
Contents lists available at ScienceDirect

Bioactive Materials

journal homepage: http://www.keaipublishing.com/biomat

Recent advances in periodontal regeneration: A biomaterial perspective

Yongxi Lianga, Xianghong Luanb, Xiaohua Liua,∗

a Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
bDepartment of Periodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA

A B S T R A C T

Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If
not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss.

Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the
regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel
matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the
restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal
regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for
periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control
of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide
inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.

1. Introduction

Periodontium are tooth-supporting tissues that are composed of
gingiva, cementum, periodontal ligament (PDL) and alveolar bone.
Periodontitis is an inflammatory disease that leads to degradation of
periodontal tissues, causing tooth movement and eventually tooth loss
[1]. Currently, clinical treatments for periodontitis focus on plaque
removal and local inflammation control, such as scaling and root
planing and surgical treatments [2–5]. Those therapies attempt to
minimize symptoms and prevent disease progression, but cannot re-
store the attachment of periodontal tissues to teeth and the original
periodontal tissues. Therefore, the functions of teeth and dentition re-
main impaired after the treatments. Some regenerative approaches,
such as guided tissue regeneration (GTR) and bone grafts, were devel-
oped to achieve periodontal tissue formation. However, clinical out-
comes of those approaches are variable and unpredictable [6–9].
Therefore, it is imperative to develop alternative regenerative strategies
to restore the structures and functions of periodontal tissues for peri-
odontitis patients.

During tooth development, niche-resident dental follicle cells dif-
ferentiate into cementoblasts, fibroblasts, and osteoblasts that form
cementum, PDL, and alveolar bone, respectively [10]. The niche (mi-
croenvironment) that induces the formation of tooth supporting tissues,
however, is not retained after tooth development, leading to the

difficulty of restoring damaged/lost periodontium after maturity. As a
bioengineering approach, tissue engineering is capable of recapitulating
the microenvironment in certain aspects and regenerating functional
tissues [11]. When tissue-engineering strategy is adopted for period-
ontal regeneration, it is pivotal to consider two important elements:
scaffold (biomaterials and scaffolding design) and controlled drug de-
livery (bioactive molecules and methods for controlled delivery)
(Fig. 1). Several review articles presented excellent summaries of per-
iodontal regeneration a decade ago [8,12–16]. However, their work
mainly focused on stem cells, biological evaluation, and the char-
acteristics of biomaterials or bioactive molecules, but did not pay par-
ticular attention to scaffolding design and drug delivery. More im-
portantly, periodontal regeneration is a rapidly expanding research
field. A number of new biomaterials, approaches, and technologies have
been developed for regenerative periodontal treatment over the past ten
years. Therefore, there is a need to summarize recent progresses on
periodontal regeneration from a biomaterial perspective.

In this paper, we first overview periodontal tissue regeneration
strategies, including GTR and tissue engineering. Next, we discuss the
biomaterials and drug delivery systems that have been developed for
periodontal regeneration. We highlight the development of advanced
bio-inspired scaffolding biomaterials and temporospatial control of
multi-drug delivery. Furthermore, we summarize the applications of the
biomaterials and drug delivery systems for the regeneration of
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periodontal tissues that include PDL, cementum, and alveolar bone.
Special attention is given to the regeneration of PDL-cementum-al-
veolar bone complex. Finally, our perspectives on the use of bio-in-
spired materials and drug delivery systems to reconstruct the hier-
archical and functional periodontium are provided as signposts for the
future advancement of this field.

2. Biomaterials and scaffolding design for periodontal
regeneration

2.1. Strategies for periodontal regeneration

There are two strategies for periodontal regeneration: GTR and
tissue engineering approaches. GTR has been widely used for period-
ontium regeneration in clinic for decades. It is a regenerative surgical
technique that involves the procedure of raising mucogingival flap
around affected teeth, scaling and planing root surfaces and placing
barrier membranes temporally under gingiva [17]. The biological basis
of the GTR technique is to block the apical growth of epithelium to the
space over the denuded root surface by using barrier membrane,
therefore facilitating PDL cells and osteoblast to form PDL tissues and
alveolar bone [18]. Numerous clinical research have confirmed the
benefits of GTR treatments, including greater clinical attainment level
(CAL) gain, probing pocket depth (PPD) reduction and bone regenera-
tion compared to open flap debridement (OFD) treatment [7,19–21].

Although GTR has positive treatment outcomes, there are limita-
tions of GTR treatment for periodontal regeneration. First, the re-
generative benefits of the GTR treatment vary from case to case [22].
Many factors, such as diabetes, smoking, dental plaque control, tooth
anatomy and morphology, affect the results of the GTR treatment [6,7].
Therefore, the outcomes of GTR treatment in clinical practice may not
be as successful as those in clinical trials. A quantitative analysis
showed that GTR was a predictable method for narrow intrabony de-
fects and class II mandibular furcation defects [6]. The outcomes of
GTR treatment for other types of periodontal defects, however, are
limited and unpredictable [6]. There are two types of barrier mem-
branes for GTR: non-absorbable and absorbable membranes. For non-
absorbable membranes, a second surgery is necessary to remove it from
the defect area, which increases the risk of infection as well as surgical
burden [22].

