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Abstract
Accumulated biological knowledge is often encoded as gene sets, collections of genes as-

sociated with similar biological functions or pathways. The use of gene sets in the analyses

of high-throughput gene expression data has been intensively studied and applied in clinical

research. However, the main interest remains in finding modules of biological knowledge,

or corresponding gene sets, significantly associated with disease conditions. Risk predic-

tion from censored survival times using gene sets hasn’t been well studied. In this work, we

propose a hybrid method that uses both single gene and gene set information together to

predict patient survival risks from gene expression profiles. In the proposed method, gene

sets provide context-level information that is poorly reflected by single genes. Complemen-

tarily, single genes help to supplement incomplete information of gene sets due to our im-

perfect biomedical knowledge. Through the tests over multiple data sets of cancer and

trauma injury, the proposed method showed robust and improved performance compared

with the conventional approaches with only single genes or gene sets solely. Additionally,

we examined the prediction result in the trauma injury data, and showed that the modules of

biological knowledge used in the prediction by the proposed method were highly interpret-

able in biology. A wide range of survival prediction problems in clinical genomics is ex-

pected to benefit from the use of biological knowledge.

Introduction
High-throughput gene expression profiling technology has been applied in the studies of many
important human diseases [1–5]. Computational methods have also been developed for the anal-
ysis of expression data for statistical inference of significant genes [6], classification of disease
subtypes [7], prediction of patient outcomes [8], and data mining for biological knowledge [9].

For the prediction of patient outcomes, many existing algorithms focus on the identification
of expression signatures of individual genes. These algorithms often first identify genes whose
expression indices are significantly correlated with patient outcomes, and then include them
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individually as independent features in the subsequent feature selection step to build a predic-
tor for clinical outcomes [8]. Despite some successes, this single gene approach has limitations
[10,11]. First, although each human disease causes significant disturbance on important biolog-
ical functions and pathways, profiling of gene expression does not directly measure the activi-
ties of these functions and pathways. As a result, in a single gene approach the change of each
individual gene might not be significant enough to be selected as a feature in the predictor. Sec-
ond, measurements on single genes are prone to noises and artifacts from the study design or
data acquisition. However, these random noises and artifacts would not be enriched with spe-
cific biological functions related to the disease.

To address these limitations, approaches have been developed to analyze gene expression
data together with the accumulated prior knowledge in biology and medicine [10–12]. The
knowledge on gene functions can be encoded as gene sets, where sets of genes are grouped to-
gether by biological contexts such as signaling pathways, chromosomal positions, and concert-
ed responses to various stimuli [10]. A gene set therefore provides the representation of a
biological context. Testing on gene sets instead of individual genes in the analysis of gene ex-
pression data reduces the dimension of the data in a knowledge-driven way [13].

Several issues need to be addressed when applying the gene set approach to the prediction
of patient outcomes. The first is how to incorporate the information of gene sets in a well-
established conventional prediction framework, which typically includes the calculation of fea-
ture scores, selection of features, summarization of the scores of the selected features into a pre-
dictor, and prediction of the survival outcomes of test samples. For example, to calculate the
feature score of a gene set, the statistics of individual genes of its members can be summarized
for the gene set [14]; alternatively, the expression indices of these individual genes can be sum-
marized directly as the feature for the gene set. The second is how to choose an optimal collec-
tion of gene sets in advance. There are numerous collections of available gene sets that reflect
different categories of biological knowledge. For example, the molecular signature database
(MSigDB) has several gene set collections reflecting chromosome positions, biological func-
tions, regulatory motifs, and cancer modules [10]. Since different gene set collections are de-
rived from different biological context, their prediction power is expected to be different
depending on disease problems. Thus, choosing an appropriate collection of gene sets becomes
a challenge. The third issue is how to cope with the incomplete existing knowledge in biology
and medicine. That is, existing gene sets are based on our current understanding of biology
and medicine, which is far from complete. For instance, if a gene set representing a signaling
pathway misses a number of downstream genes whose expression levels are regulated by the
activity of the pathway, the expression changes of these genes will not contribute to the activity
of this pathway even though there are strong signals in the data.

While most of the gene set approaches have been applied to the inference of significant bio-
logical functions and pathways, there have been efforts on the prediction problem as well as on
the systematic evaluation of the performance [15,16]. However, these studies focus on the clas-
sification problem, e.g. prediction of dichotomous outcomes, instead of the regression problem
that predicts continuous outcomes such as survival risks. For example, Abraham et al. [15] pre-
dicted if the survival of a breast cancer patient was less than five years or not, by using classifi-
cation algorithms such as support vector machine instead of directly predicting the survival
risks through regression. Censored samples before five years were removed in their analysis be-
cause censored samples cannot be handled in the classification setting.

To our knowledge, there has not been a systematic study of the performance of applying
gene set approaches to the regression problem of survival risks. Classification and regression
problems are two major branches of prediction analyses. Distinct from the classification prob-
lem that predicts discrete outcomes, the regression problem predicts continuous outcomes
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such as survival risks from censored data. Predicting the survival risks of patients based on ge-
nomic data has been widely considered as an important problem in clinical genomics [8,17–
19]. To measure the performance of a regression model in the prediction of continuous survival
risks, log-rank p-values [20], log-likelihood scores [21] and Harrell’s C indices [22] are
commonly used [8,17–19]. In contrast, the classification problems utilize area under curve
(AUC), true positive rates, and false positive rates to measure the accuracy of predicting the
correct classes.

