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Punctuated evolution of canonical genomic
aberrations in uveal melanoma
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Cancer is thought to arise through the accumulation of genomic aberrations evolving under

Darwinian selection. However, it remains unclear when the aberrations associated with

metastasis emerge during tumor evolution. Uveal melanoma (UM) is the most common

primary eye cancer and frequently leads to metastatic death, which is strongly linked to BAP1

mutations. Accordingly, UM is ideally suited for studying the clonal evolution of metastatic

competence. Here we analyze sequencing data from 151 primary UM samples using a cus-

tomized bioinformatic pipeline, to improve detection of BAP1 mutations and infer the clonal

relationships among genomic aberrations. Strikingly, we find BAP1 mutations and other

canonical genomic aberrations usually arise in an early punctuated burst, followed by neutral

evolution extending to the time of clinical detection. This implies that the metastatic proclivity

of UM is “set in stone” early in tumor evolution and may explain why advances in primary

treatment have not improved survival.
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Uveal melanoma (UM) is the most common cancer of the
eye and leads to metastatic death in up to half of patients.
UMs are commonly divided into two prognostic sub-

groups based on their gene expression profile (GEP); those with
the class 1 GEP have a low risk of metastasis, whereas those with
the class 2 GEP have a high risk1. UM is also notable for having
two sets of driver mutations, with each tumor typically containing
one mutation from each group2. One group consists of mutually
exclusive gain-of-function mutations in members of the Gq sig-
naling pathway—GNAQ, GNA11, CYSLTR2, or PLCB4. These
“Gq mutations” are present in virtually all UMs, are not prog-
nostically significant, are insufficient alone to induce malignant
transformation, but are seemingly required to initiate tumor-
igenesis3–8. The other group consists of near-mutually exclusive
mutations in BAP1, SF3B1, and EIF1AX (“BSE”mutations), which
are strongly prognostic of metastatic risk. Inactivating mutations
in the tumor suppressor BAP1 are associated with the class 2 GEP
and high metastatic risk9, whereas single nucleotide substitutions
in SF3B1 and EIF1AX are found mainly in class 1 tumors and are
associated with intermediate and low metastatic risk, respec-
tively10,11. UMs are also associated with a small set of recurrent
chromosome copy number alterations (CNAs), which tend to
occur in the context of a specific GEP class and BSE mutation12.
Loss of heterozygosity for chromosome 3 (LOH3) is frequently
found in BAP1-mutant class 2 tumors and is thought to represent
the “second hit” in the bi-allelic loss of BAP1, located at chro-
mosome 3p219. 6p Gain (6p+) is often found in class 1 tumors
harboring SF3B1 and EIF1AX mutations, whereas 8q gain (8q+)
can be found in both class 1 and class 2 tumors, and is associated
with BAP1 and SF3B1 mutations.

Despite success in identifying these canonical genomic aber-
rations in UM, how and when these events arise during tumor
evolution remains unknown. In cutaneous melanoma, progres-
sion from benign nevus to malignant melanoma follows a typical
Darwinian model of gradual evolution13, characterized by suc-
cessive waves of mutations, clonal expansions, and selective
sweeps fueled by ultraviolet radiation-induced DNA damage,
with CNAs occurring relatively late14,15. An obstacle to per-
forming reliable genomic clonality analysis in UM has been an
inability to detect the wide diversity of BAP1 mutations using
standard bioinformatic methods. Here we analyze next generation

sequencing (NGS) data from 151 primary UMs using a wide
range of bioinformatic tools and techniques to optimize our
detection of BAP1 and other mutations and CNAs, to explore
their clonal relationships. This approach reveals many previously
undetected BAP1 and spliceosome mutations, and uncovers
strong evidence that the canonical genomic aberrations in UM
usually arise in an early, punctuated burst followed by clonal
stasis. These findings underscore the striking differences in
genomic structure and evolution between UM and cutaneous
melanoma, and they have profound implications for treatment
and survival in UM.