Tissue engineering strategy uses stem/progenitor cells, scaffolds and
bioactive molecules to build biomimetic systems to induce new tissue

formation. Depending on whether biomaterials are used, tissue en-
gineering strategy for periodontal regeneration can be categorized into
scaffold-free and scaffold-based approaches. For the scaffold-free ap-
proach, cells or cell aggregates are transplanted to a defect area without
a cell carrier. Several types of cells, including bone marrow derived
mesenchymal stem cells (BMSCs) [23–25], adipose-derived stem cells
(ADSCs) [26], periodontal ligament stem cells (PDLSCs) [27,28], and
dental pulp stem cells (DPSCs), have been tested for the potential to
form periodontal tissues. Direct cell implantation faces the problem of
cell diffusion out of the defect area. Cell sheet technique, which entraps
cells in the extracellular matrix (ECM) secreted by the cells themselves,
is capable of preventing cell migration. It was reported that cell sheet
therapy induced more bone formation than cell suspension in swine
periodontal defects [29].

Cell sheet technology, however, is capable of regenerating only a
layer of tissue with a simple structure. Given the complicated archi-
tecture of periodontium which includes two hard tissues (alveolar bone
and cementum) and a soft tissue (PDL), the use of scaffold-based ap-
proach is the only choice for the regeneration of PDL-cementum-al-
veolar bone complex. Multiphasic scaffolds with distinctive character-
istic in each layer are required to imitate the periodontal structures.
Specifically, the architecture, chemical composition, cellular/bio-
chemical composition in each layer need to be tailored to achieve
periodontal complex regeneration [30–32]. Details of biomaterials and
scaffolding design are discussed in the following sections.

2.2. GTR biomaterials

GTR barrier membranes prevent the ingrowth of epithelial cells and
provide space to regenerate PDL and alveolar bone. The barrier mem-
branes should have basic properties, including biocompatibility, cell-
occlusiveness, tissue integration, space maintenance, and clinical
manageability [33–35]. GTR barrier membranes are classified into non-
absorbable and absorbable membranes. Generally, non-absorbable
membranes have superior space maintenance compared to absorbable
membranes. Gore-tex® is the first GTR barrier membrane that is made
of polytetrafluoroethylene (PTFE) with high mechanical properties
[17]. The titanium-reinforced PTFE membrane further increased the
compressive strength, resulting in better outcomes compared to the
PTFE membrane [36]. The ultrathin (0.01 mm) titanium-reinforced
PTFE membrane occupied minimal space, therefore, provided more
room for new tissue formation [37]. The smoother surface of the

Fig. 1. Schematic illustration of the anatomy of periodontal tissues, periodontal defect, scaffolds of tissue engineering approach and drug delivery system.
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titanium-reinforced PTFE also lowered immunological reaction in vivo
[37]. However, a second surgery is required for the removal of non-
absorbable barrier membranes, which increases the risk of infection,
delays wound healing, and impairs the regenerative outcomes.

Absorbable membranes are gradually degraded in vivo and avoid
the drawback of secondary surgery after implantation. Both natural and
synthetic biomaterials are tested as absorbable GTR membranes.
Generally, natural biomaterials have excellent biocompatibility with
cellular binding sites, but have low mechanical strength [38]. On the
other side, synthetic biomaterials have tunable degradation rates and
mechanical properties, but lack biological recognition (cellular binding
motif). The degradation property of membranes affects the ability of
space maintenance and new tissue formation. As a rule, the degradation
rate should be moderate: fast degradation leads to premature me-
chanical loss while slow degradation prevents new tissue ingrowth.
Generally, compared to non-absorbable membranes, absorbable mem-
branes have a limitation of low mechanical strength.

Recent development of GTR barrier membranes focus on the opti-
mization of mechanical and degradation properties and the incorpora-
tion of new functions into GTR membranes. For example, GTR mem-
branes were prepared from composites that combined the advantages of
different biomaterials [38]. The combination of natural and synthetic
polymers integrated the bioactive recognition of natural materials and
improved mechanical properties of synthetic materials [38–40]. GTR
membranes were also used as carriers for drug delivery to enhance
tissue regeneration [41,42]. Anti-bacteria drugs were loaded into GTR
membranes to inhibit local infection and inflammation, therefore, fa-
cilitating PDL tissue formation [35]. Multi-layered GTR membranes
with different functions in each layer were also developed to enhance
periodontal tissue regeneration [40,43,44].

While many GTR membranes have been developed for periodontal
regeneration in recent years, most of them are in laboratory stages. To
evaluate the biosafety and effectiveness of those GTR membranes, more
in vivo studies and clinical trials are required. As discussed above, the
outcomes of GTR treatment are unpredictable in several types of peri-
odontal defects. In other words, GTR membranes with improved
properties is insufficient to acquire successful treatment outcomes. The
combination of GTR membranes with other approaches, such as bone
grafts, may provide better regenerative results.

2.3. Tissue engineering biomaterials

Table 1 lists the biomaterials that are used recently for periodontal
tissue regeneration. Briefly, polymeric materials that have relative low
mechanical strengths (e.g. collagen, gelatin, and chitosan) are the
candidate materials for PDL regeneration, while inorganic materials
with relative high mechanical strength, such as hydroxyapatite (HA),
tricalcium phosphate (TCP), biphasic calcium phosphate (BCP), and
bioactive glass (BG) are used for cementum and alveolar bone re-
generation. To regenerate cementum-PDL-alveolar bone complex,
composite biomaterials that contain polymers and inorganic compo-
nents have to be used (Table 1).

