and TD distributions
for the OFM-I and OFM-A models was 3 = 0.05 for both the OFM-A and OFM-I.

For the 1000 best models with five metabolites, the AUROC ranged from 0.97 to 1.00 which are
high values. The reason for using the 1000 best models is that there are not only one or two best models
as judged by AUROC alone. Each of these models was subjected to cross validation, with OFM-I/A
being derived from those that achieved the highest accuracy. The metabolites ultimately utilized for
the development of a five-component model were all found to be in the top quartile of prevalence
in the 1000 top models (Figure 3). Notably, among the top fecal metabolite models, adenosine and
hydroxyproline appeared in 36.3% and 62.4% of models, respectively. Only three metabolites were
present in more than 25% of the top 1000 models that were not among those included in the OFM-I/A
panels. These metabolites were Adenine, 2-aminobutyrate and 1,7-dimethylurate (corresponding to
the 5th, 57th, and 86th highest AUROC rank, respectively).
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Table 1. The top 50 fecal metabolites (area under the receiver operator curve (AUROC) > 0.66) distinguishing between ASD and typically developing (TD) groups at
baseline ranked by univariate AUROC with at least 40% values above the detection limit (15 measurements). The AUROC at Week 18 is also provided. The entire list
of top 165 metabolites is not shown due to space constraints (see Table Al). Either a Wilcoxon signed-rank test or a paired t-test was performed on the ASD group,
comparing measurements from Week 0 to Week 18 for each of the metabolites. The p-value of those metabolites that significantly changed after MTT (p-value < 0.05)
are presented. The primary associated sub-pathway for each metabolite is also provided [34].

Metabolite Rank Metabolite ‘A‘;\I]il;? OC evljiolcs Pre}/ﬂ I_’{)];LIJ\LITT S:]if;:it;t;‘:y
1 Carnitine 0.77 0.68 Carnitine Metabolism
2 Sphingosine 0.75 0.58 Sphingolipid Metabolism
3 2’-deoxyadenosine 0.75 0.59 0.02 Purine Metabolism, Adenine containing
4 Indole 0.74 0.72 Tryptophan Metabolism
5 Adenine 0.74 0.81 Purine Metabolism, Adenine containing
6 N-stearoyl-sphingosine (d18:1/18:0) 0.73 0.61 Sphingolipid Metabolism
7 Imidazole Propionate 0.71 0.64 Histidine Metabolism
8 10-nonadecenoate (19:1n9) 0.71 0.59 0.01 Long Chain Fatty Acid
9 p-cresol sulfate 0.71 0.53 Phenylalanine and Tyrosine Metabolism
10 Cystathionine 0.71 0.65 Methionine, Cysteine, SAM and Taurine Metabolism
11 5alpha-androstan-3beta,17alpha-diol monosulfate (1) 0.71 0.63 0.01 Steroid
12 3-(3-hydroxyphenyl)propionate 0.71 0.66 Phenylalanine and Tyrosine Metabolism
13 1-(1-enyl-oleoyl)-GPE (P-18:1) 0.71 0.87 Lysoplasmalogen
14 Deoxy-carnitine 0.71 0.58 Carnitine Metabolism
15 Gamma-glutamyl-histidine 0.71 0.68 Gamma-glutamyl Amino Acid
16 Diaminopimelate 0.70 0.62 Food Component/Plant
17 Tyramine O-sulfate 0.70 0.70 Phenylalanine and Tyrosine Metabolism
18 Gulonate 0.70 0.53 Ascorbate and Aldarate Metabolism
19 gamma-tocotrienol 0.70 0.62 Tocopherol Metabolism
20 4-hydroxyphenylacetate 0.70 0.56 Phenylalanine and Tyrosine Metabolism
21 Delta-tocopherol 0.70 0.53 Tocopherol Metabolism
22 Phenethylamine 0.69 0.55 Phenylalanine and Tyrosine Metabolism
23 Propionyl-glycine (C3) 0.69 0.61 Sphingolipid Metabolism
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Metabolite Rank Metabolite I:Vlile{l(() ((): 6\/23(01(8: Pre}/j I_){Z;xTT S:]jfl(::it;tviiy
24 N-acetyl-sphingosine 0.69 0.63 Sphingolipid Metabolism
25 Betaine 0.69 0.60 Glycine, Serine and Threonine Metabolism
26 Adenosine 0.69 0.65 Purine Metabolism, Adenine containing
27 Ornithine 0.68 0.51 Urea cycle; Arginine and Proline Metabolism
28 N-palmitoyl-sphingosine (d18:1/16:0) 0.68 0.54 0.03 Sphingolipid Metabolism
29 Galactonate 0.68 0.67 Fructose, Mannose and Galactose Metabolism
30 N1-Methyl-2-pyridone-5-carboxamide 0.68 0.74 Nicotinate and Nicotinamide Metabolism
31 1-palmitoylglycerol (16:0) 0.68 0.54 Monoacylglycerol
32 Phosphocholine 0.67 0.59 Phospholipid Metabolism
33 Theobromine 0.67 0.62 0.02 Xanthine Metabolism
34 3,5-dihydroxybenzoic acid 0.67 0.60 Food Component/Plant
35 Hydroxyproline 0.67 0.56 Urea cycle; Arginine and Proline Metabolism
36 L-urobilin 0.67 0.60 0.02 Hemoglobin and Porphyrin Metabolism
37 carboxyethyl-GABA 0.67 0.55 Glutamate Metabolism
38 oxalate (ethane-dioate) 0.67 0.53 Ascorbate and Aldarate Metabolism
39 Palmitoyl-carnitine (C16) 0.67 0.53 Fatty Acid Metabolism(Acyl Carnitine)
40 Copro-stanol 0.67 0.60 Sterol
41 Saccharopine 0.66 0.57 Lysine Metabolism
42 5-hydroxylysine 0.66 0.53 Lysine Metabolism
43 Stearoyl-carnitine (C18) 0.66 0.58 Fatty Acid Metabolism(Acyl Carnitine)
44 Biliverdin 0.66 0.60 Hemoglobin and Porphyrin Metabolism
45 3-(4-hydroxyphenyl)lactate (HPLA) 0.66 0.59 Phenylalanine and Tyrosine Metabolism
46 Carnosine 0.66 0.57 Dipeptide Derivative
47 10-hydroxystearate 0.66 0.64 0.01 Fatty Acid, Monohydroxy
48 Pentadecanoate (15:0) 0.66 0.55 Long Chain Fatty Acid
49 Hexadecanedioate (C16) 0.66 0.60 Fatty Acid, Dicarboxylate
50 Sphinganine 0.66 0.54 Sphingolipid Metabolism
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Table 2. Fitting and cross-validation results for the best combinations of two, three, four, and five
metabolites used as part of Fisher Discriminant Analysis (FDA). The cross-validated true positive rate
(TPR) and true negative rate (TNR) are shown for classification thresholds associated with different
values of (3 calculated from the fitted probability density functions (PDFs). The results for two
distinct 5-metabolite models are presented as they were able to achieve the same accuracy following
cross-validation. The notable TPRs and TNRs are highlighted for the 5-metabolite models.