Results
Data sets for genomic analysis. We initially analyzed whole
exome sequencing (WES) data from 139 primary UM samples,
including 37 from the practice of the senior author (J.W.H.), 80
from the The Cancer Genome Atlas (TCGA), and 22 from a
publicly available data set (UNI-UDE)11 to identify driver
mutations and CNAs (Fig. 1, Supplementary Table 1, and Sup-
plementary Data 1). GEP classification data were available for all
JWH samples and was estimated using RNA sequencing (RNA-
seq) data for TCGA samples16.

Detection of BAP1mutations. Recent analyses have found BAP1
mutations in only about 20% of UMs11,17, yet ~ 40% of UMs are
expected to harbor these mutations9. Thus, we suspected that
BAP1 mutations may frequently be missed when they comprise
large insertions/deletions (indels), intronic/splicing alterations,
and other complex rearrangements of the BAP1 locus9. To
enhance our ability to detect such a wide range of inactivating
mutations, we developed a robust pipeline of complementary
bioinformatic tools to improve read alignments, manage low read
counts, and identify large genomic alterations (Supplementary
Fig. 1). In comparison with the Firehose analysis17, which
detected BAP1 mutations in 17 (21%) of the 80 TCGA samples
using the GATK pipeline (Supplementary Fig. 2), our pipeline
detected BAP1 mutations in 36/80 (45%) of the same samples
(Supplementary Data 1). Similarly, Martin et al.11 identified BAP1
mutations in 4 (18%) of 22 samples, whereas we identified BAP1
mutations in 9 (41%) of the same samples (Supplementary
Data 1). Overall, BAP1 mutations were detected in 62 (45%) of
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Fig. 1 Molecular landscape in 139 primary uveal melanomas analyzed by whole exome sequencing. Mutation status for common driver and spliceosome
mutations, type of mutation, common chromosome copy number alterations (CNAs), gene expression profile status (class 1 versus class 2), source of
tumor sample, and availability of matched normal DNA are indicated. CNAs were assessed using CNVkit62. CNA data are scaled using the log2 copy ratio
of the predicted copy number over the normal copy number. Mutations in “BSE” and splicing genes (pink box) are demarcated from those in Gq signaling
pathway genes (blue box)
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the 139 WES samples queried in this study, including 9 non-
synonymous single-nucleotide polymorphisms (SNPs), 10 stop-
gain/stoploss SNPs, 2 intronic/splice SNPs, and 41 indels (Fig. 2
and Supplementary Data 1). The use of two different mutation
callers (MuTect2 and Varscan2) improved detection of BAP1
mutations, 17 of which were only called by one algorithm or the
other. Using ABRA to re-align around large indels18, we detected
BAP1 deletions of > 20 base pairs in 10 samples that were not
previously detected by other methods (Fig. 2). In one sample
(A8KF), we detected a BAP1 mutation that was initially filtered
out due to low exome coverage but was “rescued” with matched
RNA-Seq data using UNCeqR19 (Fig. 2). In addition, due to the
design of baits for exome capture, large deletions that start or end
in intronic or promoter regions can be missed using WES data. In
three samples (AA8P, A9F5, and AB0B), we used RNA-seq data
and the STAR aligner to identify large splicing deletions (“Spli-
ceDels”) that start in an exon and extend into an intron (Fig. 2).

These samples had low DNA coverage in the deleted regions,
yet all three showed at least one read that called the deletion and
multiple reads on either side of the deletion that did not span into
the deleted region, corresponding precisely to the “SpliceDel”
mutations detected by RNA-seq. In two samples (E21 and
AA8O), we identified homozygous deletions of the BAP1 locus
using CNVkit that would be missed by most mutation-calling
algorithms (Fig. 2). In two samples that were initially filtered out
by our pipeline due to low coverage (A9EQ and E22), BAP1
mutations were identified by visual inspection using the Inte-
grative Genomics Viewer (IGV). A9EQ showed the same muta-
tion in both WES and RNA-seq data, and E22 showed an obvious
deletion in three out of six reads. Somatic mutation callers pair
germline and tumor samples to filter out germline SNPs. How-
ever, as BAP1 mutations are known to occur in the germline in
some cases, we analyzed all blood samples independently of their
matched tumor using MuTect2, with which we identified two
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cases with germline BAP1 mutations (MM87 and A8KN) (Fig. 2).
Even with our optimized pipeline, we did not identify a BAP1
mutation in 10 of the class 2 samples; thus, we suspected that
some BAP1 mutations are not detectable with WES or RNA-seq
data, because they span multiple exons or start in untranscribed
regions. Indeed, when we analyzed publicly available whole
genome sequencing (WGS) data from 12 UM samples reported
by Furney et al.20 using our “SpliceDel” technique, we identified
2 samples containing multi-exonic BAP1 deletions that started in
the 5′-untranslated region and intronic regions (Fig. 2 and Sup-
plementary Data 2), which were previously unreported. Hence, a
complimentary repertoire of sequencing and analytical techni-
ques will be required to detect all BAP1 mutations.