In conclusion, most materials used in periodontal regeneration are
traditionally used in other regenerative research, such as inorganic
materials (HA, tricalcium phosphate, BG ect) and polymers (gelatin,
collagen, PCL, PLGA ect). Those traditional biomaterials are modified
or combined together into composite materials to make suitable mi-
croenvironment and scaffold systems to induce periodontal regenera-
tion in previous research. However, even though these biomaterials can
resemble the compositions in certain aspects, they cannot mimic the
fine structures of the natural periodontal tissues. Therefore, novel and
bio-inspired materials that are designed to closely mimic the archi-
tecture of periodontal tissues at micro and nanoscale levels are pre-
requisite to achieve functional periodontal tissue regeneration.

2.4. Scaffolding design for periodontal regeneration

Several aspects need to be considered when designing a scaffold for
periodontal regeneration. These are scaffold compositions, structure,
architecture, and ease of use (injectability). Generally, scaffolding
materials should mimic the compositions of the ECM of periodontal
tissues, therefore, recapitulating the ECM microenvironment of peri-
odontium. As periodontium is composed of cementum, PDL, alveolar
bone and gingiva, scaffolding design for each of the components is
different. For example, alveolar bone is a hard tissue, and the scaffold
for alveolar bone regeneration should induce mineralized tissue for-
mation; while PDL is a fibrous tissue, and the scaffold for PDL re-
generation should facilitate soft tissue formation and prevent miner-
alization. Based on that, inorganic biomaterials, such as hydroxyapatite
and calcium phosphate, are the scaffolding components to enhance
biomineralization, while polymeric biomaterials are widely used for
PDL regeneration [88,90,91].

A scaffold needs to provide structural guidance for the formation of
periodontal tissues with proper structures. For example, the ECM of
PDL are composed of nanofibrous network, and the nanofibrous scaf-
fold simulates the architecture of the natural ECM [92–99]. Electro-
spinning is a simple and effective method to prepare nanofibrous ma-
trix, which presents high surface area and porosity to facilitate cell
attachment, migration, and proliferation, so it is used to fabricate PDL
scaffolds. Besides, PDL has well-organized collagen fibers that are
classified into five groups with each group having various locations and
directions. The scaffold for PDL regeneration should provide biophy-
sical guidance to regenerate the well-organized PDL fibers. By restoring
the proper structure, the regenerated periodontium can perform the
functions of supporting tooth and bearing occlusal force, similar to the
natural counterparts.

Given PDL is anchored to root cementum and alveolar bone, the
regeneration of PDL alone is not sufficient to perform PDL function.
Instead, cementum and alveolar bone regeneration should also be in-
cluded when designing scaffolds for periodontal regeneration.
Therefore, a cementum-PDL-alveolar bone multilayer scaffold is often
used for periodontal regeneration.

Besides the compositional, structural and functional requirements
for periodontal scaffolding design, the shape of scaffolds is another
factor to be considered. Hydrogels can be injected into defect areas and
be crosslinked in situ, making it desirable for irregular periodontal
defects. The drawback of a hydrogel scaffold is the relatively low me-
chanical strength. The incorporation of components with high me-
chanical strength, such as calcium phosphate, improved the mechanical
property of the hydrogel [100,101]. However, the injectability of the
hydrogel was affected as well. In contrast to hydrogels, pre-formed
scaffolds have pre-designated size and morphology prior to the im-
plantation [95,96]. Pre-formed scaffolds are fabricated by different
methods, such as lyophilization, direct casting, and 3D printing. Among
them, 3D printing can precisely present more biophysical cues inside
scaffolds to guide tissue regeneration and is the most promising tech-
nique. For example, 3D printing was used to fabricate scaffolds with
microgroove and microchannel structures to guide fiber orientation
[31,75,89,90]. In addition, a 3D printing scaffold can be customized to
match the shape of individual patient using cone beam computer to-
mography (CBCT) images [102]. While 3D printing method has many
advantages, it cannot fabricate scaffolds that mimic the ECM archi-
tecture at a nanoscale level. To address this issue, the resolution of 3D
printing has to be greatly improved.

3. Controlled delivery systems for periodontal regeneration

3.1. Drugs and growth factors used for periodontal regeneration

A general tissue engineering approach involves in the combination
of scaffold, cells and bioactive molecules (drugs and growth factors) to
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induce tissue regeneration. Among them, bioactive molecules control
diseased conditions, stimulate innate regenerative capacity, and pro-
vide signals for tissue formation. A number of drugs and growth factors
have been tested for periodontal regeneration, and their results are
summarized in Table 2.

3.2. Controlled delivery systems for periodontal regeneration

Most growth factors have short half-lives and narrow therapeutic
windows. Therefore, controlling the release patterns of drugs and
growth factors from carriers to achieve stable long-term effects and
avoid side effects is highly desirable. Particularly, the spatial and
temporal controlled delivery of drugs or growth factors is essential for
periodontal regeneration. Based on the number of drugs (or growth

factors) to be delivered, the release systems can be divided into
monodrug and multidrug delivery systems.