i Cross-Validated Result:
I\I}Ium;) e;: of Metabolite Combination AI:_IItI:‘E;IC ross-vatidated fesutls

etabolites B TPR TNR
0.01 1.00 0.20
5 Carnitine 0.88 0.05 1.00 0.35
2’deoxyadenosine ’ 0.10 1.00 0.50
0.20 0.89 0.75
. 0.01 1.00 0.30

Adenosine
. 0.05 0.94 0.55
3  heobromine 093 0.10 0.94 0.75

ydroxyproline

0.20 0.72 0.85
indole 0.01 0.94 0.35
4 1-(1-enyl-oleoyl)-GPE (P-18:1) 0.98 0.05 0.89 0.60
Hydroxyproline ’ 0.10 0.83 0.60
Carnosine 0.20 0.83 0.80
Imidazole Propionate 0.01 1.00 0.85
5 Hydroxyproline 1.00 0.05 0.94 0.95
Theobromine ' 0.10 0.89 0.95
2-hydroxy-3-met-hylvalerate 0.20 078 0.95

Adenosine
Imidazole Propionate 0.01 1.00 0.85
Hydroxyproline 0.05 0.94 0.95
5 Theobromine 1.00 0.10 0.89 0.95
2-hydroxy-3-methylvalerate 0.20 0.78 0.95

Indole

3.3. Correlation Analysis

Correlation analysis was performed on the OFM metabolites as these were the ones that had been
identified as being able to distinguish between the ASD and TD cohorts with the highest accuracy
after cross-validation. It can be observed that many of the top 50 metabolites (AUROC > 0.66)
were significantly correlated with the OFM metabolites (Table 3). In contrast, the individual OFM
metabolites for both models had little to no correlation with each other, apart from hydroxyproline
with adenosine and 2-hydroxy-3-methylvalerate; these findings were expected since, if individual
OFM metabolites were highly correlated with each other, then they would not be useful in the model
due to their correlation.

3.4. Assessing Effects of MTT

Univariate assessment of the top 50 metabolites as ranked by AUROC demonstrated that 14% of
these 50 metabolites showed significant differences in their Week 0 and Week 18 ASD measurements
and that 47 of these 50 metabolites achieved a lower AUROC eight weeks following treatment (Table 1).
In addition to classification at baseline, the multivariate models developed can be used to observe
changes in fecal metabolome composition over the course of the study. Most metabolites in the OFM-I
and OFM-A models changed significantly after MTT and have values closer to the TD group after
MTT (see Table 4). The average difference between the median of the five metabolites for TD group at
Week 0 and the ASD measurements at Week 18 compared to measurements at Week 0 diminished by
88% and 82% for the OFM-I and OFM-A models (see Table 4), so the ASD group became much more
similar to the TD group.
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Figure 2. PDFs of ASD and TD discriminant scores at Week 0. The probability density function of the
FDA score provides a visualization of a model’s ability to distinguish between the ASD and TD cohorts.
The (a) two-metabolite model has most of its FDA scores highly concentrated near the region where
thresholds would be applied. The (b) three-metabolite model is not as highly concentrated, but there is
a significant amount of overlap between the scores of the ASD and TD participants, which is visible in
both plots. The four (c) and five (d,e) metabolite models better separated the cohorts, with little overlap
in the discriminant scores of the ASD and TD groups.
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Figure 3. Frequency of appearance of each of the metabolites with AUROC > 0.6 in the top
1000 five-metabolite Fisher discriminant analysis (FDA) models. The metabolites are ranked from
highest to lowest area under the receiver operating characteristic curve (AUROC) as shown in
Table 1. The metabolites included in the FDA models which achieved maximal separation following
cross-validation are shown in red: (A) indole (B) imidazole Propionate (C) adenosine (D) theobromine
(E) hydroxyproline, (F) 2-hydroxy-3-methylvalerate.
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Table 3. The correlation coefficients between the optimized fecal model-indole/adenosine (OFM-I/A)
metabolites and top metabolites 50 metabolites are examined and presented in order of their AUROC.
Only those correlations that are significant (p-value < 0.05) are presented.

Metabolite Correlation Coefficient p-Value
Indole
Carnitine 0.67 <0.001
Indole-lactate 0.56 <0.001
Saccharopine 0.42 0.007
Stearoyl-carnitine 0.39 0.015
3-(3-hydroxyphenyl)propionate 0.33 0.043
Oxalate 0.33 0.043
Imidazole Propionate
Galactonate 0.78 <0.001
Gulonate 0.76 <0.001
Palmitoyl-carnitine 0.72 <0.001
Saccharopine 0.7 <0.001
Phosphocholine 0.69 <0.001
Cystathionine 0.62 <0.001
Phenethylamine 0.61 <0.001
Betaine 0.61 <0.001
3-(4-hydroxyphenyl)lactate 0.6 <0.001
N-propionyl-methionine 0.58 <0.001
N-palmitoyl-sphingosine 0.41 0.011
3,5-dihydroxybenzoic 0.4 0.014
3-(3-hydroxyphenyl)propionate 0.39 0.017
Stearoyl-carnitine 0.38 0.018
1-palmitoylglycerol 0.37 0.023
Gamma-glutamyl-histidine 0.36 0.027
Biliverdin 0.34 0.037
Carnitine 0.32 0.048
Adenosine
Adenine 0.74 <0.001
2’-deoxyadenosine 0.54 <0.001
5-hydroxylysine 0.36 0.0254
Hydroxyproline 0.36 0.0256
5-hydroxylysine 0.36 0.0254
1-(1-enyl-oleoyl)-GPE 0.34 0.0366
Theobromine **
None
Hydroxyproline
2-hydroxy-3-methylvalerate *** 0.61 <0.001
delta-tocopherol 0.41 0.011
2’-deoxyadenosine 0.38 0.017
Adenosine 0.36 0.026
Copro-stanol 0.36 0.026
5alpha-androstan-3beta,17alpha-diol 0.35 0.030
p-cresol -0.32 0.050
Betaine -0.33 0.043
Oxalate -0.35 0.031

N-palmitoyl-sphingosine —-0.37 0.023
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Table 3. Cont.

Metabolite Correlation Coefficient p-Value

H%3%

2-hydroxy-3-methylvalerate

Gulonate 0.81 <0.001
Imidazole propionate 0.79 <0.001
Galactonate 0.78 <0.001
Phosphocholine 0.75 <0.001
5-hydroxylysine 0.72 <0.001
Hydroxyproline 0.61 <0.001
Betaine 0.6 <0.001
Phenethylamine 0.59 <0.001
1-(1-enyl-oleoyl)-GPE (P-18:1) 0.55 <0.001
Cystathionine 0.53 <0.001
1-palmitoylglycerol (16:0) 0.51 <0.001
Biliverdin 0.51 0.001
Propionyl-glycine (C3) 0.45 0.005
3-(4-hydroxyphenyl)lactate (HPLA) 0.43 0.008
3-(3-hydroxyphenyl)propionate 0.34 0.039
Delta-tocopherol -0.33 0.042
Copro-stanol —-0.35 0.033

** Theobromine was not found to be significantly correlated with any of the top 50 metabolites.
*** 2-hydroxy-3-methylvalerate is not among the top 50 metabolites as ranked by AUROC but present in both
OFM-I/A panels.