Detection of other driver and putative driver mutations. Of the
139 WES samples analyzed, mutations in Gq pathway genes were
detected in 137 (98.6%) samples and were mutually exclusive in
all except two cases (Fig. 1 and Supplementary Fig. 3). SF3B1
mutations were present in 31 (22%) samples and EIF1AX
mutations were present in 20 (14%) samples (Supplementary
Data 1 and Supplementary Fig. 3). Among samples without a
detectable BSE mutation, five were found to harbor mutations in
additional spliceosome factors, including RBM10 (two samples),
SRSF2 (two samples), and SF3A1 (one sample) (Supplementary
Fig. 3). The SRSF2mutations consisted of deletions encompassing

the P95-R102 region previously reported to disrupt splicing in
myelodysplastic syndrome21. We then reviewed the BSE-mutant
samples and found additional mutations in RBM10 (two sam-
ples), SRSF2 (one sample), and SRSF7 (one sample). Although the
functional consequences of the SF3A1 and SRSF7 mutations are
not known, the tumors containing these mutations cluster with
the SF3B1-mutant tumors (Fig. 3), suggesting that they may
confer similar functional consequences as SF3B1 mutations.
Indeed, all of these spliceosome factors have been shown to be
mutated in other cancers22–25, and they interact functionally with
each other and with SF3B126,27, which may explain the tendency
for these mutations to be mutually exclusive with SF3B1 muta-
tions. Although cancer-associated alterations in SF3B1 are mostly
change-of-function hotspot mutations20, this is not the case for
all splicing factors. For example, RBM10 undergoes frameshifts,
truncations, and indels in lung cancer similar to our findings in
UM28, suggesting that oncogenic mechanisms may vary among
different splicing factor mutations.

Mutational signature. Using a probabilistic modeling algorithm
to analyze the 139 WES samples29, we identified three mutational
signatures (Supplementary Fig. 4). The most prominent signature
was a cytosine-to-thymine transition at CpG dinucleotides, which
has been associated with aging30. This deamination event
accounts for the mutation hotspot at codon 183 in GNAQ and
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GNA11, as well as the mutation hotspot at codon 625 in SF3B1.
The second most prominent signature was a cytosine-to-adenine
transition, which has been associated with reactive oxygen
damage31. Interestingly, when samples were analyzed separately
based on their BSE mutation, this signature was enriched only in
SF3B1 mutant tumors. Thymine-to-guanine transversions were
also enriched in all subgroups and are of unknown etiology.
Consistent with other reports5,32, we found no ultraviolet radia-
tion signature. Notably, despite ostensible links between BAP1
and BRCA133, no DNA double-strand break-repair “BRCA sig-
nature” was detected in BAP1-mutant UMs or any other sub-
group, calling into question whether there is in fact a functional
link between BAP1 and BRCA1/2 in tumorigenesis33.

Methylomic clustering analysis. Previous efforts to classify UMs
have been based on CNAs34 and GEP35. Here we used global
DNA methylation profiling to infer inherent evolutionary rela-
tionships between tumors36, based on the assumption that uveal
melanocytes (from which UMs arise) will have similar methy-
lomic profiles among different individuals. Methylation profiling
has the advantage of being agnostic to mutation status and GEP.
We used a minimum evolution algorithm37 to analyze 87 samples
in which global DNA methylation data were available, which
revealed phylogenetic clusters that correlate strongly with GEP
(class 1 versus class 2) and with BSE mutations (Fig. 3 and
Supplementary Fig. 5). Thus, most UMs evolve along one of three
canonical trajectories toward fitness maximums denoted by
BAP1, SF3B1, or EIF1AX mutations. Most tumors containing
alternative spliceosome mutations (RBM10, SRSF2, SF3A1, and
SRSF7) lie between the SF3B1 and BAP1 clusters and may
therefore represent intermediate transitional cases or uncommon
non-canonical trajectories.