In a monodrug delivery system, a drug or growth factor is applied to
fulfill particular functions. For example, stromal cell-derived factor 1
(SDF-1) was used to recruit host mesenchymal stem cells and hemato-
poietic stem cells to wound areas, and those cells promoted vasculature
and new bone formation in rat periodontal defects [127,128]. Bone
morphogenetic protein 2 (BMP-2) was used to enhance bone re-
generation and accelerate mandibular bone defect repair [141]. The
bioactive agents can be incorporated into biomaterials via non-covalent
methods, such as physical entrapment, surface adsorption, and ionic
complexation [142]. However, these methods cannot control burst re-
lease, which is undesirable for drug delivery [142]. In addition, the
bioactivity of bioactive agents often reduces after the fabrication

Table 1
Summary of biomaterials used for periodontal tissue regeneration.

Biomaterials Target tissue Characteristics References

Inorganic biomaterials
Hydroxyapatite (HA) Alveolar bone;

cementum
Similar chemical composition and structure to the inorganic phase of bone
Osteoconductive
Direct bonding effect to natural bone
Slow degradation

[45–48]

Tricalcium phosphate (TCP) Alveolar bone;
cementum

Similar chemical composition to the inorganic phase of bone
Bioabsorbable
Osteoconductive
TCP α and TCP β

[49–53]

Biphasic calcium phosphate (BCP) Alveolar bone Mixture of HA and TCP in various ratios to adjust degradation rate and biological activity
Similar chemical composition and structure to the inorganic phase of bone

[54–56]

Bioactive glass (BG) Alveolar bone;
cementum

Compositions of bioactive glasses vary
Ions dissolved from BG promote angiogenesis, osteogenesis and antibacterial activity
Degradation rate vary over a wide rage

[57–63]

Natural polymers
Collagen PDL Most abundant protein in the ECM of alveolar bone, PDL and cementum

Biocompatible
Low mechanical strength
Safety problems: pathogen transmission, immune reaction

[64–66]

Gelatin PDL; alveolar bone;
cementum

Hydrolysis product of collagen
No pathogen transmission and immune reaction
Easily modified for chemical and light crosslinking

[67–70]

Chitosan Alveolar bone; PDL;
cementum

Derived from chitin
Biocompatible
Antibacterial property

[71–74]

Synthetic polymers
Poly (lactic-co-glycolicacid) (PLGA) Alveolar bone; PDL Biocompatible

Tunable degradation rate
No cell recognition motif

[75–78]

Polycaprolactone (PCL) Alveolar bone; PDL Biocompatible
Slow degradation rate
No cell recognition motif

[79–82]

Composite biomaterials
PLGA + CaP Alveolar bone Fabricated into two layers (smooth outer layer and rough microporous inner layer)

Designed to support GTR membrane and promote alveolar bone regeneration in dogs
[83]

Collagen + HA Alveolar bone Fabricated by freeze-drying of both collagen and HA or precipitating HA to collagen
BMSCs seeded into the scaffold to promote alveolar bone formation in a dog’ periodontal defect

[84]

Chitosan+β-TCP Alveolar bone Fabricated by freeze-frying
HPDLC seeded into the scaffold to recruit host cells and promote osteoblast differentiation

[85]

PLGA + Magnesium Alveolar bone Mg in the PLGA increased mechanical strength of composite materials, buffered the acidic by-
product of PLGA degradation, and enhanced osteogenic capacity and bone formation in vivo

[86]

Gelatin methacrylate + HA Alveolar bone Methacrylate was introduced for photo-crosslinkable
The composite induced hPDLSCs to differentiate into osteoblast and promoted new bone formation
in nude mice

[67]

Gelatin+β-TCP Alveolar bone Gelatin and β-TCP were mixed in homogenizer and freeze dried
New bone tissue and some fibers parallel to bone surfaces were formed in a dog periodontal defect

[87]

PCL+ β-TCP + CaP coating PDL; Alveolar bone PCL electrospun scaffold was fabricated as the PDL layer. A thin layer of CaP was coated on the
surface of PCL-β-TCP scaffold to improve the osteogenic capacity
CaP coating induced more bone formation

[88]

PGA
PCL

PDL; Alveolar bone Microchannels in the PDL layer were designed to guide fibers formation
Porous structure was fabricated to allow cell proliferation
No organized fiber insertion in PDL and bone interface

[89]

PCL + HA Alveolar bone; PDL;
cementum

Three layers of scaffold design was used to mimic the architecture of periodontium
No organized fiber insertion in PDL and bone interface

[90]

Chitin + PLGA + BCG Alveolar bone;
cementum; PDL

PLGA was added to increase degradation time and improve mechanical stability.
BCG enhanced osteogenic capacity in bone and cementum layers.

