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Abstract

Background: Determining the factors involved in the likelihood of a gene being under adaptive selection is still a
challenging goal in Evolutionary Biology. Here, we perform an evolutionary analysis of the human metabolic genes
to explore the associations between network structure and the presence and strength of natural selection in
the genes whose products are involved in metabolism. Purifying and positive selection are estimated at interspecific
(among mammals) and intraspecific (among human populations) levels, and the connections between enzymatic
reactions are differentiated between incoming (in-degree) and outgoing (out-degree) links.

Results: We confirm that purifying selection has been stronger in highly connected genes. Long-term positive
selection has targeted poorly connected enzymes, whereas short-term positive selection has targeted different
enzymes depending on whether the selective sweep has reached fixation in the population: genes under a complete
selective sweep are poorly connected, whereas those under an incomplete selective sweep have high out-
degree connectivity. The last steps of pathways are more conserved due to stronger purifying selection, with
long-term positive selection targeting preferentially enzymes that catalyze the first steps. However, short-term
positive selection has targeted enzymes that catalyze the last steps in the metabolic network. Strong signals
of positive selection have been found for metabolic processes involved in lipid transport and membrane fluidity and
permeability.

Conclusions: Our analysis highlights the importance of analyzing the same biological system at different evolutionary
timescales to understand the evolution of metabolic genes and of distinguishing between incoming and outgoing
links in a metabolic network. Short-term positive selection has targeted enzymes with a different connectivity profile
depending on the completeness of the selective sweep, while long-term positive selection has targeted genes with
fewer connections that code for enzymes that catalyze the first steps in the network.

Reviewers: This article was reviewed by Diamantis Sellis and Brandon Invergo.
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Background
Proteins are not independent entities, but part of complex
biomolecular interacting networks. Previous studies have
analyzed the relation between network structure and gene
evolution in different phylogenetic groups by analyzing
their divergence based on synonymous and nonsynon-
ymous changes in exons. Most of the studies focused on
the effect of purifying selection on gene evolution, show-
ing a trend shared by metabolic networks, protein-protein
interaction networks (PIN), and individual pathways from

different organisms: purifying selection is stronger in
highly connected and more central genes [1–5]. Con-
versely, the constraints imposed by the position of the
enzyme along the pathway seem organism-specific or sys-
tem-specific: purifying selection is stronger in upstream
genes of plant biosynthetic pathways [6, 7] and human
metabolic pathways [5], but, in animals, downstream
genes of the Insulin/TOR signal transduction pathway are
more constrained than upstream genes [8, 9]. Divergence
data has also been used to measure which parts of the
network are more prone to be under long-term positive
(adaptive) selection. As with purifying selection, some fea-
tures seem to be shared across organisms, whereas others
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appear lineage specific. Positive selection has acted prefer-
entially in genes coding for enzymes at branch points in
Drosophila and humans [10, 11]. Positive selection has
also acted in peripheral genes in the human [4, 12] and
yeast PIN [13]. Remarkably, the same study found the
opposite trend in the Drosophila PIN: positive selection
was detected mostly in central genes [13].
Few studies have used both divergence (interspecific)

and polymorphism (intraspecific) information to infer
the strength of positive and negative selection in large-
scale networks. While long-term positive selection has
acted in the periphery of the human PIN, short-term
positive selection, as detected by polymorphism data,
has acted in more central genes [4, 14]. A similar result
was observed in the Insulin/TOR signal transduction
pathway [15]. These studies, which analyzed either small
pathways or PINs, are of complex interpretation. They
showed the need for studying the relationship between
positive and purifying selection and network topology at
different evolutionary timescales to unravel where and
how natural selection acts in a biomolecular network.
The present study aims to test the previous results on
the best known and curated cellular network, the meta-
bolic network, and explore its particularities.
Metabolism is one of the best described cellular systems,