The OFM-I/A models were applied to the ASD samples at all distinct time points to assess their
accuracy for classifying a sample as belonging to the ASD or TD cohort. The effectiveness of OFM-I/A
for classification changed significantly before and after MTT. The type II error rate was initially
observed to be 5% for both models, indicating that the ASD and TD distributions are quite distinct,
but was observed to rise to 56% eight weeks after MTT was completed (Table 4), thereby indicating that
distinguishing between the ASD and TD cohort is not reliably possible after MTT. The PDF curves are
shown in Figure 4 to demonstrate the changes in the ASD cohort over time with respect to the values of
the FDA score. The distributions indicate that the ASD cohort became more metabolically similar to the
TD cohort after treatment, since the curves are shifted towards the TD curve. Notably, the distribution
of scores for the ASD cohort become somewhat bimodal at the later time points for both models.
The discriminant score for both models decreased substantially as time progressed, indicating that the
metabolites of the ASD group were becoming more similar to that of the TD group.

Probability Density Function of OFM-I Probability Density Function of OFM-A
o o
~ 7 —— TD Week 0 ~ —— TD Week 0
—— ASD Week 0 —— ASD Week 0
w© — ASD Week 10 w© — ASD Week 10
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Figure 4. PDF curves for the (a) OFM-I and (b) OFM-A model when assessing the ASD cohort over the
course of the study. The overlap between the TD cohort and the ASD cohorts increases at Week 10 and
Week 18, indicating that the metabolite profile of the ASD group after MTT treatment has become more
similar to the ones of the TD group.
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Table 4. Change in the difference between OFM-I/A metabolites measured in the TD and ASD cohort
over the course of the study. The discriminant score was calculated by first taking the absolute
value of the difference between measurements at each time point and the median of the TD group,
then normalizing the difference by the standard deviation of the TD Week 0 measurements, and then
adding the normalized absolute difference for each of the five metabolites. The background color
distinguished the individual metabolites from the multivariate models.

ASD Week 0 ASD Week 3 ASD Week 10 ASD Week 18 TD Week 0

Imidazole Propionate 0.37 0.55 0.29 0.14 0.12
(25th/75th percentile) (0.19, 3.38) (0.08, 8.57) (0.08, 0.80) (0.03, 0.46) (0.09, 0.29)
Hydroxyproline 0.96 1.06 1.27 0.80 0.60
(25th/75th percentile) (0.72,4.83) (0.42, 3.67) (0.24, 3.34) (0.54, 3.60) (0.29,1.20)
Theobromine (25th/75th 0.89 0.47 0.47 0.47 0.46
percentile) (0.47,2.38) (0.47,1.68) (0.16, 0.47) (0.43,0.47) (0.34, 0.64)
2-hydroxy-3-methylvalerat 0.53 0.43 0.34 0.52 0.44
(25th/75th percentile) (0.43,0.75) (0.18,0.56) (0.06, 0.50) (0.21, 0.63) (0.21,0.61)
Indole (25th/75th 1.13 0.66 0.85 0.86 0.39
percentile) (0.25,1.83) (0.32,1.75) (0.18,1.86) (0.26,1.52) (0.15,0.59)
Adenosine 0.67 0.77 0.73 0.57 0.40
(25th/75th percentile) (0.36, 0.88) (0.50, 1.01) (0.47,0.90) (0.26, 0.86) (0.18, 0.86)
OFM-I Median
discriminant score 238,572 072,052 096,571 071,262 021,158
(25th/75th percentile) (2:33,572) (0.72,9.52) (090, 3.71) (0-71,2.62) (021,135
Type II error 5% 53% 50% 56% -
dgffi/;ﬁl ﬁiiﬁe 3.51 2.87 2.18 1.36 0.62
(25th/75th percentile) (2.28,5.73) (1.13,9.43) (1.07,4.18) (0.54, 2.44) (0.35,1.05)
Type Il error 5% 53% 39% 56% -

4. Discussion

Preliminary analysis using univariate methods revealed that none of the individual fecal
metabolites achieved a high AUROC value by itself. Interpretations regarding the threshold value
needed for an AUROC to be deemed an effective classifier vary by discipline. AUROC values between
0.9-1.0 are desirable for diagnostic tests and are seen to be reflective of excellent classification [35].
However, this value was not chosen here as the AUROC is employed here as a pre-screening tool for
reducing the number of metabolites for classification, and not for determining a metabolite that by
itself can distinguish between the two groups. The highest AUROC value for an individual metabolite
was 0.77, corresponding to carnitine, indicating that the ASD group is somewhat heterogeneous.
In contrast, all optimized multivariate models using three or more elements were able to achieve an
AUROC greater than 0.9, highlighting that a multivariate analysis can provide better classification
than that which can be determined using univariate analysis alone. Nonetheless, 94% of the top
50 univariate metabolites report lower AUROC (Table 1) eight weeks following MTT, which indicates
greater similarity between the ASD and TD measurements after treatment.

Analysis of all possible significant metabolites at Week 0 resulted in the OFM-I and OME-A models,
consisting of five metabolites. Four of these five metabolites were identical between the two models and
both achieved AUROC values greater than 0.99. Interestingly, the two metabolites that differed between
them, Adenosine and Indole, are associated with different metabolic processes and have no significant
correlation. Furthermore, cross-validation revealed that using the OFM-I/A models at the Week 0
timepoint resulted in a 0.95 TPR and 0.94 TNR. Subsequently, there was an overall 94.7% accuracy for
correctly classifying an individual into the ASD/TD groups after leave-one-out cross-validation.

Many of the metabolites identified as being differentially expressed between the ASD and TD
cohorts have also been previously examined for their relationship to ASD. Specifically, among the
top five metabolites ranked by their AUROC value, carnitine, indole and sphingosine have all been
found to be differentially expressed in some capacity among individuals with ASD [14,17,18,36]. In a
meta-analysis, 10-20% of individuals with ASD were found to have disorders with synthesizing
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carnitine, which was the metabolite that had achieved the largest AUROC value [36]. Plasma carnitine
concentration has also previously been shown to be lower among cohorts with ASD [36]. It should be
noted that following MTT the AUROC values of carnitine reduced to 0.68, which indicates that the
ASD and TD carnitine distributions were less different after MTT (see Table A1). Sphingolipids such as
sphingosine have been found to play an active role in the crosstalk between microbiota and intestinal
cells [37]. The significant change in concentration for metabolites such as N-palmitoyl-sphingosine
(d18:1/16:0) may have been associated with the changed microbiome composition resulting from MTT
(Table 1). Approximately 68% of the variance observed in the fecal metabolome can be explained
by the gut microbiome [38], which underscores the potential impact FMT can have on reshaping
metabolite concentrations.

