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Caloric restriction mimetics (CRMs), compounds that mimic the biochemical effects of nutrient deprivation, administered via
systemic route promote antitumor effects through the induction of autophagy and the modulation of the immune
microenvironment; however, collateral effects due to metabolic changes and the possible weight loss might potentially limit their
administration at long term. Here, we investigated in mice local administration of CRMs via aerosol to reduce metastasis
implantation in the lung, whose physiologic immunosuppressive status favors tumor growth. Hydroxycitrate, spermidine, and
alpha-lipoic acid, CRMs that target different metabolic enzymes, administered by aerosol, strongly reduced implantation of
intravenously injected B16 melanoma cells without overt signs of toxicity, such as weight loss and changes in lung structure.
Cytofluorimetric analysis of lung immune infiltrates revealed a significant increase of alveolar macrophages and CD103+
dendritic cells in mice treated with CRMs that paralleled an increased recruitment and activation of both CD3 T lymphocytes
and NK cells. These effects were associated with the upregulation of genes related to M1 phenotype, as IL-12 and STAT-1, and
to the decrease of M2 genes, as IL-10 and STAT-6, in adherent fraction of lung immune infiltrate, as revealed by real-time PCR
analysis. Thus, in this proof-of-principle study, we highlight the antitumor effect of CRM aerosol delivery as a new and
noninvasive therapeutic approach to locally modulate immunosurveillance at the tumor site in the lung.

1. Introduction

The study of cancer metabolism is now receiving substantial
attention for its implications in the biology of cancer and the
possibility to find new therapeutic interventions. Recently,
caloric restriction mimetics (CRMs), compounds mimicking
the biochemical effects of nutrient deprivation, have revealed
antitumor properties [1]. There are several examples of
natural molecules able to target different metabolic enzymes.
For instance, hydroxycitrate and alpha-lipoic acid induce
cytosolic AcCoA depletion, spermidine or curcumin inhibits
acetyltransferase activity, and resveratrol promotes histone
deacetylation [2, 3]. Targeting cancer metabolism using
different combinations of these agents, administered
systemically or by drinking water, has been demonstrated
to decrease tumor cell growth in different mouse models

[4–6]. Moreover, treatment with CRMs, as hydroxycitrate
and spermidine, has been reported to improve chemother-
apy efficacy [7].

The biological activity of these compounds mostly relies
on their ability to induce autophagy, shaping the tumor
microenvironment (TME), and promote anticancer immu-
nosurveillance [7]. Indeed, autophagy induces the release of
adenosine triphosphate (ATP) in the extracellular space,
acting as a danger signal, and attracts antigen-presenting cells
(APCs) in the tumor bed, resulting in the activation of an
adaptive immune response against tumors. On the other
hand, autophagy has been known to prevent the upregulation
of CD39 on tumor cells, an ecto-ATPase that converts extra-
cellular immunostimulatory ATP into immunosuppressive
adenosine diphosphate (ADP) and that recruits regulatory
T cells (Tregs) in the TME [8], and we also already

Hindawi
Journal of Immunology Research
Volume 2019, Article ID 2015892, 8 pages
https://doi.org/10.1155/2019/2015892

https://orcid.org/0000-0003-3050-8676
https://orcid.org/0000-0001-9877-2903
https://orcid.org/0000-0003-0350-5402
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2015892


highlighted that tumor cells are able to finely tune the
ATP/ADP levels [9]. Thus, pharmacologically induced
autophagy may represent a novel strategy to reduce immu-
nosuppression and, at the same time, enhance the immune
response against cancer. However, although some
autophagy-modulating drugs have been already tested in
early phase 1 clinical trial [10], major concerns remain
because of their possible toxic side effects when systemi-
cally administered.

Since lungs are constantly exposed to inhaled antigens,
these organs represent a particularly immunosuppressive
milieu to limit excessive immune response. It has been spec-
ulated that cancer cells can harness this unique environment
for their implantation and growth, explaining, at least in part,
the high incidence of lung metastases arising from several
types of tumors [11].

Aerosolization is an efficient and noninvasive method
of delivering molecules to the lung in order to improve
local tissue concentration, limiting potential adverse effects
induced by a systemic administration, and we previously
demonstrated its usefulness to modulate lung microenvi-
ronment [12, 13].