Clonality analysis. Bulk genomic sequencing data provide a
chronicle of genomic aberrations that occur during tumor evo-
lution, which can be used to infer the life history of a given
tumor38. To reveal underlying patterns in the clonal architecture
of UM, we analyzed WES data from the 80 TCGA samples and
WGS data from the 12 Furney samples20 using a hierarchical
Bayesian Dirichlet process to identify clonal mutations and the
cgpBattenberg algorithm to identify clonal CNAs (Supplementary
Fig. 6)38,39. As expected, in almost all samples, an initiating Gq
pathway mutation was present in 100% of tumor cells, indicating
that it occurred before the appearance of the most recent com-
mon ancestor (MRCA)38. Henceforth, we focused on the BSE
mutations due to their prognostic gravity, anticipating that they
would map to subclones that arose after the MRCA. Surprisingly,
however, most samples contained BSE mutations and their
associated CNAs (LOH3, 6p+, and 8q+) in 100% of tumor cells
(Fig. 4a,b and Supplementary Fig. 7). In a small number of
samples, all but one canonical aberration were present in the
MRCA, with the other one in a subclone (Fig. 4a,b). For example,
five class 1 tumors contained an EIF1AX mutation in the MRCA,
with 6p+ arising in a later subclone. Similarly, LOH3 was always
present in 100% of tumor cells, whereas the associated BAP1
mutations were occasionally found in a subclone. In addition,
most alternative spliceosome mutations (RBM10, SRSF2, SF3A1,
and SRSF7) mapped to subclones. Hence, the canonical genomic
aberrations in UM usually arise in an early punctuated evolu-
tionary process40–42, with little ongoing acquisition of new driver
aberrations after the appearance of the MRCA.

Evidence for neutral tumor evolution. As our findings suggested
that all of the genomic events necessary for the malignant phe-
notype in UM arise before or soon after the emergence of the

MRCA, we postulated that most or all additional mutations
accumulating after the appearance of the canonical genomic
aberrations are evolutionarily neutral14,42. To test this hypothesis,
we used a power-law distribution model to assess the likelihood of
neutral tumor growth in WGS data from the 12 Furney sam-
ples20, as the small number of mutations found in WES data did
not allow for proper modeling (Fig. 5a). All 12 samples showed a
goodness-of-fit (R2) well above the 0.98 threshold for neutral
tumor evolution (Fig. 5b). Indeed, the UM samples fit the neutral
evolution model better than most other cancer types that have
been evaluated (Fig. 5c)14. These findings support a punctuated
evolution model in which the small handful of canonical aber-
rations necessary to reach a fitness maximum occur early, beyond
which there is little ongoing clonal selection or adaptation in the
primary tumor.

Discussion
Historically, cancer has been thought to develop through the
gradual accumulation of numerous mutations over long periods
of time, with occasional “driver mutations” giving rise to new
subclones that evolve under ongoing selective pressure13–15.
Consistent with recent landmark studies that have challenged this
model40–42, our findings reveal punctuated rather than gradual
evolution in UM. This finding is surprising, as most previous
work suggested that CNAs occur in a successive manner in UM43.
Most UMs harbor one Gq pathway mutation (GNAQ, GNA11,
CYSLTR2, or PLCB4), one BSE mutation (BAP1, SF3B1, or
EIF1AX), and a few recurrent CNAs, in 100% of tumor cells.
Hence, these canonical aberrations usually occur relatively early,
before the emergence of the MRCA, consistent with punctuated
evolution40–42. Subsequent aberrations accumulate following a
power-law distribution characteristic of neutral tumor evolu-
tion14. As most UMs cease to accrue subsequent driver mutations
once they acquire a BSE mutation, these mutually exclusive
aberrations appear to represent alternative fitness maximums,
with mutation of one gene relieving selective pressure to mutate
the others. Taken together, these findings imply that the meta-
static proclivity of a given tumor, which is strongly associated
with its respective BSE mutation, may be “set in stone” early in
tumor evolution, often before detection of the primary mass,
which may explain the lack of improvement in survival rates
despite advances in diagnosis and treatment44.