comprising a complex universe of reactions on which we
can study the action of natural selection. The applica-
tion of network theory can discover the evolutionary
constraints (purifying selection) or the evolutionary inno-
vations (positive selection) imposed on enzyme-coding
genes by the intrinsic structure of the network. Here, we
have performed an evolutionary analysis of the human
metabolic network from a top-down approach: from the
whole metabolic network to individual metabolic path-
ways. We have analyzed the presence and strength of nat-
ural selection at two levels: interspecific, among mammals
(during the divergence of primates and rodents), and
intraspecific, at the level of human populations. Our goal
is to establish where both, purifying and adaptive selec-
tion, have been acting in the metabolic network and to
determine the role of topology in shaping the evolution of
enzyme-coding genes. We aim to answer the following
question: given a complex metabolic network, which parts
will be more constrained during its evolution, and where
will the innovations happen based on the connections
between the gene products?

Results
We represented the human metabolic network as a
directed reaction graph, where nodes are enzymatic re-
actions, and consequently are associated to the genes
that code for the enzymes performing that reaction (see
Additional file 1: Figure S1, and Additional file 2: Table
S1). Nodes are linked by shared metabolites: if the

product of an enzymatic reaction is the substrate of
another, then a directed link is generated between the
nodes representing the reactions. The number of connec-
tions or links of an enzymatic reaction are separated in:
incoming links (in-degree), representing the number of
reactions that produce the metabolites that our reaction
accepts as substrates, and outgoing links (out-degree),
representing the number of reactions that use as sub-
strates the products of our reaction. This reaction-graph
representation was applied to two datasets: to the latest
genome-scale network reconstruction of the human me-
tabolism, Recon3D [16], and to individual metabolic path-
ways from HumanCyc Pathway/Genome database [5, 17].
The choice of these two sources was motivated by the
problem of how to define a metabolic pathway and its
boundaries. A large-scale network will allow us to infer
global patterns and account for crosstalk effects between
biological processes, with the drawback that the interac-
tions may be less reliable given that considerable infor-
mation was computationally driven and compliant for
metabolic modelling. Therefore, metabolic reactions
without genetic evidence but with physiological evidence
or required for modeling are included with different
confidence scores [18]. On the other side, comparing
hundreds of small-scale networks might allow us to
uncover local shared patterns with an easier biological
interpretation. A dimension not covered in the present
study is the differences due to tissue-specific expression
or to a given developmental stage. As we are using a
general model of the metabolism and not a cell-specific
model, the dynamics of the system are not considered
here, even when it is known that genes encoding enzymes
with high metabolic fluxes have been more constrained in
their evolution [19]. Our approach reveals the overall,
stratified effects of selection forces potentially acting at
different times or tissues. For this reason, it is not able to
reveal evolutionary patterns that are specific to a tissue or
to a developmental stage and may make more difficult to
interpret the results and identify the specific biological
function under selection.

Purifying selection in mammals is stronger in highly
connected nodes
The strength of purifying selection in the global metabolic
network was measured as the ratio between the rate of
nonsynonymous substitutions (dN) and the rate of syn-
onymous substitutions (dS), where lower values of dN/dS
indicate stronger purifying selection. Most enzyme-coding
genes have a dN/dS value lower than 0.5, indicating the
widespread action of purifying selection in metabolic genes
(see Additional file 1: Figure S2). The possible effect of
confounding genomic variables has been considered (see
Additional file 1: Figure S3) by applying a linear regression
on the evolutionary estimates controlling for protein-coding
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sequence (CDS) length, GC content, and codon bias, and
using the residuals values instead of the original scores.
After removing the effect of the confounding variables, we
find that purifying selection is stronger in nodes with more
connections (Fig. 1 and Additional file 1: Figure S4a). Inter-
estingly, nodes with extremely high out-degree are less con-
strained due to decreasing values of dS (see Additional file
1: Figure S4b-c). As similarly found in individual metabolic
pathways [5], genes encoding enzymes that catalyze the first
steps in the metabolic network are under weaker purifying
selection than those catalyzing reactions in intermediate
and final steps (see Additional file 1: Figure S5a).