Moreover, previous gene set prediction methods mostly focused on investigating various
summarizations of single gene signatures into a gene set signature to improve the prediction
power. For example, Abraham et al. [15] tested mean, median, medoid, t-statistics, and princi-
pal component analysis summarization methods, and Holec et al. [16] tested mean and singu-
lar vector decomposition summarization methods combined with various feature selection
algorithms. However, there haven’t been much consideration for the optimal collection of gene
sets and incompleteness of biological knowledge in gene sets.

In this work, we propose a hybrid method using the information of both gene sets and single
genes to predict patient survival risks. The incomplete knowledge of gene sets can be compen-
sated by single genes that are measured genome-widely. Additionally, single genes can partially
fill missing information of gene sets due to the non-optimal selection of gene set collections.
Gene sets can provide context-level information that single genes hardly capture. Single genes
and gene sets are expected to complement each other. The proposed method incorporates the
information of gene sets by summarizing single gene expression to gene set expression. It also
uses an integrated ‘super-collection’ of gene sets as a sub-optimal gene set collection, and par-
tially compensates the incomplete knowledge of gene sets by including single genes in feature
selection. Different from previous methods, the proposed method predicts survival risks direct-
ly through the regression of censored data with a Cox proportional hazard model [8]. The per-
formance of the method was evaluated over multiple data sets from patients of trauma and
cancers. The result implies the usefulness of the proposed method.

Results and Discussion

Robustness of gene set features vs. single gene features
Features of gene sets summarized from its member genes are expected to provide more robust
information than features of single genes. Since a single gene feature is based on a single mea-
surement of its gene expression, it can be easily perturbed by experimental noises or heteroge-
neity of the clinical samples. In contrast, a gene set feature is summarized from measurements
on many member genes of the set, which is expected to be more robust to noises and outliers.

The robustness of features of gene sets and single genes was evaluated by the correlations of
the feature scores independently calculated over two exclusively separated subsets of data. For
each of the benchmark data set, its training and test sets were used as exclusive subsets. Here, a
feature score was calculated with a Cox score model between the expression indices and patient
survival times [8]. Rank correlation tests over the benchmark data sets showed that gene set fea-
tures had higher correlations than single gene features (two-sided paired t-test p-value = 0.001)
(Fig 1A). This suggests that informative gene set features in a training set are more likely to be
also informative in a test set compared with single gene features.

Moreover, gene sets can efficiently utilize signals of single genes. A summarized gene set sig-
nature often represents a higher-level biological signature such as transcriptional regulatory ac-
tivity [23,24]. This higher-level molecular signature sometimes has a better correlation with
patient outcomes than single gene signatures. In the trauma benchmark data set, for example,
gene sets such as IRF5, DER_IFNA_UP, DER_IFNB_UP, and CHEOK_MP_DN had strong
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predictive power while each of their member genes was less informative (Fig 1B). The gene set
CHEOK_MP_DN was ranked as one of the top 20 gene sets. However, none of its member
genes ranked among the top 100 genes in terms of the single gene feature score. This implies
that, while individual genes might not be predictive, the gene set can potentially have higher
predictive power.

The sub-optimal choice of gene set collections
Different collections of gene sets represent different aspects of biology, and their prediction
power is expected to vary in different studies. However, we can estimate the overall perfor-
mance of each collection by studying multiple benchmark data sets. The five collections of
gene sets and one integrated collection (Table 1) were tested over each of the benchmark data
sets (Table 2). For each data set, a predictor was built with censored survival or recovery time

Fig 1. Comparison of single gene and gene set features. (A) Shown are the rank correlation coefficients of single gene and gene set feature scores
between two exclusive subsets of the seven benchmark data sets. For each data set, its training and test sets were used as exclusive subsets. (B) The top 20
predictive gene sets in the trauma benchmark data set are presented. Prediction powers were measured by feature scores. More predictive single genes
have lower rank values. Gene sets are noted on the y-axis, and the distributions of their member genes' ranks are plotted along x-axis in a log scale. For each
gene set, the left-end of its boxplot represents the highest rank of its member single genes, the right-end represents the lowest rank, and the bar in the middle
represents the median rank.

doi:10.1371/journal.pone.0122103.g001

Table 1. Gene set collections used in the study.

Gene set collection Description Num. ofgene sets Num. of unique genes

TR Transcriptional regulation (TR) gene sets 996 4,955

C1 MSigDB, positional gene sets 350 32,354

C2 MSigDB, curated gene sets 1,890 17,464

C3 MSigDB, motif gene sets 877 15,705

C4 MSigDB, computational gene sets 883 10,083

IS Integrated super set (IS) of the above five gene set collections 4,956 39,282

doi:10.1371/journal.pone.0122103.t001
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of the training samples, and the survival risks of test samples were predicted. Fig 2 shows the
performance of predictions with only gene sets measured by various statistics [20–22].