Although the canonical aberrations arise through a punctuated
evolutionary mechanism, they do not necessarily occur simulta-
neously. Our findings, taken together with previous work3,4,7,9,10

suggest that Gq pathway mutations are early events required to
initiate tumorigenesis but insufficient alone for malignant trans-
formation, whereas BSE mutations confer malignant potential but
are unable to trigger clonal expansion without a Gq mutation.
Thus, BSE mutations either arise subsequent to Gq mutations or,
if they occur first, they remain silent unless “unleashed” by a Gq
mutation. The latter mechanism is presumably operative in
patients with a germline BAP1 mutation, two of which were
included in this study. In both cases, a Gq mutation was present
in 100% of tumor cells but was absent in the germline. Hence, a
preexistent BAP1 mutation was present in all uveal melanocytes
but clonal expansion only occurred after one of these cells
acquired a Gq mutation. This need for a tumor-initiating Gq
mutation could explain why only a minority of individuals with
germline BAP1mutations develop UM45. It is also interesting that
several samples analyzed for clonality harbored more than one
BSE mutation. AA9A, A985 and T11 contained BAP1 and SF3B1
mutations, whereas A9EC contained SF3B1 and EIF1AX muta-
tions. As all of these BSE mutations were present in the MRCA,
they most likely coexisted in the same tumor cells rather than in
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different tumor subclones. Interestingly, the GEP in these cases
reflected the mutation associated with the worse prognosis.

Although most class 2 tumors contained a BAP1 mutation and
LOH3 in the MRCA, the BAP1 mutation (but not LOH3) was
occasionally present in a subclone, suggesting that LOH3 can
precede mutation of BAP1 on the other chromosome 3. 6p+ Was
usually present in 100% of tumor cells in SF3B1-mutant tumors
but only in a subclone in EIF1AX-mutant and BAP1-mutant
tumors; 8q+ was usually present in 100% of tumor cells in SF3B1-

mutant and BAP1-mutant tumors but was rarely present in
EIF1AX tumors. 8q+ In class 2/BAP1-mutant tumors usually
consisted of multiple extra copies of the entire q arm, whereas in
class 1/SF3B1-mutant tumors, it usually involved simple gain of a
smaller fragment of 8q. There was no “smallest common region”
of amplification to implicate a specific gene(s) under selective
pressure. Taken together, CNAs appear to evolve along the evo-
lutionary trajectory of their associated BSE mutation. Future
studies are warranted to further delineate the early events in UM
evolution in greater detail.

Of all the canonical aberrations in UM, the single most prog-
nostically significant is the bi-allelic inactivation of BAP1, which
is tightly linked to the class 2 GEP prognostic signature and high
metastatic risk9. As such, we developed an enhanced bioinfor-
matic pipeline to discover additional BAP1 mutations. We show
here that optimal detection of BAP1 mutations requires a variety
of different bioinformatic techniques, including special re-
alignment of reads around large indels, use of multiple muta-
tion callers, detection of homozygous deletions, and “SpliceDel”
analysis of RNA-Seq and WGS data, to detect deletions spanning
multiple exons or encompassing untranscribed regions. These
findings indicate that the frequency of BAP1 mutations in UM
and other cancer types may be considerably underestimated. As
expected, we did not observe an increased frequency of detecting
other canonical mutations since they are mostly SNPs that are
easily detected.

This study discloses a wide variety of previously unreported
BAP1 and spliceosome mutations, and identifies punctuated
evolution as an organizing principle behind the genetic, genomic,
and transcriptomic landscape of UM. The early emergence of
prognostically significant BSE mutations could explain why
micrometastasis frequently occurs before diagnosis46, and why
more aggressive primary tumor treatment has not resulted in
improved survival44. Consequently, these findings support an
intensified effort to develop more effective treatments for meta-
static disease.