Among the metabolites which form part of the OFM-I/A models, theobromine exhibited a
significant change between its measurements at Week 0 compared to the Week 18 value for the ASD
cohort when a sign ranked test was applied at both timepoints (Table 1). Theobromine is not a
microbial metabolite, and its source in fecal samples likely stems from dietary intake and from human
metabolism of caffeine [38]. Consequently, this may account for the reason why it was not observed
to be correlated with any other metabolite and why the median discriminate score often took the
value of the detection limit. However, the metabolization of theobromine is primarily via hepatic
demethylation and oxidation, which are processes that have at least been hypothesized to be perturbed
in ASD [39,40]. The median concentration for this metabolite was also not found to change following
the bowel cleanse measurement (see Table A1l). We conducted a secondary analysis of a five-metabolite
model without theobromine and found that it results in significantly lower sensitivity and specificity,
so including theobromine seems to be important for developing a classification model.

Nonetheless, in the case of all metabolites present in the OFM-I/A models, the average difference
between the Week 0 TD measurements and ASD group decreased greatly (82-88%) by the end of
the study (Table 4). Hydroxyproline, which is another of the OFM metabolites, has been previously
determined to be expressed in significantly higher concentration in the plasma of children with ASD,
consistent with the higher levels in feces [41] and in the present study. Indole, which was also one
of the OFM metabolites, has been found in higher concentration in fecal samples in children with
ASD and other neurodevelopmental conditions [17], consistent with the results of this study, and is an
important metabolite for tryptophan metabolism [42]. Thus, the shift to a lower discriminant score
following the completion of the treatment is consistent with measurements of ASD fecal metabolites
becoming more like those of their TD counterparts following MTT.

The OFM-I/A models in their totality demonstrated similar behavior when contrasting
measurements taken at Week 0 and Week 18 of the ASD cohort. This study found that some
metabolic changes had begun by Week 3 (after vancomycin, bowel cleanse, and approximately five
days of FMT). It is also notable that the distributions of FDA scores within both the five-metabolite
models at later timepoints (Week 10 and Week 18) are bimodal. This suggests that some individuals
may respond differently to MTT than others. This finding was similar to the analysis performed on
plasma metabolites where a steep decline in median discriminant score was also observed at Week 3
and Week 10 [29].

The OFM-I/A metabolites demonstrated limited correlation among themselves. This was to
be expected as FDA seeks to maximize the amount of discriminating information with a minimal
number of utilized metabolites. For this reason, within this subset of fecal metabolites, those with few
correlations tended to appear more frequently in the top 1000 models. Specifically, there was a high
proportion of top 1000 models featuring theobromine (28.5%), which was ranked as the fourth most
common metabolite present in the models. Notably, this metabolite was not significantly correlated
with any of the other top 50 metabolites as discussed above. In total, 44 of the 50 metabolites with the
highest AUROC were correlated with the OFM metabolite panel, suggesting that there are at least six
common types of metabolic abnormalities associated with ASD. Although adenosine and indole were
not found to be correlated, they were included in the OFM-A and OFI-I models, respectively, and both
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metabolites are related to distinct biological pathways, with adenosine being associated with purine
metabolism, while indole is associated with tryptophan metabolism. It was observed in one study
that metabolites associated with these two pathways were the most different in urine of ASD and TD
children [43].

While there are several metabolic pathways that are related to the top 50 metabolites identified,
about 45% of the top metabolites were connected to phenylalanine and tyrosine metabolism, fatty
acid metabolism or sphingolipid metabolism. Differences in tyrosine metabolites such as decreased
concentration of phenylalanine and increased concentration of p-cresol have been previously observed
in studies examining the gut metabolite composition in TD and ASD children [14,44]. The role of the
microbiota in this pathway is also very significant. Tyrosine metabolism pathway downregulation
was observed in an ASD cohort to be associated with an increased prevalence of Bacteroides vulgatus
while upregulation was associated with Eggerthella lenta [44]. Similarly, the relationship between
sphingolipid metabolism and microbiome crosstalk has been suggested, and differences in short chain
fatty acids of children with ASD and their TD peers have been noted [24,36].

Several metabolites related to mitochondrial metabolism and regulation such as carnitine, betaine,
and adenine were also determined to have particularly high AUROC values [35,45-47]. Carnitine
serves as the cofactor that transports long-chain fatty acids to the mitochondria matrix, and betaine
plays a role in increasing mitochondrial membrane potential [45,47]. There has been considerable
investigation into the relationship between ASD and mitochondrial dysfunction. It is estimated that
around 4-7% of children with ASD are affected by mitochondrial disease, but it is speculated that up to
80% may have abnormalities in mitochondrial function [48,49].

Prior work has shown similar relationships between ASD fecal metabolite profiles as were observed
in this study. GABA, an important neurotransmitter, was one of the metabolites identified as having
a lower concentration in the ASD group prior to MTT, which is consistent with prior work [16,17].
Similarly, the fecal concentrations of free carnitine have been previously observed to be higher in
children with ASD, which was also observed in this study [14]. The fecal metabolite measurements are
consistent with prior work as the average indole measurements for the ASD cohort were more than
twice the value of their TD counterparts at Week 0 (see Table A1) [17]. It has also been observed that
fecal metabolites associated with glutamate metabolism such as 2-Keto-glutaramic acid and I-Aspartic
acid were downregulated in children with ASD [44]. These metabolites were not measured in this
study. Nonetheless, one of the metabolites associated with glutamate metabolism, carboxyethyl-GABA,
was identified in significantly lower concentration in the ASD + GI cohort at baseline.

While there are indeed some similarities between the analysis of fecal metabolites and prior
assessment of plasma samples taken from these participants, there are key distinctions. None of the
metabolites identified as being utilized in the optimum multivariate models were previously identified
as being significant for classification in the multivariate plasma models. The general performance
of the fecal metabolites when subjected to univariate analysis had generally lower AUROC values
than plasma metabolites [29]. However, despite having lower AUROC scores, multivariate analysis
achieved high accuracy in distinguishing ASD and TD children. That being said, we were able to
achieve greater separation using three plasma metabolites than with five fecal metabolites. This may
be due to the greater homogeneity in plasma samples vs. stool samples. There have also been far more
studies conducted examining plasma metabolite concentrations in individuals with ASD than studies
focused on fecal samples [50,51].

Although the models were able to classify between the ASD + GI and TD cohorts with high
accuracy, this study also has several limitations. The study focused exclusively on children with
ASD with initially moderate to severe GI problems, which were compared to TD children with no GI
issues. Therefore, assessments regarding ASD were confounded with GI problems in this analysis.
ASD subgroups differentiated by variations in GI abnormalities were ignored in the analysis as
subgroups were too small for a robust statistical assessment [52,53]. Furthermore, the study-cohort
was not large and the ASD cohort was further split up into two different initial treatments. Future
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studies with a larger sample size examining cohorts with and without GI symptoms would allow for
an assessment on the effectiveness of MTT in ameliorating behavioral symptoms in addition to GI
related pathology.