In the present study, we evaluated local administration
by aerosol delivery of hydroxycitrate, spermidine, and
alpha-lipoic acid to reduce tumor implantation in the lung
of mice intravenously injected with B16 melanoma cells, as
a new therapeutic approach to locally modulate antitumor
immune response.

2. Material and Methods

2.1. Cell Lines and Reagents. B16 mouse melanoma cells
(American Type Culture Collection (ATCC), Rockville,
MD, USA) and N202.1A cells, derived from a spontaneous
mammary carcinoma in an FVB-neuN transgenic mouse
[14], were routinely maintained at 37°C in a 5% CO2 atmo-
sphere in RPMI 1640 medium and Dulbecco’s modified
Eagle’s medium (DMEM) (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), respectively, supplemented with 10%
fetal bovine serum (Thermo Fisher Scientific) and 2mM glu-
tamine (Sigma-Aldrich, St. Louis, MO, USA).

Cell lines were authenticated by the Fragment Analysis
Facility at Fondazione IRCCS Istituto Nazionale dei Tumori
(Milan, Italy) using the GenePrint 10 System (Promega,
Madison, WI, USA), and cultures were regularly tested for
Mycoplasma by using the MycoAlert Plus Kit (Lonza Group
Ltd., Basel, Switzerland). Hydroxycitrate, spermidine, and
alpha-lipoic acid were purchased from Sigma-Aldrich. 51Cr
(1mCi) was purchased from PerkinElmer (Waltham, MA,
USA, NEZ030S001MC).

2.2. Mice and Experimental Protocols. Female C57BL/6 and
FVB mice, aged 6-8 weeks (Charles River Laboratories,
Calco, Italy), were maintained in laminar flow rooms at con-
stant temperature and humidity, with food and water given
ad libitum. Mice were treated with alpha-lipoic acid
(10mg/kg), spermidine (5mg/kg) (5 days/week at 12h inter-
vals), and hydroxycitrate (14mg) (5 days/week) dissolved in
5ml of saline starting 1 day after the intravenous (i.v.) injec-

tion of 3 × 105 N202.1A carcinoma cells or 5 × 105 B16 mel-
anoma cells, respectively, and continuing throughout the
experiment. Aerosolization was performed using a tower
inhalation system (IES 306 Inhalation Towers, EMMS, Hav-
ant, UK). The suspensions were placed in the nebulizer
(Aeroneb Lab Micropump Nebulizer, EMMS) and used to
treat groups of 6 mice by exposure to aerosol for 25min. In
all experiments, mice were weighed and inspected for any
sign of sufferance twice weekly and euthanized at day 21 after
tumor injection to count macroscopic lung metastases.

The experimental protocols were carried out in accor-
dance with the Italian law D.Lgs. 26/2014, and animal
experimentation was performed following the guidelines
drawn up by Fondazione IRCCS Istituto Nazionale dei
Tumori Institutional Animal Welfare Body according to
Workman et al. [15].

2.3. Histological, Immunofluorescence, and Immunohistochemical
Examination of Lungs. To exclude any effects of aerosolized
CRM molecules on the architecture and structure of the lung
parenchyma, lung samples were analyzed as described [16].

To analyze autophagy induced by CRM aerosolization,
immunohistochemical analyses were performed to detect
LC3B molecule. IHC was carried out on formalin-fixed
paraffin-embedded lung sections using a protocol previously
described with slightly modifications [17]. Briefly, sections
were deparaffinized and underwent heat-induced epitope
retrieval at pH6 for 10min at 95°C in citrate buffer. Slides
were rinsed and treated with PBS containing BSA 1% for
30min to reduce nonspecific background staining and then
incubated ON at 4°C with anti-LC3B 1 : 450 (Ab 48394
Abcam). Staining was revealed using the Alkaline Phospha-
tase kit (LEICA Biosystems) according to the manufacturer’s
protocol. Images were acquired as previously described [18].

2.4. Isolation of Lung Suspensions. Isolation of lung immune
cells was performed as described [13]. Briefly, lungs were
digested in DMEM medium containing collagenase
(300U/ml) and hyaluronidase (100U/ml) (Stemcell Tech-
nologies, 07912) for 1 h at 37°C. Cell suspensions were then
filtered through 70 μm cell strainers and, after lysis of red
blood cells, were directly stained for flow cytometry or plated
to separate adherent and nonadherent cell fractions as
described [19].

