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Wiskott-Aldrich-Syndrome (WAS)
is a rare X-linked recessive disease

caused by mutations of the WAS gene. It
is characterized by immunodeficiency,
autoimmunity, low numbers of small
platelets (microthrombocytopenia) and a
high risk of cancer, especially B cell lym-
phoma and leukemia.

Haematopoietic stem cell transplantation
(HSCT) is considered the standard cura-
tive therapy option – but the procedure
can have major side effects and is limited
by donor availability. Gene therapy with
gammaretroviral vectors is able to over-
come some of these shortcomings and
lead to (at least a partial and temporary)
functional immune system reconstitution,
but it is associated with the development
of leukemia after viral integration and
oncogene transactivation. The high rate of
integration-associated oncogene activation
underlines the necessity for the develop-
ment and application of safer genome-
engineering technologies with similar effi-
cacy and reduced toxicity.

Wiskott-Aldrich-Syndrome (WAS) is a
rare X-linked recessive disease caused by
mutations of the WAS gene1 and charac-
terized by autoimmunity, low numbers of
small platelets (microthrombocytopenia),
immunodeficiency, and a high risk of can-
cer, especially B cell lymphoma and leuke-
mia.2 WAS protein (WASP) acts as a key

regulator for the polymerization of actin
in haematopoietic cells.3 WASP defi-
ciency, therefore, leads to malfunctions of
different leukocyte subsets, including
defective T and B cell responses, impaired
migration, and significant impairment of
NK immunological synapse formation.4,5

Severe and generalized infections, bleeding
and malignancies lead to an early death in
severe WAS.6 The standard therapy is
allogeneic HSCT. Although this is usually
an effective and curative treatment, it is
often associated with significant morbidity
and sometimes mortality, especially if no
human leukocyte antigen (HLA)-matched
HSCT donor is available.7

Gene Therapy as an Alternative
Treatment for WAS Leads to
Molecular Und Functional
Correction of Disease

Over the last decades, gammaretrovi-
rus-based HSC gene therapy (GT) has
emerged as an alternative therapeutic strat-
egy for the treatment of hereditary diseases
of the immune system (reviewed in8,9).
Patients suffering from chronic granulo-
matous disease (CGD),10 adenosine
deaminase (ADA)-deficient severe com-
bined immunodeficiency (SCID),11,12

and X-linked SCID13-15 experienced clini-
cal improvements and at least partial
or temporary correction of immune
cell functions. However, severe clinical
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side-effects, including acute leukemia sec-
ondary to insertional mutagenesis and
activation of proto-oncogenes, have raised
concerns about therapeutic safety.16-22

Ten patients suffering from WAS were
treated with haematopoietic GT using
classical gammaretroviral vectors between
2006 and 2009.23,24 Briefly, after stimula-
tion with recombinant human granulocyte
colony-stimulating factor (rhG-CSF) and/
or plerixafor, peripheral mononuclear cells
were harvested and transduced with a rep-
lication-incompetent gammaretroviral
vector that expressed a healthy copy of
WAS driven by a murine stem cell virus-
derived long terminal repeat (LTR)
sequence. Patients were conditioned using
myeloablative busulfan therapy (8mg/kg)
prior to reinfusion of transduced cells.
After GT, we were able to observe a strong
and sustained expression of WASP in
peripheral nuclear blood cells and in plate-
lets, along with an overall reconstitution
of lymphocyte function. Patients also
showed remarkable clinical improvements
with partial to complete resolution of
autoimmunity, bleeding diathesis and sus-
ceptibility for infections.

A few specific lessons of this study are
outlined below:

Age at GT Might Influence
Speed of Haematopoietic

Reconstitution

While most of our patients were young
children at the time of treatment and mostly
reconstituted fast after GT, one patient at
the age of 14 at the time of GT experienced
only a slow reconstitution of his immune
system. A similar observation had already
been described in a GT trial for X-SCID,25

thus pointing to a potentially slower overall
reconstitution in older patients.