Node connectivity influences the action of positive
selection
In the global metabolic network, we found 67 genes
(3.79% of the metabolic genes) under positive selection
among mammals by applying the site model M8 in
PAML (M7/M8) to detect selection events in any of the
lineages. By applying the branch-site test of positive
selection (Test 2 in PAML), we detected nine genes
(0.51%) under positive selection in the human lineage
(see Additional file 2: Table S2). Genes under positive
selection among mammals show different connectivity
than the rest of the metabolic genes: they encode
enzymes with low connectivity, with both lower in-de-
gree and out-degree than the metabolic genes without
evidence of positive selection (Table 1). Similarly,
genes selected only in the human lineage show lower
out-degree than the neutral genes. Also based on their

connectivity, we classified the position of the nodes within
the network: genes under positive selection among
mammals are found preferentially at top positions (in-de-
gree = 0) (Pearson’s Chi-squared test, Χ2 = 1200, p-value =
0.0005; Additional file 1: Figure S5d). Thus, long-term
positive selection has acted preferentially on poorly con-
nected or peripheral genes associated with the first steps
of metabolic processes.
To detect recent positive selection in human popula-

tions, we used the Hierarchical Boosting (HB) [20] to
detect genes under complete (Complete HB) and incom-
plete selective sweeps (Incomplete HB). In human popu-
lations, out of the 1769 genes encoding enzymes in the
global metabolic network, we found under positive selec-
tion in Europeans (CEU) 13 genes with a complete
selective sweep (0.73% of metabolic genes) and 19 genes
with an incomplete sweep (1.07%), and in Asians (CHB)
22 genes with a complete (1.24%) and 15 genes with an
incomplete selective sweep (0.85%) (see Additional file 2:
Table S2). No signal of positive selection was found in
metabolic genes in the Sub-Saharan African population
(YRI), but that is expected given the low number of
signals detected by the Hierarchical Boosting in YRI
[20]. Metabolic genes under positive selection in humans
(both in CEU and in CHB) show different connectivity
than the rest of enzyme-coding genes (Table 1). Genes
under a complete selective sweep encode for poorly
connected enzymes, with both lower in-degree and out-
degree than the rest of metabolic genes. But genes under
an incomplete selective sweep show a different connect-
ivity pattern: even though they still code for enzymes
with lower in-degree, they have higher out-degree than
the average metabolic gene. Thus, genes under a
complete selective sweep behave similar to those de-
tected under long-term positive selection, whereas those
under an incomplete sweep are highly connected by
outgoing links. The action of recent positive selection
among human populations varies depending on the final
frequency of the selected variant.
When looking at the strength of recent positive selec-

tion in relation to connectivity, the pattern is complex
(see Additional file 1: Figure S4d-g). Genes with low
connectivity tend to have smaller values of HB than
genes with higher connectivity, except in the complete
HB in CEU, where genes with high out-degree have very
low HB values. Regarding the position of the node
within the network, there is a clear linear trend in CEU.
Genes involved in the first steps in the metabolic net-
work have lower values of the HB (Complete and In-
complete) than genes participating in intermediate and
bottom steps, with genes associated with the last steps
having the highest values. We do not observe this trend
in CHB. Genes participating in intermediate and last
steps do have higher values of HB Complete than genes