5. Conclusions

This study investigated differences in fecal metabolites between a group of children diagnosed
with ASD and GI symptoms and their typically developing peers with no history of GI symptom:s.
The univariate analysis demonstrated that individual fecal metabolites had limited potential to
distinguish between ASD+GI and TD cohorts, unlike the previous study of plasma; this may be due to
greater heterogeneity in stool compared to plasma. However, multivariate statistical analysis resulted
in five-metabolite models that had high accuracy even after cross-validation. Both the OFM metabolite
panels were shown to be capable of achieving 95% specificity and 94% sensitivity.

Following MTT, 14% of the top 50 metabolites that were found to have the greatest difference in
concentration between the TD and ASD group shifted such that their distributions were significantly
different eight weeks after the treatment ended. Furthermore, 94% of these metabolites reported lower
AUROC following treatment, indicating diminished capacity to distinguish between the ASD and TD
group. When considering a normalized average of the metabolites in the OFM models, the difference
between the ASD and TD groups decreased by 82-88% at 18 weeks. These findings are similar,
although less pronounced, as those determined using plasma metabolites, and both suggest that MTT
resulted in shifting the metabolic profile of the ASD group towards becoming more similar to the TD
group. Future work should be performed to validate the effect of MTT on fecal metabolites using a
larger study cohort and a placebo arm.
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Appendix A

Table Al. Univariate assessment of all metabolites with an AUROC greater than 0.60. The AUROC is provided at Week 0 for the TD and ASD cohort as well as
average ultrahigh performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) signal intensity measurements for both cohorts. The p-value for
the significance between the ASD and TD cohorts at Week 0 and between the ASD cohort at Week 0 and Week 18 are also shown. Finally, the results of leave-n-out
(n = 1-3) cross-validation are provided.

Week18 TD Mean  ASD Mean  Week 0 vs. Week Week 0 ASD vs. TD

Metabolite Week 0 AUROC AUROC Week 0 Week 0 18 ASD p-Value Un-Adjusted p-Value Leave-1-Out Leave 2-Out Leave 3-Out
carnitine 0.77 0.68 9.81x10°  3.35x 107 7.64 x 1071 478 x 1073 0.00 0.00 0.00
sphingosine 0.75 0.58 718 x10° 213 x 107 1.10 x 107! 8.15x 1073 0.00 0.00 0.00
2'-deoxyadenosine 0.75 0.59 8.08x10°  2.32x10° 1.83 x 1072 9.59 x 1073 0.00 0.00 0.00
indole 0.74 0.72 474x10°  1.05x 100 5.80 x 107! 1.04 x 1072 0.00 0.00 0.00
adenine 0.74 0.81 6.70x 10° 2,91 x 10° 517 % 107! 1.35x 1072 0.00 0.00 0.03
N-stearoyl-sphingosine 0.73 0.61 1.01x10°  4.05x 10° 1.03 x 107! 1.40 x 1072 0.00 0.00 0.04
imidazole 0.71 0.64 1.02x107  3.95x 107 1.50 x 1071 1.83 x 1072 0.00 0.00 0.13
10-nonadecenoate 0.71 0.59 242%x10° 549 x 10° 1.19 x 1072 218 x 1072 0.00 0.01 0.25
p-cresol 0.71 0.53 1.55x 10°  4.00 x 10° 6.42 x 1072 2,53 x 1072 0.00 0.16 0.27
cystathionine 0.71 0.65 6.07 x10* 912 x 10* 5.98 x 107! 2,53 x 1072 0.00 0.17 0.25
5alpha-androstan-3beta,17alpha-diol 0.71 0.63 9.86 x 10*  6.65 x 10* 450 x 1073 2.55 x 1072 0.00 0.31 0.32
3-(3-hydroxyphenyl)propionate 0.71 0.66 224107 2.67 x 107 8.62 x 1071 2.73 %1072 0.00 0.24 0.30
1-(1-enyl-oleoyl)-GPE 0.71 0.87 331x10°  257x10° 247 x 1071 2.81 x 1072 0.00 0.24 0.29
gamma-glutamyl-histidine 0.71 0.58 1.90x10°  1.95x10° 1.83x 107! 2,94 x 1072 0.00 0.25 0.38
Deoxy-carnitine 0.71 0.68 2.82x10%  1.09 x 10° 6.46 x 1071 2.94 x 1072 0.00 0.26 0.42
diaminopimelate 0.70 0.62 857x10°  1.14x10° 7.16 x 1071 3.11x 1072 0.00 0.32 0.40
tyramine 0.70 0.70 217 x 107 833 x10° 7.86 x 1071 3.17 x 1072 0.21 0.27 0.36
gulonate 0.70 0.53 243%x10°  1.52x10° 9.12x 1072 3.40 x 1072 0.11 0.42 0.46
gamma-tocotrienol 0.70 0.62 5.04x10° 324 x10° 351 x 107! 3.49 x 1072 0.26 0.42 0.46
4-hydroxyphenylacetate 0.70 0.56 997 x10°  2.75x10° 2.75x 107! 3.66 x 1072 0.32 0.42 0.44
delta-tocopherol 0.70 0.53 250x 106 1.62 x 10° 7.38 x 1072 3.85x 1072 0.42 0.49 0.48
phenethylamine 0.69 0.55 435x10°  9.09 x 10° 6.42 x 1072 3.93 x 1072 0.39 0.45 0.49
Propionyl-glycine 0.69 0.61 156 x10°  3.92x10° 6.09 x 1071 3.93 x 1072 0.47 0.51 0.53

N-acetyl-sphingosine 0.69 0.63 9.84x10*  2.63x10° 3.33x 107! 422 %1072 0.45 0.51 0.47
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Week 18