[91]
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processes. Some natural biomaterials, such as heparin and heparan
sulfate glycosaminoglycans in ECM have binding domains that exert
strong interaction with bioactive molecules. The binding of these gly-
cosaminoglycans to bioactive molecules protects the bioactive mole-
cules (e.g. growth factors) from denaturation and proteolytic degrada-
tion, and subsequently prolongs the sustained release. Based on this
principle, we recently developed a hierarchical nanosphere-en-
capsulated microspheres system for bone tissue regeneration [143]. In
this system, BMP-2 bound with heparin and was encapsulated into
heparin-conjugated gelatin nanospheres, which were further im-
mobilized in nanofibrous microspheres (Fig. 2). This system allows the
integration of nanofibrous architecture with controlled growth factor
delivery into one injectable microsphere. BMP-2 possesses binding do-
mains with heparin, and the binding of BMP-2 to heparin stabilizes the
BMP-2 and controls its sustained release. In addition, the heparin-
binding BMP-2 was encapsulated in gelatin nanospheres and entrapped
by the microsphere nanofibers, which mimicked the architecture of
collagen fibers and had many unique properties including superior
surface area, high porosity, low density, and controllable degradation
rate. The ECM-mimicking nanofibrous architecture enhanced bone
marrow-derived mesenchymal stem cell adhesion, proliferation, dif-
ferentiation, and new tissue formation [144–147]. The in vivo study
showed that the BMP-2-loaded hierarchical nanofibrous microsphere
was an excellent carrier and significantly enhanced bone regeneration
[143]. The combination of controlled growth factor delivery with an
injectable biomimetic scaffold provides new insights into the design of
cell-instructive scaffolds.

Periodontal regeneration is a complicated process that involves
multiple aspects including the control of infection and inflammation,
recruitment of stem/progenitor cells, promotion of cell proliferation
and differentiation, as well as new tissue formation. Besides, period-
ontium is composed of distinct layers of tissues and different biological
cues should be provided to guide PDL, cementum, and alveolar bone
formation. Therefore, the delivery of multiple bioactive reagents is
necessary for periodontal tissue regeneration. For temporal control of
bioactive reagents release in periodontal regeneration, it is essential to
understand normal healing process. In terms of periodontitis, the first
step is to control local infection and inflammation, and create a healthy
and stable environment for new tissue formation. Therefore, anti-
bacterial drugs should be released first to control local bacterium in-
fection in a periodontal release system [148]. Next, drugs/growth fac-
tors that regulate local inflammation level, promote cell proliferation
and differentiation are applied in sequence [148].

There are several methods to achieve temporal control of multidrug
releases: direct presentation, multiphase loading and particulate-based
delivery [149]. Direct presentation incorporates two or more bioactive
agents into carriers via physical entrapment or absorbance. While this
strategy is simple, it has little control of sequential releases of the
bioactive agents. Multiphase loading adds each bioactive reagent in
different phase of biomaterials to form a multiphased drug delivery
carrier. For example, lovastatin was loaded into PLGA microsphere,
which was encapsulated in tetracycline-loaded chitosan (Fig. 3A). The
core-shell structured microspheres first released tetracycline from the
shell to control local infection, followed by the release of lovastatin
from the PLGA core to reduce inflammation and oxidation and promote
new bone formation (Fig. 3B) [150]. In another multiphase delivery
system, four drugs were loaded separately in different layers of a sur-
face-eroding polymeric system composed of cellulose acetate phthalate
and Pluronic F-127 (Fig. 3C). The drugs were entrapped from the sur-
face to the deep layers, and blank layers were used to control the lag
time between the releases [148]. When the polymer was eroded from
the surface to the deep layers, drugs were released in order (Fig. 3D).
Particulate-based delivery incorporates bioactive reagents in different
particulates, which are further incorporated into a scaffold. In a study,
IGF-1 was loaded in alginate microparticles and BMP-6 was loaded in
PLGA microparticles, respectively, which were further incorporatedTa
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into a chitosan scaffold [151]. The fast release of IGF-1 from the algi-
nate microparticles induced osteoblast and cementoblast proliferation
and differentiation, while the slow release of BMP-6 from the PLGA
microparticles induced periodontal tissue regeneration. Spatial control
of drug releases is achieved via the addition of different growth factors
in different part of the scaffold. For example, cementum protein 1, FGF-
2 and platelet-rich plasma were added to cementum, PDL and bone
layer of the chitosan-based scaffold, respectively [91].

4. Applications of biomaterial and controlled delivery systems for
periodontal regeneration

4.1. PDL regeneration

PDL is a fibrous tissue between alveolar bone and cementum. A
number of PDL scaffolds were fabricated into nanofibrous fibrous ma-
trices to mimic the architecture of the ECM of PDL. The nanofibrous
scaffolds provided ECM-like environment to facilitate fibroblastic dif-
ferentiation and PDL markers expression [152,153]. The structure of
PDL is characterized by the directions of the PDL primary fibers. Thus,
imitation of fiber alignment is critical for PDL regeneration. Several
methods were developed to induce PDL fiber alignment, such as

Fig. 2. Schematic illustration of the design of hierarchical injectable nanofibrous microspheres for bone regeneration. BMP-2 is encapsulated into heparin-conjugated
gelatin nanospheres, which are further immobilized in nanofibrous PLLA microspheres. Adapted with permission from Ref. [143].