Gene set collections that are known to be more relevant to the targeted disease showed bet-
ter performance. The results showed that TR (transcriptional regulation) and C2 (collection 2
of MSigDB[10]) collections had better or similar performance compared with other gene set
collections. Biological functions represented by TR and C2 gene sets are related to many dis-
eases including trauma and cancers in the benchmark data sets. For example, transcriptional
factors like interferon regulator factors (IRFs) from TR collection as well as signaling pathways
like B-cell activation from C2 collection are related to immune responses, which are essential
in trauma injury [25]. In contrast, C1 (collection 1 of MSigDB[10]) collection showed poor
performance overall. C1 gene sets target large-scale structural variations by grouping about 100
genes on average according to their chromosome positions. Besides, it is worth to note that in
some of the data sets using certain collections of gene sets had worse performance than using
single genes. It is expected because a particular collection of gene sets only reflects one aspect of
the known biology. For example, the collection of C1 gene sets does not include important in-
formation on biological functions and signaling pathways. Therefore, it is expected that using
C1 collection alone would show worse performance than using single genes. The selection of
appropriate collections of gene sets is important for prediction.

Another interesting observation is that high quality gene sets had better predictive power.
Gene sets for a biological context inevitably have false positive information. Gene sets with
fewer false positives can be considered to have higher quality and confidence. For example,
transcriptional regulatory gene sets manually collected by human experts from the primary lit-
erature are expected to have higher quality than ones collected by machines through natural
language processing [24]. The TR gene sets were of high confidence because they were collected
by human experts from the literature. The manually curated functional gene sets of C2 were
also of high quality. In contrast, C4 (collection 4 of MSigDB[10]) collection was purely from
computational analysis of high throughput data on cancer [9], and C3 (collection 3 of MSigDB
[10]) collection was from the inferred binding sites based on sequence motifs [26]. C4 collec-
tion of cancer gene sets did not have as good performance as either TR or C2 collections, even
though six of the seven benchmark data sets were cancer data sets. In addition, TR collection,
which was based on the literature, had better than or at least similar performance with that of
the C3 collection, although both contained similar transcriptional regulatory interactions.

While high relevance to the disease and high quality of gene sets can be good criteria when
choosing a collection of gene sets for prediction, often none of the existing gene set collections
is ideal for a particular disease of the study. Fig 2 showed that there was no additional gain in
performance if inappropriate gene set collections were used for prediction. Alternatively, an in-
tegrated super (IS) collection of all gene sets can potentially be a sub-optimal choice for many

Table 2. Benchmark data sets used in the study.

Data set # samples Disease Predicted outcomes Ref.

Trauma 147 Blunt trauma Recovery [25]

GSE9782 248 Multiple myeloma Overall survival [28]

GSE2658 559 Multiple myeloma Overall survival [29,30]

GSE4475 159 Diffuse large B cell lymphoma Overall survival [31]

GSE10846 414 Diffuse large B cell lymphoma Overall survival [32]

BC RFS 954 Breast cancer Relapse free survival [33]

BC DMFS 502 Breast cancer Distance metastasis free survival [34]

doi:10.1371/journal.pone.0122103.t002
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prediction problems. As shown in Fig 2, the IS collection showed reasonably good performance
compared with other choices of gene set collections. Moreover, it had better or at least similar
prediction performance compared with predictors using single genes alone, even though it
also included poorly performed gene set collections. From a mixture of informative and non-
informative gene sets, a prediction method tended to select informative gene sets preferentially
through the feature selection step. For example, among the top 20 most informative gene sets
selected from the IS collection in the trauma data set, 18 gene sets were from C2 collection and
two gene sets were from TR collection. This approach of including gene sets from all the differ-
ent collections for feature selection can potentially be applicable to disease prediction problems
in general.

Fig 2. Prediction performance of various gene set collections and single genes. Shown are the prediction performance with TR, C1-4, and IS gene set
collections as well as with only single genes (SG). Subplots are for (A) likelihood ratio of Cox proportional hazard model fitting, (B) Harrell’s C index, (C) R2,
and (D) the log-rank test p-value when stratified in the median. Dashed lines represent the median statistics of single gene predictions.

doi:10.1371/journal.pone.0122103.g002
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Hybrid use of gene sets and single genes
Existing collections of gene sets represent only limited biological mechanisms because of our
incomplete knowledge. Useful information of single genes may be missed because these genes
are not represented properly in the existing gene sets. In this case, a single gene can be included
in the features selection as a pseudo gene set with only one member. Here, gene set and single
gene features are scored, selected and served as features in the predictor through the same pro-
cedure. Since the summarized expression indices of a gene set reflect the mean and variance of
its member genes, a single gene can be included directly in the calculation of the feature score
and keep its original mean and variance as a gene set.

Gene set prediction performance with single genes was evaluated as like in the previous sec-
tion. As shown in Fig 3, predictions with both gene set and single gene information had better
than or at least similar performance compared with predictions with only gene sets but without
single gene information in Fig 2. The gene set predictions with and without single genes were

Fig 3. Prediction performance of the proposed hybrid method. Shown are the prediction performance of
the proposed hybrid method using both gene sets and single genes for various gene set collections (TR, C1-
4, and IS). The prediction performance with only single genes are also shown as a reference (SG). Subplots
are for (A) likelihood ratio of Cox proportional hazard model fitting, (B) Harrell’s C index, (C) R2, and (D) the
log-rank test p-value when stratified in the median. Dashed lines represent the median statistics of single
gene predictions.

doi:10.1371/journal.pone.0122103.g003
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directly compared in S2 Fig. The overall performance improvement was tested by paired one-
side t-tests in the all 42 prediction cases of the seven benchmark data sets and the six gene set
collections. The proposed method of hybrid prediction with both gene sets and single genes
showed significant improvements over predictions with only gene sets in log-likelihood ratios
(p-value = 1.56×10-4), C indices (p-value = 0.022), R2 (p-value = 4.68×10-4), and log-rank test
p-values (p-value = 1.72×10-4).