TD Mean

ASD Mean

Week 0 vs. Week

Week 0 ASD vs. TD

Metabolite Week 0 AUROC AUROC Week 0 Week 0 18 ASD p-Value Un-Adjusted p-Value Leave-1-Out Leave 2-Out  Leave 3-Out
betaine 0.69 0.60 3.39%x10°  5.05x 10° 537 x 107! 4.55x 1072 0.63 0.50 0.47
adenosine 0.69 0.65 581x10°  3.41x10° 5.58 x 107! 4.84 %1072 0.50 0.59 0.60
ornithine 0.68 0.51 205x107 274 x107 6.89 x 1072 519 x 1072 0.71 0.61 0.65
N-palmitoyl-sphingosine 0.68 0.54 3.01x10°  1.04 x 107 2.57 x 1072 5.33 x 1072 1.00 1.00 0.67
galactonate 0.68 0.67 4.63x10°  2.05x 10° 7.63 x 1071 5.37 x 1072 0.66 0.62 0.67
N1-Methyl-2-pyridone-5-carboxamide 0.68 0.74 1.63x10° 437 x10° 7.62 x 1071 5.44 x 1072 1.00 1.00 0.69
1-palmitoylglycerol 0.68 0.54 1.08x 107  1.55x 107 1.69 x 1071 572 x 1072 1.00 1.00 0.71
phosphocholine 0.67 0.59 3.01x10°  1.25x 107 5.36 x 1072 5.93 x 1072 0.79 0.72 0.72
theobromine 0.67 0.62 260%x10° 581 x10° 1.56 x 1072 5.93 x 1072 0.76 0.70 0.72
hydroxyproline 0.67 0.60 296x10°  9.08 x 106 6.92 x 1071 6.10 x 1072 0.79 0.73 0.74
L-urobilin 0.67 0.56 411x107  3.08 x 107 1.55 x 1072 6.35x 1072 0.71 0.80 0.73
3,5-dihydroxybenzoic 0.67 0.60 1.61x10°  9.06 x 10* 329 x 107! 6.52 x 1072 1.00 1.00 0.95
carboxyethyl-GABA 0.67 0.55 1.52x107  1.01x 107 2.00 x 107! 6.52 x 1072 1.00 1.00 0.95
oxalate 0.67 0.53 1.03x10° 211 x 10° 7.91 x 1072 6.58 x 1072 0.74 0.80 0.78
Palmitoyl-carnitine 0.67 0.53 493x10°  4.68x10° 5.18 x 1072 6.77 x 1072 0.79 0.79 0.79
Copro-stanol 0.67 0.60 221x10°  1.31x100 3.17 x 107! 6.86 x 1072 0.87 0.79 0.79
5-hydroxylysine 0.66 0.57 1.03x10° 253 x10° 3.35%x 107! 6.99 x 1072 0.82 0.82 0.80
Saccharopine 0.66 0.53 1.50x10° 410 10° 9.49 x 1072 7.22 x 1072 0.89 0.82 0.79
3-(4-hydroxyphenyl)lactate 0.66 0.58 1.56 x 10°  1.88 x 10° 237 x 1072 7.22 x 1072 0.82 0.82 0.81
Stearoyl-carnitine 0.66 0.60 1.65x 10°  4.06 x 10° 1.03 x 107! 7.69 x 1072 0.92 0.85 0.82
biliverdin 0.66 0.59 1.29x10°  2.88x10° 3.67 x 107! 7.69 x 1072 0.89 0.85 0.82
carnosine 0.66 0.57 848 x10* 823 x 10 3.44 x 107! 8.31 x 1072 0.87 0.91 0.85
pentadecanoate 0.66 0.64 240%x 108 1.97x 108 8.62 x 1071 8.44 x 1072 0.87 0.87 0.87
hexadecanedioate 0.66 0.55 454x10°  4.28 x10° 1.25x 107! 8.72 x 1072 0.89 0.90 0.87
10-hydroxystearate 0.66 0.60 1.16x10°  1.93x10° 8.25x 1073 9.27 x 1072 0.95 0.92 0.88
Sphinganine 0.66 0.54 1.67x 107 234 x 107 3.19%x 107! 9.28 x 1072 0.89 0.91 0.89
trigonelline 0.66 0.81 3.08x10°  6.92x10° 141x 107! 9.28 x 1072 0.92 0.92 0.88
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Week 18 TD Mean ASD Mean Week 0 vs. Week Week 0 ASD vs. TD

Metabolite Week 0 AUROC AUROC Week 0 Week 0 18 ASD p-Value Un-Adjusted p-Value Leave-1-Out Leave 2-Out  Leave 3-Out
Indole-lactate 0.66 0.64 474%x10°  1.80 x 10° 8.80 x 1073 9.46 x 1072 1.00 1.00 0.87
Dihomo-linoleate 0.65 0.58 111x 107 292 x107 7.38 x 1072 9.76 x 1072 1.00 1.00 1.00
Phyto-sphingosine 0.65 0.60 822x10°  1.25x10° 5.58 x 107! 9.77 x 1072 1.00 0.95 0.90
gamma-tocopherol/beta-tocopherol 0.65 0.51 5.43 x 107 4.05 % 107 1.03x 107! 9.86 x 1072 0.92 0.91 0.89
acesulfame 0.65 0.59 359 x10*  7.24x 10° 6.27 x 1071 9.86 x 1072 0.92 0.92 0.90
N-methyl-pipecolate 0.65 0.63 4.88x10°  9.71 x 10° 7.16 x 1071 9.86 x 1072 0.97 0.94 0.88
2-methylserine 0.65 0.66 9.22x10°  7.05x 10° 7.16 x 1071 9.86 x 1072 0.97 0.93 0.90
2-aminobutyrate 0.65 0.61 127 x 107 2.65x 107 4.02x 107! 1.02 x 1071 0.97 0.94 0.92
N-palmitoyl-sphinganine 0.65 0.64 1.99x 10°  4.43x10° 1.55 x 1072 1.02 x 1071 0.95 0.94 0.91
caffeate 0.65 0.60 423x10°  423x10° 5.19 x 107! 1.06 x 1071 0.97 0.95 0.94
piperine 0.65 0.59 241x107  1.59x 107 1.96 x 102 1.11 x 107 1.00 0.96 0.93
N-propionyl-methionine 0.65 0.65 1.55x10°  3.58 x 10° 8.87 x 1071 1.11x 1071 1.00 0.96 0.93
alpha-CEHC 0.65 0.50 1.02x10°  5.68 x 10° 6.53 x 1072 1.11 x 1071 0.97 0.96 0.93
5-aminovalerate 0.65 0.55 329%x107  1.16 x 108 4.57 x 107! 1.11 x 1071 1.00 1.00 0.94
2-aminophenol 0.65 0.56 790x10°  6.54x10° 4.02 x 107! 1.17 x 1071 1.00 1.00 0.93
O-sulfo-1-tyrosine 0.65 0.50 9.04x10* 324 x10° 1.26 x 1071 1.17 x 1071 0.97 0.95 0.93
N-acetyl-valine 0.64 0.69 1.99x10° 936 x 10° 9.50 x 107! 1.18 x 1071 1.00 0.96 0.94
norvaline 0.64 0.52 4.20 x 10° 1.65 x 107 2.05 x 107! 1.18 x 1071 1.00 0.96 0.94
tryptamine 0.64 0.93 340%x10°  1.63 x 100 1.19 x 1072 1.18 x 107! 1.00 0.96 0.94
myristate 0.64 0.73 3.65x10%  3.05x 108 3.04 x 107! 1.18 x 1071 1.00 1.00 0.94
Eicosenoate 0.64 0.59 555x107  1.30x 108 7.91 x 1072 1.19 x 1071 1.00 1.00 0.95
cholesterol 0.64 0.56 3.70x10°  1.35x 107 3.67 x 107! 1.20 x 1071 1.00 0.98 0.95
3-ureidopropionate 0.64 0.58 6.14x10°  3.26 x 10° 6.92 x 1071 1.24 x 1071 1.00 0.95 0.93
diglycerol 0.64 0.60 313x10°  1.50 x 10° 5.17 x 107! 1.25x 1071 1.00 0.97 0.95
N-acetylneuraminate 0.64 0.52 4.66x10°  9.65x 106 1.25 x 107! 1.25x 107! 1.00 0.96 0.94
Succinyl-carnitine 0.64 0.65 6.00x10°  3.56 x 10° 8.87 x 1071 1.29 x 1071 1.00 0.97 0.97