2.5. Flow Cytometry. To analyze immune lung infiltration,
lung suspensions were stained as previously described [20]
using the following directly conjugated antibodies: CD3e
FITC (Miltenyi, Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany, clone 145-2C11); CD11b PE (BD Biosciences,
San Jose, CA USA, clone M1/70); CD11c PECY7 (Thermo
Fisher Scientific-eBiosciences, clone N418); CD45
APCeFluor780 (Thermo Fisher Scientific-eBioscience, clone
30-F11); CD49b PE (Miltenyi, clone DX5); CD69 APC (Mil-
tenyi, clone H1.2F3); CD103 APC (Miltenyi, clone REA789);
B220 PERCPVio700 (Miltenyi, clone RA3-6B2); and
mPDCA-1 PE (Miltenyi, clone JF05-1C2.4.1). A purified rat
anti-mouse CD16/CD32 MAb (Thermo Fisher Scientific-
eBioscience, clone 93) was used to block nonspecific binding
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to mouse Fc receptors. The cells were analyzed using a FACS-
Canto flow cytometer (BD Biosciences) and FlowJo software
(TreeStar). All analyses were performed using gating on
CD45+ live cells after doublet exclusion.

2.6. Quantitative PCR Analysis. RNAwas isolated using QIA-
zol (QIAGEN) from adherent cells (containing macropha-
ge/myeloid-derived cells) according to the manufacturer’s
instructions. Reverse transcription was performed using a
High-Capacity RNA-to-cDNA Kit (Applied Biosystems-
Thermo Fisher Scientific). Real-time PCR was performed
using TaqMan® Fast Universal PCR Master Mix (Applied
Biosystems-Thermo Fisher Scientific) and SDS 2.4 on a
7900HT Fast Real-Time PCR System (Applied Biosystems-
Thermo Fisher Scientific), as we previously described [21].
The following TaqMan® gene expression assays (Applied
Biosystems-Thermo Fisher Scientific) were used in real-
time PCR analyses: STAT1 (assay ID: Mm01257286_m1),
STAT6 (assay ID: Mm01160477_m1), Il10 (assay ID:
Mm01288386_m1), Il12 (assay ID: Mm00434169_m1), IL8
(assay ID: Mm04207460_m1), IFNγ (assay ID:
Mm01168134_m1), and TNF-α (assay ID: Mm00443258_
m1). The expression of each gene was normalized to β2m
(assay ID: Mm00437762_m1). PCR data were analyzed using
the 2-ΔCt method.

2.7. In Vitro Cytotoxicity Assays. The ability of effector
immune cells from the lung immune infiltrates of mice to
promote antitumor activity was evaluated by measuring
cytotoxic activity of nonadherent cells obtained from the
lung suspensions on 51Cr-B16 target cells as described [19].
The radioactivity of the supernatant (80 μl) was measured
as described [22].

2.8. Statistical Analysis. Differences among groups were
compared using a two-tailed unpaired Student’s t-test and
considered significant at p ≤ 0 05. All analyses were per-
formed using GraphPad Prism version 5.0 for Windows
(GraphPad Software).

3. Results and Discussion

CRMs, whose antitumor effect has been demonstrated in dif-
ferent preclinical models [23], combine the advantages of
caloric restriction (CR) without significantly reducing food
intake. As observed during CR, CRMs lead to several physio-
logical changes including reduction in glucose, insulin, and
triglyceride blood concentration paralleled by an increase of
blood ketone body levels [24]. Therefore, CRM systemic
administration can potentially determine several adverse
effects on healthy tissues. The possible weight loss observed
after long-term CRM treatment might also represent a seri-
ous problem, especially for cancer patients at risk of cachexia
[10]. Thus, we hypothesized that the local delivery of these
drugs directly to the airways by aerosol administration could
be a promising strategy to limit their distribution to the sys-
temic circulation [10].

To evaluate whether aerosolized CRMs are able to reach
the alveolar space and to control metastasis implantation,
female C57BL/6 mice, intravenously (i.v.) injected with

murine B16 melanoma cells, were treated with hydroxyci-
trate, spermidine, and alpha-lipoic acid. B16 cell is a low
immunogenic tumor that establishes a highly immunosup-
pressive microenvironment recruiting tumor-infiltrating
macrophages (TAMs) and MDSC [25, 26], when implanted
in lungs.