This result implies that information of single genes can potentially help filling in the missing
parts of the imperfect knowledge represented by the existing gene sets. As shown in Fig 3, pre-
diction using C1 gene sets only had worse performance than single genes, because the biologi-
cal context of C1, physical location of genes on the genome, did not reflect the mechanisms of
the diseases well. However, when C1 gene sets and single genes were used together, single
genes provided information more relevant to the disease, which was missed in the C1 gene sets.
For example, in the trauma data set, immune responses were not captured by C1 gene sets
while many single genes had functions in immunity. Single genes can partially compensate the
missing information of gene sets by providing complementary information that is not included
in gene sets.

More importantly, by combining gene set and single gene features, the proposed hybrid
method can achieve improved performance over single genes in predictions. On all the seven
benchmark data sets, predictions with both of gene set and single gene information had im-
proved performance compared with predictions with single genes alone, or at least showed
similar performance. The overall performance improvement was tested by paired one-side
t-tests in all of the 42 prediction cases (7 benchmark data sets × 6 gene set collections). The re-
sult showed significant improvements of the proposed method over the predictions with only
single genes in log-likelihood ratios (p-value = 5.58×10-5), C indices (p-value = 6.59×10-4),
R2 (p-value = 2.21×10-4), and log-rank test p-values (p-value = 9.47×10-5).

Results of the prediction of patient recovery after trauma as an example
As a detail example, the recovery times of trauma patients were predicted with the IS gene set
collection by the proposed hybrid method. Fig 4 shows that the proposed method provided bet-
ter stratification of trauma patients than a conventional single gene prediction. The low- and
high-risk groups stratified from the recovery risks predicted by the gene set method had signifi-
cantly different recovery outcomes (p-value = 2.23×10-4), which was a substantial improve-
ment from the single gene result (p-value = 0.03). P-values were calculated from log-rank tests

Fig 4. Prediction performance for the trauma benchmark data set. The Kaplan-Meier curves for the
recovery of high-risk (solid) and low-risk (dashed) patients according to the recovery risk predicted (A) by the
conventional method with only single genes and (B) by the proposed hybrid method using both single genes
and gene sets.

doi:10.1371/journal.pone.0122103.g004
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[20]. Similarly, other metrics were also improved (likelihood ratio: 7.44 to 10.60; R2: 0.05 to
0.13; C index: 0.58 to 0.62). In the gene set prediction, the median time to recovery of the low-
risk group was 4.2 days, and that of the high-risk group was 9.6 days. Predicted by the single
gene method, the low- and high-risk groups had 5.1 and 9.1 days respectively. In addition, all
six censored patients, who were not recovered within 24 days from the time of the prediction
or died, were classified into the high-risk group in the gene set prediction while the single gene
prediction missed two of them. The proposed hybrid method also showed better stratification
than the prediction with only gene sets (p-value = 1.31×10-3 by a log-rank test). Prediction
with only gene sets already achieved an improvement from the result with only single genes be-
cause the IS gene set collection provided useful information for the trauma data set. The pro-
posed method further improved the prediction by compensating missing information of the
IS gene sets.

From the cross-validations within the training set, the gene set prediction method selected
92 single gene and 30 gene set features to derive a predictor for the trauma data set. The select-
ed gene sets provide useful biological interpretations for the prediction. Nine of the top 20 gene
sets (Fig 1B), such as IFNALPHA_NL_UP and DER_IFNB_UP, are sets of genes induced by
interferon. These gene sets include many interferon-induced protein (IFI) genes. These gene
sets are commonly suppressed in the high-risk group, which might indicate that interferon sig-
naling pathway is less-activated in high-risk trauma patients. In addition, interferon regulator
factors (IRFs) are suggested to be important from GRANDVAUX_IRF3_UP. It is also sup-
ported by IRF5 gene set that contains genes regulated by IRF5 as well as IRF3 gene set that is
one of the selected 30 gene sets but not shown in Fig 1B. STAT2 gene set from TR collection
suggests that signal transducer and activator of transcription 2 (STAT2) is activated and in-
duces its target genes. STAT2 can be activated by many cytokines including interferon, which
also suggests that the suppression in interferon signaling might be a key biological mechanism
related to the delay of patient recovery from trauma injury.

The selected single genes reconfirm the gene set features and fill in missing information of
gene sets. Many member genes of the selected gene sets were also involved in the prediction as
single gene features. For example, the single gene features of 11 IFIs were also selected as indi-
vidual features in the prediction. In addition, informative genes missed by gene sets were in-
cluded as single gene features. As an example, the selected gene sets in the predictor have many
guanylate binding protein (GBPs) genes, but these gene sets do not include GBP5 as a member.
The prediction algorithm selected GBP5 which provided additional information as a single
gene feature.

On the other hand, gene sets also include additional genes that are not included in the pre-
dictor as single genes. The selected 92 single gene features include three human leukocyte anti-
gen (HLA) genes, HLA-DMA, HLA-DMB, and HLA-DRB1. Many other HLAs are not
included in the selected single genes because they are less informative in the training set even
though they are essential factors in immune response. In contrast, the selected gene sets in the
trauma prediction have more HLA genes—HLA-A/B/C/E, DRA, DPA and DQA1 missed by
single genes as well as HLAs already included in the single gene features—because they are
grouped according to their similar biological functions. Here the gene set approach therefore
utilizes the information from these additional HLA genes to extract stronger signature of
trauma injury.