Methods
Patients and sample collection. Tumor and blood samples from the JWH data set
were obtained from patients in the practice of the senior author who were diag-
nosed with UM arising from the choroid and/or ciliary body, and treated by
primary enucleation without previous radiotherapy. The study was approved by the
Institutional Review Board at the University of Miami and written informed
consent was obtained from each patient. Clinical and histopathologic information
were obtained and de-identified for further analyses. WES was performed on 40
tumor samples, 21 of which had matched blood DNA samples available for
sequencing. DNA was extracted using the Wizard Genomic DNA Purification kit
(Promega, Madison, WI) and the Quick Gene DNA whole blood kit S (Fugifilm,
Tokyo, Japan), respectively. Exome fragments were captured using NimbleGen
SeqCap EZ Human Exome Library v2.0 (Roche Nimblegen) and sequenced on the
Illumina Genome Analyzer II (GAIIx). RNA from these cases was isolated using
the PicoPure kit and sent to Castle BioSciences, Inc. for GEP to determine class 1
versus class 2 status47.

NGS data sources, quality control, and alignment. Raw data files from 80 TCGA
UM samples was obtained from the Cancer Genomics Hub (CGHub). Raw data
files from the Martin et al.11 and Furney et al.20 raw data were obtained from the
European Genome-phenome Archive (EGA). Data sets provided in BAM format
(TCGA; Furney et al.20) were converted back into FASTQ files using bamUtil:
bam2FastQ (v1.0.13) and were adjusted into proper format with unique read
names using CGAT (v0.2.4)48. FASTQ files from all sources, including our data,
then underwent the following bioinformatics pipeline. Sequence data were quality
controlled using FastQC (v0.11.3). WES and WGS reads were trimmed (if
required) and aligned to the human genome (hg19/GRCH37) using Novoalign
(v3.04.06), marked for duplicates using Picard (v1.128), realigned around small and
large indels using ABRA (v0.94c)18, and read mate fixed and analyzed for coverage
statistics using Picard. Tumor samples that had < 30 x coverage were excluded
from further analysis. Unknown or unplaced contigs and mitochondrial genes were
excluded from analysis. Raw RNA-seq FASTQ files from TCGA were obtained
from CGHub and from Furney et al.20 via EGA, assessed for quality using FastQC,
and aligned to the genome using STAR (v2.5)49. For research purposes, GEP class
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status of TCGA samples was estimated using the following method16. RNA-seq
normalized count files were generated using DESeq2 in R50. Unsupervised prin-
cipal component analysis (PCA) was conducted on the top 20% most variable
expressed genes and plotted three-dimensionally using the stats and rgl packages in
R, which grouped the samples into two clusters, as has been previously described
for Class 1 and Class 2 tumors47. The identity of each cluster was determined to be
most consistent with Class 1 versus Class 2 based on the expression of genes
previously known to be differentially upregulated in each Class. Class assignment
showed 100% concordance with the 11 TCGA samples in which Class status was
determined using the clinically available DecisionDx-UM test. This method was
used solely for research purposes and is not meant for actual clinical testing, as it
has not been prospectively validated in a manner analogous to the DecisionDx-UM
test.