2’-deoxyinosine 0.64 0.76 488 x10°  7.84x 100 1.69 x 1071 1.30 x 1071 1.00 0.99 0.97
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Week 18

TD Mean

ASD Mean

Week 0 vs. Week

Week 0 ASD vs. TD

Metabolite Week 0 AUROC AUROC Week 0 Week 0 18 ASD p-Value Un-Adjusted p-Value Leave-1-Out Leave 2-Out  Leave 3-Out
3-aminoisobutyrate 0.64 0.54 2.82x10°  3.10 x 10° 3411071 1.32x 1071 1.00 0.99 0.96
p-urobilin 0.64 0.54 774x10°  2.68 x10° 6.42 x 1072 1.36 x 1071 1.00 0.99 0.97
1-methylnicotinamide 0.64 0.68 1.02x10°  2.95x10° 5.58 x 107! 1.36 x 1071 1.00 0.98 0.97
N-acetyl-alanine 0.64 0.58 3.06 x 10°  3.98 x 10° 3.84x 107! 1.38 x 1071 1.00 1.00 0.98
aspartate 0.64 0.54 1.90x 108 2.44 x 108 1.03 x 107! 1.40 x 1071 1.00 0.98 0.96
trans-urocanate 0.64 0.50 471x107  3.96x 107 1.17 x 107! 1.40 x 1071 1.00 0.98 0.97
3-carboxyadipate 0.64 0.66 899 x 106 1.47 x 107 5.58 x 107! 1.40 x 1071 1.00 0.98 0.96
1,7-dimethylurate 0.64 0.60 891x10°  2.31x10° 2.87 x 1072 1.40 x 1071 1.00 0.98 0.97
2-piperidinone 0.64 0.64 217 x 107 3.82x107 9.37 x 107! 1.40 x 1071 1.00 1.00 0.97
pheophorbide 0.64 0.61 412x10° 478 x10° 6.94 x 1071 1.41 x 1071 1.00 1.00 1.00
acisoga 0.63 0.63 352%x10°  6.39 x 10° 6.92 x 1071 1.41 x 1071 1.00 1.00 1.00
sulfate 0.63 0.55 6.68 x 10° 1.65 x 107 1.10 x 1071 1.41x 1071 1.00 1.00 1.00
1-(1-enyl-palmitoyl)-GPE 0.63 0.79 853x10°  7.57x10° 5.11 x 1072 1.41 x 1071 0.97 0.96 0.95
histidine 0.63 0.55 9.65x 107 1.10 x 108 2.00 x 107! 1.43 x 1071 1.00 1.00 0.97
Maltotetraose 0.63 0.53 510x10°  6.33x10° 2.66 x 107! 1.48 x 1071 1.00 1.00 0.98
maltose 0.63 0.63 798x10°  5.18x10° 9.62 x 107! 1.48 x 1071 1.00 1.00 0.98
2-methylcitrate/homocitrate 0.63 0.66 6.24x10°  9.91x10° 9.87 x 107! 1.48 x 1071 1.00 0.98 0.97
trimethylamine 0.63 0.55 398x10°  1.53x10° 3.35x 107! 1.48 x 1071 1.00 0.99 0.97
linoleoyl-linolenoyl-glycerol 0.63 0.53 8.05x10° 250 x 106 1.33 x 107! 1.48 x 107! 1.00 0.99 0.97
thymidine 0.63 0.66 510x10°  7.32x 10° 9.87 x 107! 1.52 x 1071 1.00 0.98 0.98
Pyri-doxate 0.63 0.52 140x 107  1.76 x 107 1.69 x 1071 1.52x 1071 1.00 0.98 0.98
sarcosine 0.63 0.66 259x10° 659 x 10° 6.12x 1071 1.56 x 1071 0.97 0.95 0.94
2-hydroxy-3-methylvalerate 0.63 0.54 127x10° 174 x 10° 5.06 x 107! 1.56 x 1071 1.00 0.99 0.98
gamma-glutamyl-phenylalanine 0.63 0.61 227x10°  294x10° 9.50 x 107! 1.56 x 1071 1.00 0.99 0.98
Linolenate 0.63 0.59 1.98x 108 9.80 x 107 9.87 x 107! 1.56 x 1071 1.00 0.98 0.97
3-hydroxy-3-methylglutarate 0.63 0.59 140x 107 1.99 x 107 517 x 107! 1.56 x 1071 1.00 0.98 0.97
2’-deoxyuridine 0.63 0.69 2.81x10° 379 x 10° 6.46 x 1071 1.56 x 1071 1.00 1.00 0.98
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Quino-linate 0.63 0.52 489%x10*  1.15x10° 9.77 x 1072 1.57 x 1071 1.00 1.00 0.98
T-urobilinogen 0.63 0.60 177 x10°  1.02 x 107 391 %1072 1.65 x 1071 1.00 1.00 0.98
N-acetyl-cadaverine 0.63 0.61 495x 107 1.14x 108 7.64 x 1071 1.65 x 1071 1.00 1.00 0.99
7-ketolithocholate 0.63 0.51 453%x10°  1.32x10° 1.92x 107! 1.69 x 1071 1.00 1.00 0.98
Carboxy-ibuprofen 0.63 0.53 147x10°  1.75x 10 1.48 x 1071 1.74 x 1071 1.00 0.99 0.98
Phenyl-lactate 0.62 0.57 1.83x10°  1.83x10° 413 x 1072 1.74 x 1071 1.00 0.99 0.98
kynurenate 0.62 0.59 130 x10°  9.08 x 10° 9.05x 1072 1.74 x 1071 1.00 0.99 0.98
citrate 0.62 0.58 129x10°  2.64 x 10° 591 x 107! 1.74 x 1071 1.00 1.00 0.99
5alpha-androstan-3beta,17beta-diol 0.62 0.53 1.85x10°  7.81x10* 1.06 x 1071 1.74 x 1071 1.00 1.00 0.99
Octadecane-dioate 0.62 0.66 110x 10° 850 x 10° 2.67 x 1072 1.74 x 1071 1.00 0.99 0.98
Oleoyl-carnitine 0.62 0.54 489x10°  4.10x 10° 1.35 x 107! 1.74 x 1071 1.00 0.9 0.98
4-androsten-3alpha,17alpha-diol 0.62 0.50 230x10°  7.59 x 10* 2.02 x 107! 1.83x 1071 1.00 1.00 0.99
8-hydroxyguanine 0.62 0.55 1.15x10°  1.50 x 10° 1.58 x 107! 1.83 x 1071 1.00 1.00 0.98
skatol 0.62 0.50 5.08x10°  3.96 x 10° 1.71 x 1071 1.83 x 1071 1.00 1.00 0.99