Conclusion
We studied a hybrid approach using both single genes and gene sets in the prediction of patient
outcomes by investigating three major issues: incorporation of gene set information, selection
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of gene set collections, and compensating the incomplete knowledge represented by gene sets.
First, in order to utilize gene set information in a prediction problem, we propose to summarize
gene set features from expression levels of multiple single genes. The gene set features were
shown to have robust information by summarizing the weaker signatures of its member genes.
Second, the use of an integrated super (IS) collection of multiple gene set collections showed
similar or better performance compared with the use of individual gene set collections, suggest-
ing that the feature selection procedure can successfully select informative gene sets from all
the gene sets included in the analysis. Third, the incomplete knowledge of biology and diseases
represented by the collections of gene sets could be partially compensated by including single
gene features. This hybrid approach was tested over the seven benchmark data sets. Compared
with single gene predictions, the proposed method was able to achieve improved prediction for
survival risk. Compared with predictions with only gene sets, the hybrid method showed robust
performance regardless of gene set collections used in the prediction. The development of uti-
lizing biological knowledge is expected to be applicable in a wide range of prediction problems
in clinical genomics and personalized medicine.

For the successful use of previously accumulated knowledge in the analysis of genomic data,
which is often referred as knowledge-based analysis, our knowledge itself is the most essential
factor. It encourages for our research community to build good knowledge bases. The perfor-
mance comparison of gene sets in this work confirms important characteristics of good knowl-
edge bases studied before. Knowledge bases with comprehensive, high quality and direct
information show better performance in the prediction of transcriptional regulatory relations
in yeast [24]. Gene sets, which are a kind of knowledge bases, show similar characteristics in
patient outcome predictions. Gene sets relevant to a disease have better prediction power,
which corresponds to the directness of knowledge. In addition, gene sets from literatures are
superior to those from computational inference, which corresponds to high-quality of knowl-
edge. These characteristics of good knowledge bases guide us to establish better knowledge
bases or gene sets for the future knowledge-based analysis.

Materials and Methods

Collections of gene sets utilized in this study
We identified the collections of available gene sets for the study. Table 1 lists five collections of
gene sets and one integrated super collection as well as the numbers of gene sets and unique
genes in each collection. The Molecular Signature Database (MSigDB) provided gene sets cate-
gorized by chromosome positions (C1), biological functionality (C2), cis-regulatory motifs
(C3), and gene modules computationally inferred from cancer data sets (C4) [10]. In addition,
a collection of transcriptional regulation (TR) gene sets, each of which includes a set of target
genes regulated by a transcriptional factor, was defined from commercial Ingenuity database
[12] and Pathway Studio database [27]. Note that the TR gene sets were curated from the litera-
ture while C3 gene sets were computationally inferred from the regulatory motifs of transcrip-
tional factors. Finally, we compiled an integrated super (IS) collection of all the five collected
gene sets. The IS collection consists of 4,956 gene sets, each of which has about 100 member
genes on average.

These gene sets provide useful prior knowledge on biological mechanisms and diseases. For
examples, transcriptional regulatory networks are represented in C3 and TR gene sets, and
metabolic and signaling transduction pathways are represented in C2. C2 gene sets also repre-
sent the gene expression patterns measured by high-throughput experiments under various
conditions. C1 gene sets group genes by cytogenetic bands, which would be useful to detect
large scale genomic variations. C4 sets represent modules identified from cancer studies.
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Benchmark data sets
The performance of the proposed gene set prediction method was evaluated over several publi-
cally available data sets. Seven data sets of large patient populations of different diseases were
chosen as benchmark data sets (Table 2). For each data set, independent training and test sets
were designated as noted in the original paper. A trauma data set was collected from n = 147 se-
vere blunt trauma patients at day 4 after injury [25], and patient recovery risks from trauma in-
jury was predicted. Patients who died or were not recovered within 24 days from the time of
the prediction were censored. Training and test sets were divided according to chronicle co-
horts. Two multiple myeloma data sets of GSE9782 (n = 248) [28] and GSE2658 (n = 559)
[29,30] were tested for predictions of overall survival risks. Two lymphoma data sets of
GSE4475 (n = 158) [31] and GSE10846 (n = 414) [32] were analyzed for the prediction of over-
all survival risks. Finally, for breast cancer, two collections of public data sets, BC RFS (n = 954)
[33] and BC DMFS (n = 502) [34], were tested. For the prediction of relapse free survival (RFS)
risks, the expression profiles collected and processed by Acharya, et al. [33] were used. In this
data set, the collection of GSE7849, 3143, 2034, and 4922 was served as a training set, and
GSE6532 was used as a test set. For the prediction of distant metastasis free survival (DMFS)
risks, 502 patient samples collected from three public data sets were tested according to
Schmidt, et al. [34]. In this data set, GSE11121 was used as a training set, and the combined set
of GSE6532 and GSE7390 as a test set.

The data sets of trauma, multiple myeloma and lymphoma were each from a single study.
For these data sets, all the samples were profiled by the same array platform and protocol, and
no further adjustment was performed. The data sets of BC, which include BC RFS and BC
DMFS, were meta-data from multiple studies. In these sets, samples were processed through
different protocols by different study groups, and we therefore performed additional standardi-
zation. For the BC RFS data set, we obtained the pre-standardized expression matrix from the
authors of the original paper [33], which was adjusted by a cross-platform standardization al-
gorithm, ComBat [35]. For the BC DMFS data set, we standardized gene expression within
each data set so that each data set had the same means and variances with the overall means
and variances. Therefore, individual genes of these meta data have comparable means and vari-
ances across data sets.