The combination of hydroxycitrate, spermidine, and
alpha-lipoic acid was chosen to concomitantly target differ-
ent metabolic enzymes, based on the complexity of the
aerobic glycolytic pathway and on previous published results
that demonstrated the superior efficacy of combinations of
these compounds than single agents alone in preclinical can-
cer models [6].

Treatments with aerosolized CRMs were well-tolerated,
as indicated by the absence of signs of toxicity, such as
hunching, ruffled fur, and difficulty breathing. Moreover,
no weight loss was observed in CRM-treated mice
(Figure 1(a)). At the end of the experiment, the number
of macroscopic melanotic metastases was significantly
reduced in CRM-treated mice, as compared to control
group (p ≤ 0 0001) (Figure 1(b)). Histological analysis of
lung samples revealed no alterations in lung parenchyma
of mice treated with combined CRMs (Figure 1(c)). LC3-
positive staining, the widely used marker for autophago-
some [27], was strongly detected by IHC in CRM-treated
lungs (Figure 1(d)), confirming that aerosolized CRMs
induced autophagy in tumor nodules. The lack of toxicity
and the ability to affect lung metastatization indicate that
CRM aerosol delivery may represent a novel weapon in
cancer treatment.

Inducing autophagy, CRMs have been demonstrated to
influence tumor growth by targeting cancer cell metabolism.
This activity has been demonstrated to play dual effects as it
not only prevents tumor initiation but also promotes tumor
progression by assisting in hypoxia-induced switch to anaer-
obic glycolysis [10]. However, autophagy has been reported
to also affect tumor growth by the modulation of the immune
microenvironment through the release of immunostimula-
tory danger signals [28]. Therefore, we evaluated the lung
immune contexture after CRM aerosol administration.

Cytofluorimetric analysis of immune infiltrate obtained
after tumor-bearing lung enzymatic digestion showed a
significant increase of alveolar macrophages (AMs) (FL-1
+CD11c+ cells) and CD103+ dendritic cells (DCs) (CD11b-
CD103+CD11c+ cells) in mice treated with CRM aerosol as
compared to control group (Figure 2(a)). No difference was
observed in conventional CD11b+CD11c+ DCs (data not
shown). CD103+ DCs represent the major DC population
in the lung involved in migration to the lymph nodes for
tumor-derived antigen presentation [29]; therefore, our
results suggest that CRM treatment may promote a strong
adaptive immune response through the recruitment of APCs
that subsequently present tumor antigens to T lymphocytes.
Since the low immunogenicity of B16 melanoma model, to
define the subpopulations of APC recruited by CRM aerosol-
ization, FVB female mice were i.v. injected with N202.1A
cells, an immunogenic murine mammary tumor cell line
expressing the rat neu oncogene [14], and treated as
described above. A significant increase of CD103+ DCs and
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Figure 1: Effects of CRM aerosolization on body weight, on the growth of experimental B16 lung metastases, and on lung histology. Body
weights (a) and number of macroscopic lung metastatic foci (b) of mice (9-10 mice/group) treated starting 1 day after i.v. injection of B16
melanoma cells with aerosolized saline or combined CRMs for 3 weeks. Representative images showing histopathological evaluation of
hematoxylin- and eosin-stained lung tissue sections (c) and IHC analysis of LC3B staining in tumor nodules (d) (magnification: ×200) of
saline and CRM-treated mice. ∗∗∗p ≤ 0 001 by Student’s t-test.
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Figure 2: Modification of lung immune contexture induced by CRM aerosolization. Bars (mean ± SEM) and representative dot plots of the
percentage of AMs (identified as CD45+/FL-1+CD11c+ cells) and of CD103+ DCs (identified as CD45+/CD11b-/CD103+CD11c+ cells)
evaluated in lung suspensions of 4 mice/group injected with B16 melanoma cells and aerosolized with saline or combined CRMs (a).
Mean relative expression ± SEM of IL10, IL12, STAT1, STAT6, TNF-α, IFNγ, and IL-8 mRNA levels, evaluated by real-time PCR in
adherent cell fraction of digested lungs (4-8 mice/group) (b). Results are presented as 2-ΔCt. ∗p ≤ 0 05 by Student’s t-test.
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plasmacytoid DCs (pDCs) (CD11c+B220+mPDCA-1+ cells)
was observed in CRMs versus saline-treated mice, while no
difference was detected in conventional DC. Moreover, an
increased percentage of alveolar macrophages (AMs) was
also observed in this model (Supplementary Figure (available
here)). The increase of alveolar macrophages might be
related both to an enhanced recruitment induced by autoph-
agic tumor cell-released danger signals and to a reduced apo-
ptosis of these immune cells. Indeed, it has been recently

demonstrated that molecules that enhance autophagy make
alveolar macrophage more resistant to apoptosis through
an attenuation of endoplasmic reticulum and oxidative
stress [30].