Fig. 3. Development of multi-drugs delivery systems. (A) A PLGA-lovastatin-chitosan-tetracycline release system, in which tetracycline was loaded in chitosan and
lovastatin was loaded in PLGA microparticles. (B) The sequential release of tetracycline and lovastatin effectively controlled local infection and promote new bone
and cementum regeneration. Adapted with permission from Ref. [150]. (C) The design of four drugs delivery system using a layer-by-layer technique. (D) The release
profiles confirmed the sequential releases of the drugs from the system in vitro. Adapted with permission from Ref. [148].
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electrospinning and channel containing scaffold. Electrospinning is a
simple method to fabricate oriented matrices, which showed the
aligned fibers guided cell elongation and collagen fibers direction on
the surface of the matrices [30]. The electrospinning method, however,
only controls cell orientation on the surfaces of the matrix. Channel-
containing scaffold is an alternative design to guide PDL cells and fiber
directions in three-dimension [89]. In another study, 3D printing micro-
channel fiber-guiding scaffolds were developed to induce the partial
alignment of the fibers [75]. However, in vivo results showed that the
fibers were deposited not inside the channels, but parallel to the dentin
surface [89]. By introducing microfabrication techniques into scaf-
folding fabrication, micropatterned scaffolds with various micro-
patterns and sizes (width and depth) were fabricated and tested for
aligned tissue formation (Fig. 4A) [79].

Given the directions of PDL fibers vary in different groups, a freeze-
drying scaffold was prepared to mimic fibers directions of apical, hor-
izontal and oblique groups [32]. However, no in vitro or in vivo data
showed the effectiveness of the scaffold. Similarly, one study used 3D
printing process to produce microgroove structure, which controlled
cell orientations in parallel (0°), oblique (45°) or perpendicular (90°)
angulations (Fig. 4B) [31]. Similarly, no in vivo results confirmed the
guiding function of the 3D printing scaffold.

Besides the reconstruction of PDL structure, functional regeneration
of PDL is another issue to be considered. In the body, PDL is con-
tinuously subjected to mechanical stress caused by occlusal force. An in
vitro study showed that PDL cells sensitively responded to mechanical
stress for proliferation and differentiation, and increased the expres-
sions of tendon-related markers such as periostin and tenascin [154].
After the PDL cells were treated with mechanical stress on aligned fi-
brous scaffolds and transplanted into rat premaxillary periodontal de-
fect, histological results showed more aligned PDL-like fibrous tissue
formation, indicating mechanical stimulus influenced fiber regenera-
tion [154]. This ex vivo mechanical stress model, however, cannot
mimic the complicated mechanical stress in vivo. A better mechanical
stress model that more closely emulates occlusal force in vivo will assist
the regeneration of functional PDL.

4.2. Alveolar bone and cementum regeneration

Since alveolar trabecular bone and cementum are both mineralized
tissues and have similar compositions, they are discussed together in
this section. To induce hard tissue formation, inorganic materials, like

calcium phosphate, are included in the scaffold for alveolar bone or
cementum regeneration [46,155]. To overcome the limitations of fab-
rication difficulty and brittleness, natural or synthetic polymers are
often incorporated in the scaffold [90,91].

BMP family proteins and amelogenin are widely used to induce al-
veolar bone regeneration [129,133,156,157]. While these proteins
were also tested for cementum regeneration, other bioactive molecules
that specifically induce cementum formation were examined. For ex-
ample, cementum protein 1 (CEMP1) is a specific cementum marker
that plays important roles in inducing cementum repair and formation.
CEMP1 facilitates PDL cells attachment, proliferation and cementoblast
differentiation rather than osteoblast differentiation [158]. In addition,
CEMP1 can promote hydroxyapatite crystal and mineralized tissue
formation [159,160], making it a potential candidate to induce ce-
mentum regeneration. When CEMP1 was loaded into chitin-PLGA/
nBCG scaffold for cementum regeneration, a thin layer of mineralized
tissue on the surface of root dentin was observed [91]. E-aminocaproic
acid (ACA) is another molecule to induce cementum repair. ACA is a
proteinase inhibitor that can slow down the fibrinolysis procedure
during periodontitis and reduce cementoblast apoptosis. A chitosan
particles carrier system loaded with ACA in fibrin matrix promoted
cementum regeneration in a dog periodontal defect [161].

Cementum is a thin layer of mineralized tissue with a thickness of a
few hundred micrometers. Therefore, scaffolds for bone regeneration
are not suitable for cementum regeneration; instead, cell sheet can
better fit the requirements. Various cells, such as PDL cells, BMSC and
alveolar periosteal cells, were fabricated into cell sheets for cementum
regeneration. Results showed that the cell sheets formed a thin layer
mineralized cementum-like tissue on the surface of roots with the ex-
pression of the CEMP1 marker [162–165]. Because of the regenerative
capacity, cell sheet was combined with PDL and bone scaffolds to re-
generate cementum-PDL-bone complex [166,167].

Recently, a new immunomodulatory strategy was developed for
alveolar bone regeneration [168]. This strategy targeted on macro-
phages that play a central role in inflammation activation and resolu-
tion. Macrophages can mainly be divided into two phenotypes: classi-
cally activated pro-inflammatory M1 macrophages and alternatively
activated pro-healing M2 macrophages. Macrophages are capable of
dynamically switching from one phenotype to the other depending on
the surrounding microenvironment. For example, interleukin 4 (IL-4) is
an effective cytokine to change the pro-inflammatory M1 into an anti-
inflammatory M2 phenotype. Based on these biological findings, a