For the meta-analysis of the breast cancer data sets, the selection and use of the sub data sets
follow the settings of the original research papers [33,34]. The detail patient characteristics, in-
cluding age, grade, tumor size, estrogen receptor status and lymph node status, are presented
in the original papers. There is no significant difference in the patient characteristics among
the data sets used for training and test sets in the predictions of this work.

The overall prediction procedure
The overall flow of the prediction in this work is described in S1 Fig. Starting from a single
gene expression matrix of a training set, the proposed method first calculates the gene set ex-
pression using the predefined gene sets. This gene set expression is handled like single gene ex-
pression. The gene set and single gene expression indices are served as prediction features. For
each of gene sets and single genes, its feature score is calculated based on the correlation of its
expression and the survival outcome. Through the cross-validation within the training set, top
features with the largest scores are selected as the final prediction features. These final features
are fed into Semi-Supervised Principal Component (SuperPC) method [8] and used to build
the final predictor. The final predictor is applied to a test set that is independent and exclusive
with the training set. The performance of the prediction is measured from the test set. The R
code for the proposed method was deposited in GitHub (jseok79/HybridPred).
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Calculation of expression indices of gene sets from gene expression
profiles
The expression index of a gene set is calculated by summarizing those of its member single
genes. Let eij be an expression value of single gene i for sample j. eij, single gene expression, is
standardized so that it has 0 mean and 1 standard deviation. Let e'ij be the standardized expres-
sion value of eij. The expression index of a gene set is calculated by summarizing over the stan-
dardized expression value of the individual genes which belong to this gene set using maxmean
statistic [14], as describe below two steps.

Step 1. For gene set g with Ng members of single genes, its expression index in sample j, ugj,
is calculated as following:

ugj ¼ absmax
1

Ng

X
i2GSg

ðe0 ijÞþ;
1

Ng

X
i2GSg

ðe0 ijÞ�

2
4

3
5

where GSg denotes the set of member genes of gene set g. The cleavage and absmax functions
are defined as following:

ðxÞþ ¼ x; x � 0

0; x < 0
; ðxÞ� ¼

0; x � 0

x; x < 0
; absmax½x; y� ¼

x; jxj � jyj

y; jxj < jyj

8<
:

8<
:

8<
:

Step 2. the summarized ugj is then standardized to mean 0 and standard deviation 1, and
scaled again to reflect the means and standard deviations of its member genes. Let u'gj be the
standardized value of ugj. The scaled gene set expression xgj is given as following:

xgj ¼ u0
gj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i2GSg

s2
i

Ng

vuut þ
X

i2GSg
mi

Ng

where μi and σi denote the mean and standard deviation of expression level eij's across samples.
The final expression index of a gene set has the averaged mean and variance of the expression
values of its member genes. This also makes it straightforward to integrate the expression indi-
ces of gene sets with the expression indices of additional single genes.

Training a predictor using gene set and single gene features
The calculated gene set expression indices can be straightforwardly incorporated as prediction
features in SuperPC method which was originally developed using single gene expression indi-
ces [8]. In SuperPC, the feature score of each gene set and single gene is calculated by a Cox
score, as the measure of the correlation between the expression index and patient outcome.
More precisely, the Cox score measures the fitness of the expression indices with respect to the
censored survival times in a well-known Cox proportional hazard (CoxPH) model [21]. The
CoxPH model and Cox scores have been widely used to infer significantly associated genes
with survival outcomes in gene expression analysis [6–8]. The Cox score can be considered as a
good measurement for the predictive power. Only informative features selected according to
feature scores are fed into the principal component analysis. The R code provided by SuperPC
was used in the calculation of the Cox scores.

Since the feature score of a gene set which was summarized over a number of its member
genes is likely to have more robust information than that of a single gene [15], a weighted
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feature matrix was used to derive the predictor. Let feature x1, x2, . . ., and xn be selected as in-
formative ones. Then, a predictor is calculated from the first a few principal components of the
following weighted feature matrix:

ffiffiffiffiffiffi
N1

p
0 � � � 0

0
ffiffiffiffiffiffi
N2

p
0

⋮ . .
.

⋮

0 0 � � � ffiffiffiffiffiffi
Nn

p

2
666664

3
777775

xT1

xT2

⋮

xTn

2
66664

3
77775

where Ni denotes the number of member gene of feature i. If feature i is from a single gene, Ni

becomes 1. This is a generalized principal component analysis for gene sets. If all features are
from single genes, it is identical to the conventional principal component analysis. The weights
emphasize gene set features summarized from more member genes.

Prediction of patient survival risk
For given training and test sets, a predictor for patient risks was built from the training set by
fitting the censored survival or recovery times with Cox proportional hazard models, and it
was applied to predict the survival or recovery risks of patients in the exclusive test set. The pre-
dictor was derived without referring to any information of test samples. For example, the mean
and standard deviation of each single gene which are required for the calculation of expression
indices of the gene sets were estimated only from training samples.

First, informative features were selected from cross-validations. Briefly, the feature scores of
gene set and single gene features were calculated from a training set, and only features of which
scores were higher than a threshold were selected for the further analysis. The threshold was
obtained from cross-validations within a training set. A training set was randomly divided into
three groups. Predictors were derived from the two groups with various thresholds and applied
to the third group. The performance of the prediction at each threshold value was evaluated.
The threshold value with the best performance in the cross-validation was chosen for the fea-
ture selection. The cross-validation was repeated 100 times to obtain a robust threshold.