We then evaluated whether the reduced tumor growth
and the increase of APCs were associated with changes in
the expression of M1/M2 genes in the lung microenviron-
ment. Suspensions obtained from lung enzymatic digestion
were seeded in culture plates to separate adherent cells, which
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Figure 3: Effects of CRM aerosolization on the recruitment and activation of lung antitumor effector cells. Bars (mean ± SEM) and
representative dot plots of the percentage of NK cells (identified as CD45+/CD3-/CD49b+ cells) and T cells (identified as CD45+/CD3+
cells) (a) and of CD69 expressing NK and T cells (b) evaluated in 4 mice/group injected with B16 melanoma cells and aerosolized with
saline or combined CRMs. Bars (mean ± SEM) represent the percentage of the specific lysis of B16 target cells cultured for 4 h with
nonadherent cells obtained from the lung suspensions of 4 mice/group (c). ∗p ≤ 0 05, ∗∗p ≤ 0 01 by Student’s t-test.
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contain macrophages and myeloid cells, from the floating
counterpart, mainly constituted by effector cells. Real-time
PCR analysis performed onmRNA extracted from the adher-
ent cell fraction revealed a significant upregulation of IL-12,
TNF-α, and STAT-1 mRNA level, a transcription factor asso-
ciated with M1 phenotype, in CRM-treated mice, whereas
M2-associated genes, such as IL-10, IL-8, and STAT-6, sig-
nificantly declined (Figure 2(b)). No significant change was
detected in IFN-γ expression, reported to be mainly pro-
duced by T cells after autophagy induction [31]. These find-
ings suggest that aerosolized CRMs are able to shape the
immune microenvironment promoting proinflammatory
cytokine secretion by macrophage/myeloid cells and reduc-
ing the immunosuppression.

The reduction of M2 polarization observed in lung
immune infiltrate is in line with the recently published results
that demonstrated how intermittent fasting promotes the
reduction of TAM polarization and immunosuppressive
activity through the inactivation of JAK1/STAT3 pathway
in murine models of colon cancer [32].

We also analyzed the recruitment and the activation
status of immune cell population that can directly kill
the tumor, NK, and T cells. Flow cytometry analysis of
lung immune infiltrate revealed a significant expansion of
both NK cells and T lymphocytes (Figure 3(a)) and a sig-
nificant increase of the expression of CD69 activation
marker on the surface membrane of both populations in
CRM-treated mice (Figure 3(b)). Moreover, in vitro analy-
sis of cytotoxic activity of effector cells contained in non-
adherent fractions from CRM-aerosolized mice against
B16 melanoma cells revealed a significant increase in the
percentage of 51Cr-labelled B16 lysis, as compared to con-
trol group (Figure 3(b)). Thus, the increase number of
APCs and the polarization of the lung microenvironment
toward a M1 phenotype promoted the expansion and acti-
vation of both T lymphocytes and NK cells. Accordingly,
autophagy, besides promoting an adaptive immune
response, has been reported to support the maturation of
innate effectors, as NK cells [33] both by direct effect on
these cells and by the induction of the expression of NK
cells activate receptor ligands on cancer cells [34].

In this proof-of-concept study, we investigated the pos-
sibility to administer CRMs at the tumor site in the lung
of female mice by aerosol, revealing that aerosolized CRMs
can reach the bronchoalveolar space and exert antitumor
activity. A possible limitation of present study is the use
of only female mice, because it is known that constitutive
autophagy can be different between male and female due
to the biological effect of sex hormones [35, 36], reported
to exert extremely different effects, even opposite, in the
context of autophagy [36]. However, forcing the cells
present in the tumor microenvironment to undergo
autophagy by using CRMs, it is possible that we bypassed
and flattened the biological effect exerted by sex hormones
on autophagy.

In conclusion, this strategy may represent a noninvasive
therapeutic approach to locally activate adaptive and innate
immunosurveillance, while reducing the toxic effects related
to CRM systemic administration.
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