Gammaretroviral Gene Therapy
Vector Integration Favors Certain

Genomic Regions

Retroviral insertion site (IS) analysis
using standard and nonrestrictive (nr) lin-
ear amplification-mediated polymerase
chain reaction (LAM-PCR)26 revealed
more than 140,000 unambiguous ISs with

an initially highly polyclonal repopulation
of the haematopoietic system. A compre-
hensive analysis of IS patterns demon-
strated a typical gammaretroviral insertion
pattern with integrations accumulating at
transcription start sites (TSS) of gene-cod-
ing regions. The majority of most fre-
quently affected genes had previously been
described as proto-oncogenes (including
MECOM27 and LMO228).

Insertional Mutagenesis Leads to
Gene Activation and the

Development of Haematopoietic
Malignancies

Six patients developed T-cell acute
lymphoblastic leukemia (T-ALL) between
16 months and 5 y after GT, all of whom
carried gammaretroviral insertion within
or close to the LMO2 gene locus. One
patient developed acute myeloid leukemia
(AML) and LAM-PCR identified an
insertion within the MSD1 gene locus.
Insertion site kinetics prior to onset of leu-
kemia were markedly diverse. Whereas all
T-ALL patients had a polyclonal IS pat-
tern without indications for a clonal out-
growth, the patient developing AML
showed a slow increase of a MDS1 clone
contribution over time. Of note, 2
patients with T-ALL developed AML
shortly after or during maintenance ther-
apy, with dominant clones harboring vec-
tor ISs close to either MDS1 orMN1 gene
loci, respectively. In summary, we were
able to demonstrate the feasibility of GT
for WAS and the sustainability of WAS
gene expression and functional correction
over years, but also that classical gammare-
troviral gene therapy is associated with an
unacceptably high rate of secondary
malignancies in WAS, raising considerable
safety concerns.

Treatment Strategy for
Leukemic Patients after GT

Patients WAS6, WAS7, WAS9 and
WAS10 underwent allogeneic HSCT
between 4 and 12 months after their initial
diagnosis of T-ALL. Up to date (June
2014) they are in complete remission.
Patients WAS1 and WAS8 reached a state

of complete clinical, morphological and
molecular remission using chemotherapy,
but developed AML more than a year after
their initial T-ALL diagnosis. They received
induction chemotherapy and were treated
with allogeneic HSCT. Patient WAS1 is in
complete remission (June 2014) whereas
patient WAS8 succumbed to transplant-
related toxicities. Patient WAS5 had an
early leukemia relapse while on consolida-
tion chemotherapy. He has achieved a sec-
ond state of remission using chemotherapy
and was treated by allogeneic HSCT. How-
ever, leukemia relapsed and he subsequently
succumbed to progressive leukemia.

“Self-inactivating” Vectors as a
Novel Tool for Gene Therapy

Over the last years, significant improve-
ments to viral vectors have been proposed
and tested experimentally. One of the
major advancements is probably the crea-
tion of so-called “self-inactivating” (SIN)
viruses. By deleting enhancer elements in
the LTR region and using internal mam-
malian promoters, the ability of SIN
viruses to transactivate genomic loci in the
proximity of the viral IS is dramatically
reduced.29 In contrast to gammaretroviral
vectors, lentiviral vectors are characterized
by their ability to transduce non-dividing
(stem) cells and a genomic integration pat-
tern that does not favor the promoter-
region of genes as much as gammaretrovi-
ruses do.30 However, choosing the right
internal promoter can be difficult. While
strong and ubiquitously active promoters
may offer strong expression of the respec-
tive gene of interest, concerns have arisen
about pathological effects of non-physio-
logical gene expression in defined cellular
lineages.31,32 This may not be a concern in
WAS (WAS-protein is physiologically
expressed in all nucleated haematopoietic
cells and in platelets), yet tissue-specific
promoters, like the reconstituted physio-
logical WAS promoter for the first SIN-
lenti gene therapy trial for WAS,33 may
promise more physiological lineage-specific
gene expression. However, intrinsic pro-
moters are not yet readily available for
every gene of interest. In addition to using
endogenous promoters, replacing VSV-G
pseudotyping with a target-cell-specific
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envelope might help to increase specificity
and limit potential-side effects.34,35