Once features were selected from a training set, a predictor was calculated by principal com-
ponents of the weighted feature matrix (see the above section) of the training set. Here, for sim-
plicity the first one principal component of the feature matrix was used as the predictor while it
is possible to use multiple principal components together. The risk score of each sample was
calculated as the projection of each sample expression profile to the predictor.

Supporting Information
S1 Fig. A diagram of the flow for the proposed prediction method.
(PNG)

S2 Fig. Summarized performance comparison of the proposed prediction method. Shown
are the prediction performance with TR, C1-4, and IS gene set collections as well as only single
genes (SG). The proposed hybrid predictions (GS+SG; red) and prediction with only gene sets
(GS only; green) are shown. Subplots are for (A) likelihood ratio of Cox proportional hazard
model fitting, (B)Harrell’s C index, (C) R2, and (D) the log-rank test p-value when stratified in
the median. Dashed lines represent the median statistics of single gene predictions.
(TIFF)

A Prediction Method with Gene Sets and Single Genes

PLOS ONE | DOI:10.1371/journal.pone.0122103 May 1, 2015 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0122103.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0122103.s002


Author Contributions
Conceived and designed the experiments: JS RWDWZ. Performed the experiments: JS. Ana-
lyzed the data: JS WZ. Contributed reagents/materials/analysis tools: JS WZ. Wrote the paper:
JS WZ.

References
1. Heller RA, SchenaM, Chai A, Shalon D, Bedilion T, Gilmore J, et al. (1997) Discovery and analysis

of inflammatory disease-related genes using cDNAmicroarrays. Proc Natl Acad Sci U S A 94:
2150–2155. PMID: 9122163

2. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. (1999) Molecular classifi-
cation of cancer: class discovery and class prediction by gene expression monitoring. Science 286:
531–537. PMID: 10521349

3. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. (2000) Distinct types of diffuse
large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511. PMID: 10676951

4. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, et al. (2000) Molecular classification of cuta-
neous malignant melanoma by gene expression profiling. Nature 406: 536–540. PMID: 10952317

5. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. (2000) Molecular portraits of
human breast tumours. Nature 406: 747–752. PMID: 10963602

6. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radi-
ation response. Proc Natl Acad Sci U S A 98: 5116–5121. PMID: 11309499

7. Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proc Natl Acad Sci U S A 99: 6567–6572. PMID: 12011421

8. Bair E, Tibshirani R (2004) Semi-supervised methods to predict patient survival from gene expression
data. PLoS Biol 2: E108. PMID: 15094809

9. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, et al. (2003) Module networks: identifying
regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:
166–176. PMID: 12740579

10. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. (2005) Gene set en-
richment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A 102: 15545–15550. PMID: 16199517

11. Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A (2004) Molecular triangulation: bridging link-
age and molecular-network information for identifying candidate genes in Alzheimer's disease. Proc
Natl Acad Sci U S A 101: 15148–15153. PMID: 15471992

12. Calvano SE, XiaoW, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. (2005) A network-based
analysis of systemic inflammation in humans. Nature 437: 1032–1037. PMID: 16136080

13. Dairkee SH, Seok J, Champion S, Sayeed A, Mindrinos M, XiaoW, et al. (2008) Bisphenol A induces
a profile of tumor aggressiveness in high-risk cells from breast cancer patients. Cancer Res 68:
2076–2080. doi: 10.1158/0008-5472.CAN-07-6526 PMID: 18381411

14. Efron B, Tibshirani R (2007) On Testing the Significance of Sets of Genes. Annals of Applied Statistics
1: 107–129.

15. AbrahamG, Kowalczyk A, Loi S, Haviv I, Zobel J (2010) Prediction of breast cancer prognosis using
gene set statistics provides signature stability and biological context. BMC Bioinformatics 11: 277. doi:
10.1186/1471-2105-11-277 PMID: 20500821

16. Holec M, Klema J, Zelezny F, Tolar J (2012) Comparative evaluation of set-level techniques in predic-
tive classification of gene expression samples. BMC Bioinformatics 13 Suppl 10: S15. doi: 10.1186/
1471-2105-13-S10-S15 PMID: 22759420

17. Bovelstad HM, Nygard S, Storvold HL, Aldrin M, Borgan O, Frigessi A, et al. (2007) Predicting survival
frommicroarray data—a comparative study. Bioinformatics 23: 2080–2087. PMID: 17553857

18. Park PJ, Tian L, Kohane IS (2002) Linking gene expression data with patient survival times using partial
least squares. Bioinformatics 18 Suppl 1: S120–127. PMID: 12169539

19. Segal MR (2006) Microarray gene expression data with linked survival phenotypes: diffuse large-B-cell
lymphoma revisited. Biostatistics 7: 268–285. PMID: 16284340

20. Peto R, Peto J (1972) Asymptotically Efficient Rank Invariant Test Procedures. Journal of the Royal
Statistical Society Series a-General 135: 185.

21. Cox DR (1972) Regression Models and Life-Tables. Journal of the Royal Statistical Society Series
B-Statistical Methodology 34: 187.