NGS mutation calling. WES data sets underwent variant calling for SNPs and
Indels using Varscan2 (v2.4.1)51 and MuTect2 (GATK 2016-01-25 nightly build)52.
Combining the two mutation callers was based on the finding that Varscan2 detects
more true somatic and high-confidence SNPs than MuTect, whereas MuTect is
better at detecting low-coverage SNPs.53 MuTect2 is an updated SNP and indel
mutation caller available from GATK that combines the original MuTect with the
assembly-based machinery of HaplotypeCaller. MuTect2 has its own incorporated
local realignment that adjusts for tumors with purity less than 100%, multiple
subclones, and/or copy number variation (either local or aneuploidy). Varscan2
output was further refined using bam-readcount and a false positive filter (fplfilter)
54 with filter parameters set based on the TCGA-ICGC DREAM-3 SNV Challenge
results, with adjustment of minimum average read trim length. For MuTect2,
mutation calls for a panel of normals (n = 117 germline blood samples) was gen-
erated and pooled together to further filter out mutations that were present in at
least two normals. For tumors without matched blood samples, MuTect2 was used
for variant calling with a panel of normals and a high coverage blood sample to
filter out likely germline mutations. MuTect2 was utilized for mutation calls of the
WGS samples. To assess whether any mutations were missed by our pipeline due to
low coverage, tumor-blood matched WES data were analyzed in combination with
matched RNA-Seq data from the tumor using UNCeqR (v.0.2)19 with default
settings. In addition to the default settings for UNCeqR, mutations were filtered if
both DNA and RNA alternate tumor read counts were < 3, < 20% of the total
tumor read count, or the gene fell within the blacklist suggested by Radia55. For
mutations called by Varscan2 or MuTect2, mutations were further filtered out if
both alternate tumor read counts were < 3 and the minor allele frequency (MAF)
was < 20%. For all sequencing samples, the BAM files were investigated manually
for the regions of interest (BAP1, SF3B1, EIF1AX, GNAQ, CYSLTR2, PLCB4, and
GNA11) using the IGV (v2.3.80, Broad Institute, Cambridge, MA). STAR-aligned
RNA-seq data from the TCGA samples was also evaluated for “alternative splicing”
within BAP1 exons, indicative of deletions not detected in the corresponding WES
data due to the design baits for exome capture. The same strategy was used on the
Furney et al.20 WGS data set in which all regions of the genome are covered.

For all called mutations, annovar was used for annotation56. Following
annotation, mutations were filtered out if the MAF was 1% or greater in the
population according to 1000 Genomes Project (2015 August) or Exome
Sequencing Project (2015 March), and mutations listed in dbSNP (v138) were
filtered out, with the exception of SNPs with a MAF < 1% (or unknown) in the
population, a single mapping to reference assembly, or with a “clinically associated”
tag. Functional consequences of SNPs were assessed by three mutational predictor
tools: Polyphen2 (probably damaging, possibly damaging, and benign)57,
FATHMM (damaging and tolerated)58, and MetaLR (damaging and tolerated)59.
In non-exonic regions and for synonymous mutations, SNPs were considered
deleterious if two out of three of the above prediction algorithms predicted a
damaging mutation. For non-synonymous exonic SNPs, mutations were not
considered deleterious if two out of three algorithms predicted a benign or
tolerated mutation. Probably damaging, possibly damaging, or damaging were
considered deleterious calls. All insertions and deletions in exonic regions and
alterations in splicing junctions were considered deleterious. A summary of the
driver mutations, GEP status (class 1 versus class 2), source of tumor sample, and
availability of matched normal DNA were mapped in a co-occurrence of mutations
plot using ComplexHeatmap60. Lollipop plots displaying the distribution of driver
mutations along the protein domains of each gene was plotted using
MutationMapper (http://www.cbioportal.org/mutation_mapper.jsp) and domain
information was populated based on default annotations in combination with a
literature review61.

After mutation calling, mutational signature analysis and visualization was
conducted on WES data using the pmsignature package in R, which infers
mutational signatures based on probabilistic models, similar to mixed-membership
models used in population genetics and machine learning29. Signatures were
modeled for nucleotide base changes with different combinations of ± 2 flanking
bases using default parameters, which included a maximum of 10,000 iterations, a
minimum of 10 iterations with different starting values, and a tolerance of
estimation of 1e−04. Different numbers of mutational signatures were modeled,
and the number of signatures was selected where the overall log-likelihood was
highest without a rise in bootstrap error and where any given inferred signature did

not show a similar pattern across the genome to another inferred member. This
analysis was conducted on all samples in combination, as well as on samples
broken down into BSE subgroups.