Value of Insertion Site
Monitoring to Predict Onset of
Leukemia and for Treatment

Decisions

In contrast to the first 2 patients enrolled
in the Paris trial for gc-SCID,18,19 whose
clones harboring LMO2 gene insertions
increased slowly and steadily, IS monitoring
could not predict the onset of the fast pro-
gressing T-ALL in our patients (regular fol-
low-up analysis was undertaken at intervals
of 3 to 6 months). A possible reason for the
fast T-ALL progression may be a pre-leuke-
mic clone expansion in a poorly accessible
niche like the thymus or lymph nodes, and
the acute release of those clones at the onset
of leukemia. In contrast, for 2 of the AML
patients, an increase of contribution of
clones with insertions in close proximity to
the MECOM gene locus had been detected
months prior to onset of leukemia, suggest-
ing a slow expansion of a (pre-)malignant
clone. In general, integration site analysis is
useful to identify integration clusters in cer-
tain gene loci, i.e. LMO2 and MECOM, to
reveal whether in vivo clonal selection occurs,
and whether proto-oncogenes or cell prolif-
erating genes are involved. IS monitoring
can help to predict the onset of AML and,
depending on donor availability, an early
bone marrow transplant can be considered.
Even thoughmonitoring clearly did not help
to predict the onset of T-ALL by particular
clones, the degree of polyclonality reconsti-
tution during treatment can be helpful for
the assessment of the risk probability of
future malignant transformation and facili-
tate the decision on the need for an eventual
stem cell transplantation (again depending
on donor availability).

Population Dynamics and
Homeostatic Control–how
Human Gene Therapy Trials
Significantly Differ from
Insertional Mutagenesis

Observed in vitro

Both the activation of oncogenes and
the functional inactivation of tumor-

suppressors after viral insertion into the
genome are known risk factors for tumor
development, and, therefore, have always
been a major concern and point of discus-
sion during the development of human
gene therapy trials.36,37 While one single
insertional transactivation of an oncogene
can, theoretically, be enough to facilitate
cellular expansion, malignant transforma-
tion typically requires the occurrence of at
least a second hit. Furthermore, biological
filters may prevent a dominant clonal out-
growth – for example, the activation of
strong oncogenes in otherwise normal
cells can lead to oncogenic stress and the
subsequent activation of tumor-suppressor
pathways and cell cycle arrest or cell
death.38 Noteworthy, natural killer (NK)
cells, monocytes and certain subsets of T
cells (all of which are less functional in
severe WAS) have important roles in the
physiological anti-tumor immune
response.39 It has been shown that expres-
sion of functional WAS protein in a
WASP-negative cell can reconstitute the
proliferative defects.40 It is unclear, how-
ever, if unphysiologically high levels of
transgene expression may render haemato-
poietic cells more prone to expansion,
possibly without dominant mutagenesis,
after vector insertion. The use of SIN ret-
roviral vectors with weaker and physiolog-
ically active endogenous promoters may
prevent this “overcorrection” and make
cells less susceptible to undergo clonal
dominance.

The first HSCT studies using gammar-
etroviral vectors have yielded ambiguous
results. Ectopic expression of the common
gamma chain in gc-SCID patients
resulted in T-cell ALL in 5 out of 20
patients, whereas expression of adenosine
deaminase in ADA-SCID patients has not
led to leukemogenesis. All patients and
parents were informed about a risk of leu-
kemogenesis prior to accrual.

Conclusions

We have demonstrated that gene ther-
apy for WAS using classical gammaretro-
viral vectors is feasible and can lead to
long-term correction of the disease, but
the rate of leukemogenesis associated with

integrational gene activation is very high.
New vector designs incorporating self-
inactivating LTR configurations and
mammalian promoters may improve
safety.33 Even though long-term observa-
tions on efficacy and safety are still pend-
ing, there is hope that the introduction of
these features will reduce side effects while
preserving therapeutic efficacy over many
years. The development of novel genome-
engineering tools may offer new therapeu-
tic strategies for patients with WAS
and other primary immunodeficiency
disorders.
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