Fig. 4. Development of micropatterned scaffolds to guide collagen fiber orientation of PDL. (A) The 3D printed micropatterned matrx with various geometry (width,
W and depth, D of the grooves) controlled the orientation of collagen deposited on the matrix. (B) The 3D printing technology was used to create angulated
microgroove patterns that were used control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. Adapted with permission from
Refs. [31,79].
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unique bio-inspired injectable microsphere as an osteoimmunomodu-
latory scaffolding biomaterial was developed [168]. The microsphere
was self-assembled with heparin-modified gelatin nanofibers that
mimic the architecture of natural bone ECMs and provided an osteo-
conductive microenvironment for bone cells. Interleukin 4 (IL4), which
has binding domains with heparin, was incorporated into the nanofi-
brous heparin-modified gelatin microsphere. Binding IL4 to heparin
protected the IL4 from denaturation and degradation, and controlled its
sustained release. The in vivo study showed the osteoimmunomodula-
tory microspheres switched the pro-inflammatory M1 macrophage into
a pro-healing M2 phenotype, efficiently resolved the inflammation, and
subsequently enhanced osteoblastic differentiation and new bone re-
generation (Fig. 5). The development of immunomodulatory bioma-
terials, therefore, is a promising approach for bone healing.

It is worth mentioning that the regeneration of periodontal hor-
izontal bone loss has been neglected for a long time. According to a
report in 2010, the prevalence of horizontal bone loss is much higher
than vertical bone loss in population [169]. However, the majority of
alveolar bone regeneration research has been focusing on vertical bone
loss regeneration. Guided bone regeneration (GBR) or GTR combined
with bone graft materials were examined for horizontal bone aug-
mentation [169–171]. However, as mentioned in previous sections, the
outcomes were unpredictable. Currently, there are few studies on hor-
izontal bone regeneration using tissue engineering strategy. One work
reported the use of calcium-alginate scaffold for the repair of dog su-
praalveolar bone defect [172]. The result showed that the buccal-lin-
gual bone thickness remained thinner than normal, and the shape and
structure of regenerated bone were not restored as normal alveolar crest
[172]. Consequently, tooth function and gingiva appearance were not
restored. To date, it is still a major challenge to achieve horizontal bone
loss regeneration, which is a direction for future periodontal research.

4.3. Alveolar bone-PDL-cementum complex regeneration

After decades of research on periodontal regeneration, it has been
well accepted that alveolar bone, PDL and cementum are a structural
and functional entity and the restoration of only one or two portions of
the periodontium cannot restore normal periodontal functions [173].
For instance, a biphasic scaffold with only bone and PDL compartments
could not form cementum on the root surface of a periodontal defect
[75,152]. Without cementum, the connection between PDL and tooth
was loose and the periodontium could not play the supporting role. The
addition of a thin layer of cell sheet to the biphasic scaffold induced
cementum-like tissue formation [88,166]. Since each layer of the per-
iodontium has distinctive characteristics, the scaffold for each part
should be designed accordingly to achieve a multi-tissue regeneration.

A chitin-PLGA-bioglass composite scaffold was fabricated to re-
generate alveolar bone, PDL and cementum [91]. The incorporation of

bioactive glass was to enhance mineralized tissue formation on the
cementum and bone portion. Bioactive molecules were encapsulated in
different layers of the scaffold, separately, to induce bone (platelet-rich
plasma derived growth factors), PDL (fibroblast growth factor 2) and
cementum (cementum protein 1) regeneration. Another example is the
use of cell sheet as the cementum layer combining with bone and PDL
compartments (Fig. 6). The multilayer scaffold was hold together with a
dentinal slice and subcutaneously transplanted in vivo. PDL-like and
cementum-like tissues were observed after 8 weeks [166]. The bone
portion of the scaffold was further coated with calcium phosphate to
increase osteoconductivity. While cell sheets could be generated from
different cells sources, bone marrow mesenchymal stem cell sheet and
PDL cell sheet had better results compared to gingival cells in pro-
moting bone, PDL and cementum regeneration [167].

Although the above scaffolds regenerated periodontal tissues with
similar structures to natural periodontal tissues, they failed to re-
generate Sharpey's fibers, a pivotal structure of periodontium. Sharpey's
fibers are the end part of the PDL collagen fiber bundles embedded in
cementum and bone [10]. Sharpey's fibers connect cementum and al-
veolar bone to PDL, therefore, are essential for the integrity and func-
tion of periodontal tissues. Without the formation of Sharpey's fibers,
there is no functional connection between cementum/alveolar bone and
PDL, and the regenerated periodontium complex has no function. To
rebuild the interface between PDL and bone, a study used 3D printing to
fabricate PDL and bone scaffolds that provided channels to allow re-
generated tissues to penetrate each other [89]. However, this scaffold
only guided PDL fiber aligned in the channels of PDL portion, but no
Sharpey's fibers inserted into the bone portion. The failure is likely
because the large diameter of the guiding structure (0.8 mm in dia-
meter) was ineffective to guide the direction of Sharpe's fibers (several
microns in diameter). Multi-layers cell sheets were used and the close
connection between the PDL and cementum enabled the fibers from
each layer to mingle together to form Sharpey's fiber-like structure
[163]. However, the inserted fibers were randomly distributed. To date,
there are no feasible and effective ways to regenerate Sharpey's fibers of
periodontium complex.