Copy number aberrations. Copy number gains and losses were determined from
WES and WGS data using CNVKit (v0.7.5, v0.7.10.dev0)62 and by cgpBattenberg38

for clonality analysis using default settings. Raw SNP 6.0 arrays from the TCGA
data set and raw HumanOmni2.5 SNP arrays from the Furney et al.20 data set were
analyzed using ASCAT(v2.4)63 with default settings. Isodisomy was determined by
plotting MAF plots using CNVKit, ASCAT, TITAN64, and cgpBattenberg.

Phylogenetic analysis using DNA methylation data. Raw output from the
Infinium HumanMethylation450 BeadChip Kit (Illumina) was downloaded from
TCGA (n = 80), and combined with our own cases (n = 7) and analyzed using the
ChAMP R package65. The top 20% most variable methylation probe β-values were
used for unsupervised PCA analysis using the stats and rgl R packages. Phyloge-
netic evolutionary models were generated using the minimum evolution algorithm
(Canberra distance) in the ape R package66. Likelihoods of each bipartition in the
tree were calculated using bootstrapping with 100 replicates.

Clonality analysis. To determine the clonality of copy number gains and losses, we
used cgpBattenberg, which determines chromosome copy number gains and losses,
and corrects for cell contamination of normal cells38,67. Adaptation of cgpBat-
tenberg scripts and dependencies was performed by the High Performance Com-
puting Core, Center for Computational Science at the University of Miami, for
proper installation on the CentOS operating system used by the Pegasus super-
computer. Clusters of mutations were determined using a Bayesian Dirichlet
process model that involves Gibbs sampling to estimate the posterior distribution
of the parameters of interest. Mutations were assigned to the cluster in which they
were most likely to fall based on variant allele frequency, following adjustment for
normal cell contamination and copy number gains and losses using previously
described algorithms and publicly available R scripts38. This methodology mini-
mizes the risk of underestimating indel frequencies relative to SNPs by assuming
that all mutations in the first cluster are in the MRCA. Two independent
researchers reviewed the mutation cluster plots and counted the number of discrete
clusters. When disagreement existed, the higher cluster number was selected.
Subclones in which the mean of the cluster had a tumor read count < 10% of the
allelic fraction were excluded as an independent subclone due to the possibility that
these mutations could be spread across multiple different clones. Mutations
attributed to this subclone were assigned to the next smallest cluster. For each
cluster, the 95% confidence interval fitted for the Bayesian Dirichlet process model
was used to calculate the number of mutations in the cluster. Subclonal copy
number gains and losses, mutation clusters, and adjusted mutation variant allele
frequency information were integrated using the pigeonhole principle to determine
phylogenetic trees for each sample38,67. A custom python script was developed to
automate generation of intra-tumor evolutionary trees, which takes inputs from the
above analyses and generates an editable scalable vector graphics (.svg) file
visualizing the life history, or phylogenetic tree, for a given sample. This algorithm
can be provided upon request. Combining cgpBattenberg and the Bayesian
Dirichlet process model for clonality analysis of CNAs and mutations, respectively,
is the only publicly available methodology at this time for simultaneously deter-
mining the clonal evolution of CNAs and mutations occurring in the same
genomic region. Other clonality algorithms are limited in that they either (1) only
evaluate mutations in regions without CNAs or (2) pair mutations with CNAs in
regions with CNAs and assume they occur together.

Neutral tumor evolution. To assess whether the evolution of UM fits a Darwinian
versus a neutral tumor evolution model, we analyzed the 12 Furney et al.20 WGS
samples using a simple power-law distribution model predicted by neutral
growth14. Mutations with variant allele frequencies between 12% and 24% were
selected to account only for reliably called subclonal mutations and tumor purity in
the samples. Proper modeling required samples to have a minimum of 12 muta-
tions within this fitness boundary14. WES samples were not used for this analysis
because none of them met this criterion. A custom script was provided by Williams
et al.14. A goodness-of-fit (R2) value of greater than 0.98 was considered to posi-
tively fit a neutral tumor evolution model. Calculated R2 values for UM WGS cases
were compared to R2 values from WGS gastric cancer cases and plotted in a violin
plot using ggplot2 in R.

Data availability. All sequencing and methylation array data generated from the
practice of the senior author (J.W.H.) have been deposited in and are available
from the dbGaP database under dbGaP accession phs001421.v1.p1.
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