Ethyl-malonate 0.62 0.66 550x10°  6.23 x 10° 420 x 107! 1.83 x 1071 1.00 1.00 0.99
lactate 0.62 0.52 239x10°  3.29 x 10° 1.41x 107! 1.83 x 1071 1.00 1.00 0.99
Né6-carboxymethyllysine 0.62 0.60 290x10°  3.69 x 10° 5.37 x 107! 1.86 x 1071 1.00 1.00 1.00
Nervonate 0.62 0.53 6.63 x 10° 1.61 x 107 3.67 x 107! 1.86 x 1071 1.00 1.00 1.00
inosine 0.62 0.57 345x10°  6.39 x 10° 7.16 x 1071 1.86 x 1071 1.00 1.00 0.99
Docosapentaenoate 0.61 0.55 3.98x10°  1.35x 107 7.90 x 1072 1.89 x 1071 1.00 1.00 0.99
Acetyl-carnitine 0.61 0.54 750x10°  8.06 x 10° 477 x 107! 1.89 x 1071 1.00 1.00 0.98
N-methyl-GABA 0.61 0.59 535x10°  6.36 x 100 9.35x 107! 1.93 x 1071 1.00 1.00 0.99
2-aminoadipate 0.61 0.66 111x10° 127 x 10° 7.40 x 1071 1.95 x 1071 1.00 1.00 0.99
N-methyl-phenylalanine 0.61 0.57 1.65x10°  1.25x 10° 7.38 x 1072 1.95x 1071 1.00 1.00 0.99
cystine 0.61 0.59 829x10*  1.14x10° 9.49 x 1073 1.98 x 1071 1.00 1.00 1.00
3-hydroxystearate 0.61 0.54 6.21x10°  4.61x 10° 7.88 x 1071 2.00 x 1071 1.00 1.00 0.99
gluconate 0.61 0.51 1.08x10°  3.21x10° 6.90 x 1071 2.02x 1071 1.00 1.00 1.00
diacylglycerol 0.61 0.51 693x10°  255x10° 3.02x 107! 2.03x 107! 1.00 1.00 0.99
dipicolinate 0.61 0.51 499x10°  4.94x10° 2.46 x 107! 2.03 x 107! 1.00 1.00 0.99
quinate 0.61 0.61 9.58 x 106 2.75x 107 9.37 x 107! 2.03x 1071 1.00 1.00 0.99
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O-acetyl-homoserine 0.61 0.52 456x10°  3.96 x 10° 420%x 107! 2.14x 107! 1.00 1.00 0.99
glutamate, 0.61 0.51 242x10°  2.03x10° 2.75 x 107! 2.14 x 107 1.00 1.00 0.99
6-hydroxynicotinate 0.61 0.58 1.82x10°  8.38x10° 3.67 x 107! 218 x 1071 1.00 1.00 1.00
pyridoxine 0.61 0.61 157 x10° 291 x10° 547 x 1072 218 x 107! 1.00 1.00 1.00
2,4,6-trihydroxybenzoate 0.61 0.55 358 x10*  5.36 x 10° 6.48 x 1071 2.20 x 107! 1.00 1.00 1.00
theophylline 0.61 0.57 146 x10°  8.09 x 10* 6.37 x 1071 221 x 1071 1.00 1.00 1.00
1-methylimidazoleacetate 0.61 0.53 251x10° 247 x 10° 1.17 x 107! 221 107! 1.00 1.00 1.00
1-methylhistamine 0.61 0.55 1.63x10°  5.62x10° 4.69 x 107! 2.25x 107! 1.00 1.00 0.99
phenylacetate 0.61 0.58 1.69x 107 2.48 x 107 7.16 x 1071 225 x 1071 1.00 1.00 0.99
4-hydroxyphenylpyruvate 0.61 0.57 526x10° 538 x10° 6.69 x 1071 2.25% 107! 1.00 1.00 1.00
cysteine 0.61 0.61 3.35x10°  4.04 x 10° 8.62 x 1071 2.25x 107! 1.00 1.00 1.00
N-acetylcysteine 0.61 0.51 3.09x10°  3.95x10° 223 x 107! 225 x 1071 1.00 1.00 0.99
13-methylmyristate 0.61 0.72 3.09x10°  3.95x10° 2.89 x 107! 227 x 1071 1.00 1.00 1.00
AMP 0.61 0.52 356 x 108 3.17 x 108 2.44 x 107! 2.29 x 107! 1.00 1.00 1.00
2’-deoxyguanosine 0.61 0.75 1.20x10°  5.63 x 10* 1.79 x 1071 2.36 x 1071 1.00 1.00 1.00
5-methyluridine 0.61 0.64 232x10°  3.59 x 10° 8.62 x 1071 2.36 x 1071 1.00 1.00 1.00
1,3-dimethylurate 0.61 0.58 767x10°  9.16 x 10° 520 x 1072 2.36 x 107! 1.00 1.00 1.00
adrenate 0.60 0.64 354x10* 294 x10* 9.61 x 107! 245 x 1071 1.00 1.00 0.99
tryptophan 0.60 0.51 144 %107 1.86 x 107 3.67 x 107! 247 x 1071 1.00 1.00 1.00
dimethylarginine 0.60 0.52 218x10°  6.82x10° 4.77 x 107! 2.47 x 1071 1.00 1.00 1.00
4-acetamidobutanoate 0.60 0.50 7.64x107  8.86x 107 334 x 107! 247 x 1071 1.00 1.00 1.00
gamma-glutamyl-glutamine 0.60 0.52 3.61x10°  550x10° 351 x 107! 248 x 1071 1.00 1.00 1.00
caproate 0.60 0.72 131x10° 172 x10° 1.83 x 1073 2.48 x 107! 1.00 1.00 1.00
4-methylcatechol 0.60 0.54 141x10° 144 x10° 5.61 x 107! 248 x 1071 1.00 1.00 1.00
nicotiana-amine 0.60 0.55 344x107  3.48x107 9.67 x 1072 2.54 x 107! 1.00 1.00 0.99
1,3-propanediol 0.60 0.56 3.19x10*  8.27x 10* 573 x 107! 2.58 x 107! 1.00 1.00 1.00
N-acetylserine 0.60 0.59 1.87x10°  1.07 x 10° 6.42 x 1072 2.59 x 1071 1.00 1.00 1.00
erythronate 0.60 0.64 927 x10* 429 x10° 438 x 107! 2,60 x 1071 1.00 1.00 1.00
1-palmitoyl-GPE 0.60 0.64 2,07 x10°  3.41x10° 6.92 x 1071 2.60 x 1071 1.00 1.00 1.00
4-androsten-3beta,17beta-diol 0.60 0.61 3.81x10° 596 x10° 6.02 x 1071 2,60 x 1071 1.00 1.00 1.00
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