Periodontal mineralization homeostasis is a key factor for the long-
term stability of newly formed periodontium complex. Ideally, the re-
generated alveolar bone and cementum tissues should be mineralized
and PDL be non-mineralized for a long term. However, the regenerated
PDL tissue can be influenced by the surrounding hard tissues, leading to
gradually mineralization, becoming thinner, and finally disappeared to
cause tooth ankyloses. Therefore, maintenance of periodontal miner-
alization homeostasis is critical for the long-term stability of re-
generated tissues. One possible solution is the introduction of moderate
mechanical stimulation to the regenerative periodontium, which was
believed to prevent dentoalveolar ankylosis and PDL mineralization
[174], even though the mechanism is unclear yet. Another way is the

Fig. 5. An immunomodulatory approach to enhance alveolar bone healing and regeneration. The nanofibrous microsphere mimic the architecture of bone ECM and
switched the transition of macrophages from M1 to M2 phenotypes; therefore, enhanced alveolar bone healing. Adapted with permission from Ref. [168].
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controlled delivery of mineralization inhibitors in the PDL portion and
mineralization inducers in the alveolar bone and cementum portions of
the periodontal scaffold. However, the key mineralization regulators in
periodontium warrant to be clarified to fulfill this strategy. In addition,
controlled delivery of the regulators for a long period of time is another
challenge. Overall, the periodontal mineralization homeostasis is of
great significance for long-term stability of regenerated tissues, but how
to regulate and achieve the expected results need further exploration.

5. Conclusion and future perspective

Biomaterials used in periodontal regeneration include inorganic
materials, polymeric materials and composites. While inorganic bio-
materials are components used for bone and cementum regeneration
due to their similar compositional and mechanical property, polymeric
biomaterials are used for PDL regeneration. The combination of in-
organic and polymeric materials is used fabricate biomimetic scaffolds
for bone and cementum regeneration. To provide an ECM-mimicking
microenvironment, biomimetic nanofibrous and multilayer scaffolds
have been developed for periodontal tissue regeneration in recent
years. A few studies attempted to regenerate periodontal tissues with
the proper structures, such as the oriented PDL fibers, but achieved
limited success. Some of the main challenges for regenerating func-
tional periodontal tissues are listed below:

From material perspective, most of the biomaterials used for peri-
odontal regeneration are traditional biomaterials, such as HA, β-TCP,
PLLA, PCL, and PLGA. Even though these biomaterials can resemble the
compositions in certain aspects, they cannot mimic the fine structures
of the natural periodontal tissues, such as the different groups of PDL
fibers, cellular and acellular cementum structure. One specific chal-
lenge is the regeneration of Sharpey's fibers between cementum-PDL-
alveolar bone. Currently, none of the scaffolding systems regenerated
functional Sharpey's fibers. Without these fibers, the connections be-
tween cementum-PDL-alveolar bone is unstable and cannot support
teeth or bear occlusal force. Therefore, novel and bio-inspired materials
that are designed to closely mimic the architecture of periodontal tis-
sues at micro and nanoscale levels are prerequisite to achieve functional
periodontal tissue regeneration.

To regenerate the hierarchical architecture of periodontal tissues,
spatially and temporally controlled delivery of biophysical and bio-
chemical cues is indispensable. For temporal regulation, the time point
and sequence for cell migration, proliferation, differentiation and tissue

formation need to follow the natural process. As for spatial regulation,
inducing the distinguished alveolar bone, PDL, and cementum forma-
tion at the same time requires a well-designed regeneration system.
While there have been a variety of multidrug delivery systems devel-
oped, none of them can achieve precise control to guide periodontal
tissue regeneration. There are a number of barriers that hinder opti-
mized tissue regeneration. One essential issue is the lack of complete
understanding of basic biology of periodontal tissue repair and healing.
Factors that determine periodontal tissue formation have not be clar-
ified, therefore, the selected drugs/growth factors cannot achieve the
expected regenerative effects. Another knowledge gap is the proper
concentrations of bioactive molecules, because overuse or insufficient
drugs/growth factor compromises the outcomes. Therefore, an in-depth
understanding of the basic biology is indispensable to provide more
detailed information to guide the fabrication of biomimetic materials.

It was reported that mechanical cues plays a role in restoration of
functional periodontal tissues [154]. However, the mechanical cues
were rarely included in periodontal tissue regeneration. Therefore, in-
tegration of mechanical cues to biomaterial design and evaluation of
the regenerative effect will be inspiring for future studies.

Other challenges for periodontal regeneration include the restora-
tion of horizontal alveolar bone loss and long-term stability of re-
generated periodontal tissues. Addressing these problems will tre-
mendously advance the progresses of periodontal tissue regeneration.

Despite all these challenges, periodontal tissue regeneration is an
exciting and rapidly growing field. The advances of this field provide
the promising potential to improve the health of dental patients in the
near future.
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Fig. 6. Combination of cell sheet technology with bone and PDL scaffolds to regenerate cementum-PDL-alveolar bone. (A) Fabrication scheme showing the com-
bination of PDL and bone compartments with a dentin slice. The bone and PDL layers were fabricated using fused deposition and electrospinning, respectively. (B)
SEM image of the biphasic scaffold showing the fusion of the electrospun fibers onto the fused deposition component. (C) Subcutaneously transplanted the construct
to induce periodontal regeneration in vivo. (D) PDL-like and (E) cementum-like tissues formation after transplantation for eight weeks. (F) CaP was coated on the PCL
fused deposition compartment. (G) The CaP-coated scaffold enhanced bone formation. Adapted with permission from Refs. [88,166].
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