A Prediction Method with Gene Sets and Single Genes

PLOS ONE | DOI:10.1371/journal.pone.0122103 May 1, 2015 14 / 15

http://www.ncbi.nlm.nih.gov/pubmed/9122163
http://www.ncbi.nlm.nih.gov/pubmed/10521349
http://www.ncbi.nlm.nih.gov/pubmed/10676951
http://www.ncbi.nlm.nih.gov/pubmed/10952317
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://www.ncbi.nlm.nih.gov/pubmed/11309499
http://www.ncbi.nlm.nih.gov/pubmed/12011421
http://www.ncbi.nlm.nih.gov/pubmed/15094809
http://www.ncbi.nlm.nih.gov/pubmed/12740579
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://www.ncbi.nlm.nih.gov/pubmed/15471992
http://www.ncbi.nlm.nih.gov/pubmed/16136080
http://dx.doi.org/10.1158/0008-5472.CAN-07-6526
http://www.ncbi.nlm.nih.gov/pubmed/18381411
http://dx.doi.org/10.1186/1471-2105-11-277
http://www.ncbi.nlm.nih.gov/pubmed/20500821
http://dx.doi.org/10.1186/1471-2105-13-S10-S15
http://dx.doi.org/10.1186/1471-2105-13-S10-S15
http://www.ncbi.nlm.nih.gov/pubmed/22759420
http://www.ncbi.nlm.nih.gov/pubmed/17553857
http://www.ncbi.nlm.nih.gov/pubmed/12169539
http://www.ncbi.nlm.nih.gov/pubmed/16284340


22. Harrell FE Jr., Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models,
evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15: 361–387.
PMID: 8668867

23. Seok J, XiaoWZ, Moldawer LL, Davis RW, Covert MW (2009) A dynamic network of transcription in
LPS-treated human subjects. BMC Syst Biol 3.

24. Seok J, Kaushal A, Davis RW, XiaoW (2010) Knowledge-based analysis of microarrays for the discov-
ery of transcriptional regulation relationships. BMC Bioinformatics 11 Suppl 1: S8. doi: 10.1186/1471-
2105-11-S1-S8 PMID: 20122245

25. XiaoW, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. (2011) A genomic storm in criti-
cally injured humans. J Exp Med 208: 2581–2590. doi: 10.1084/jem.20111354 PMID: 22110166

26. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, et al. (2000) TRANSFAC: an integrated sys-
tem for gene expression regulation. Nucleic Acids Res 28: 316–319. PMID: 10592259

27. Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molec-
ular networks. Bioinformatics 19: 2155–2157. PMID: 14594725

28. Mulligan G, Mitsiades C, Bryant B, Zhan F, ChngWJ, Roels S, et al. (2007) Gene expression profiling
and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 109:
3177–3188. PMID: 17185464

29. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. (2006) The molecular classification
of multiple myeloma. Blood 108: 2020–2028. PMID: 16728703

30. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K, et al. (2007) Gene-expression
signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis.
Blood 109: 1692–1700. PMID: 17023574

31. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, et al. (2006) A biologic definition
of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med 354: 2419–2430. PMID:
16760442

32. Lenz G, Wright G, Dave SS, XiaoW, Powell J, Zhao H, et al. (2008) Stromal gene signatures in large-
B-cell lymphomas. N Engl J Med 359: 2313–2323. doi: 10.1056/NEJMoa0802885 PMID: 19038878

33. Acharya CR, Hsu DS, Anders CK, Anguiano A, Salter KH, Walters KS, et al. (2008) Gene expression
signatures, clinicopathological features, and individualized therapy in breast cancer. JAMA 299:
1574–1587. doi: 10.1001/jama.299.13.1574 PMID: 18387932

34. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, Pilch H, et al. (2008) The humoral immune system
has a key prognostic impact in node-negative breast cancer. Cancer Res 68: 5405–5413. doi: 10.
1158/0008-5472.CAN-07-5206 PMID: 18593943

35. JohnsonWE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using em-
pirical Bayes methods. Biostatistics 8: 118–127. PMID: 16632515

A Prediction Method with Gene Sets and Single Genes

PLOS ONE | DOI:10.1371/journal.pone.0122103 May 1, 2015 15 / 15

http://www.ncbi.nlm.nih.gov/pubmed/8668867
http://dx.doi.org/10.1186/1471-2105-11-S1-S8
http://dx.doi.org/10.1186/1471-2105-11-S1-S8
http://www.ncbi.nlm.nih.gov/pubmed/20122245
http://dx.doi.org/10.1084/jem.20111354
http://www.ncbi.nlm.nih.gov/pubmed/22110166
http://www.ncbi.nlm.nih.gov/pubmed/10592259
http://www.ncbi.nlm.nih.gov/pubmed/14594725
http://www.ncbi.nlm.nih.gov/pubmed/17185464
http://www.ncbi.nlm.nih.gov/pubmed/16728703
http://www.ncbi.nlm.nih.gov/pubmed/17023574
http://www.ncbi.nlm.nih.gov/pubmed/16760442
http://dx.doi.org/10.1056/NEJMoa0802885
http://www.ncbi.nlm.nih.gov/pubmed/19038878
http://dx.doi.org/10.1001/jama.299.13.1574
http://www.ncbi.nlm.nih.gov/pubmed/18387932
http://dx.doi.org/10.1158/0008-5472.CAN-07-5206
http://dx.doi.org/10.1158/0008-5472.CAN-07-5206
http://www.ncbi.nlm.nih.gov/pubmed/18593943
http://www.ncbi.nlm.nih.gov/pubmed/16632515