Fig. 1 Strength of purifying selection estimated among mammals
versus gene connectivity in the human metabolic network. Nodes
were divided using the 25th, 50th, and 75th percentiles and the
mean ± standard error of the residuals of a linear regression of dN/
dS controlling for genomic variables (CDS length, codon bias, and
GC content) is plotted for each group. Global differences between
groups were assessed by Kruskal-Wallis Rank Sum test. Highly
connected genes are under stronger purifying selection
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performing the first steps, but there is no difference
between the intermediate and bottom categories. There
is no significant difference between values of HB Incom-
plete in CHB depending on the position of the gene
within the pathway (see Additional file 1: Figure S5b).
Accordingly, we only find differences in the number of
genes under recent positive selection according to node
position in CEU: both, genes under complete or incom-
plete selective sweeps code for enzymes that act in the last
steps of the metabolic network (Pearson’s Chi-squared
test, p-value < 0.05, see Additional file 1: Figure S5d).
In the smaller dataset of individual metabolic path-

ways, we detected in CEU three genes with a complete
selective sweep (0.32% of the metabolic genes in individ-
ual pathways) and 10 genes with an incomplete sweep
(1.06%). In CHB, we found 11 genes with a complete
(1.16%), and nine genes with an incomplete selective
sweep (0.95%) (see Additional file 2: Table S3). Only
genes under an incomplete selective sweep in CHB show
lower value of in-degree than the rest of metabolic genes
(see Additional file 2: Table S4). We see a similar trend
in CEU both in the individual metabolic pathways and
in the global network: genes at top positions have
smaller values of the complete HB than genes at inter-
mediate or bottom positions (see Additional file 1:

Figure S5c). However, we do not find differences in the
number of genes under positive selection according to
node position.

Not all metabolic functions are under the same selective
pressures
Individual metabolic pathways can be grouped according
to their main metabolic function based on a global view
of the metabolism as a three-layered system [5]: i) Inner
Core (Glycolysis / Tricarboxylic Acid Cycle / Pentose
Phosphate and Polysaccharides), ii) Intermediate (Mem-
brane Lipids, Nucleotide, Fatty Acid / Triacylglyceride,
Cofactor, Fatty Acid / Hormone, and Amino acid) and
iii) Outer (Steroid, Secondary Metabolism and Detoxifi-
cation). We compared differences in evolutionary mea-
sures between groups (Fig. 2). Pathways belonging to the
inner core have higher values of HB scores than the
other layers, with a stronger trend in Complete HB.
However, we only find differences in the number of
genes under positive selection among categories in CHB,
where there are more genes than expected under an
incomplete selective sweep in the intermediate and outer
layers (Pearson’s Chi-squared test, Χ2 = 6.6, p-value =
0.04).

Table 1 Connectivity of metabolic genes under positive selection compared to the rest of metabolic genes of the global metabolic
network

Test Connectivity Ng Nr Mean Sampling mean p-value

M7/M8 Degree 67 707 0.0016 0.0063 < 0.0001

Test 2 Degree 9 99 0.0061 0.0063 0.8382

CEU Complete Degree 13 27 0.0010 0.0055 0.0044

CHB Complete Degree 22 238 0.0017 0.0055 < 0.0001

CEU Incomplete Degree 19 100 0.0097 0.0055 < 0.0001

CHB Incomplete Degree 15 143 0.0076 0.0055 0.0015

M7/M8 In-degree 67 707 0.0008 0.0035 < 0.0001

Test 2 In-degree 9 99 0.0044 0.0035 0.1312

CEU Complete In-degree 13 27 0.0005 0.0029 0.0210

CHB Complete In-degree 22 238 0.0007 0.0029 < 0.0001

CEU Incomplete In-degree 19 100 0.0008 0.0030 0.0004

CHB Incomplete In-degree 15 143 0.0011 0.0029 0.0004

M7/M8 Out-degree 67 707 0.0007 0.0028 < 0.0001

Test 2 Out-degree 9 99 0.0018 0.0028 0.022

CEU Complete Out-degree 13 27 0.0004 0.0026 0.0174

CHB Complete Out-degree 22 238 0.0010 0.0026 < 0.0001

CEU Incomplete Out-degree 19 100 0.0090 0.0026 < 0.0001

CHB Incomplete Out-degree 15 143 0.0065 0.0026 < 0.0001

Ng: number of genes in the global metabolic network under positive selection in the mammalian lineage (M7/M8), the human lineage (Test 2) or in recent human
evolution (Incomplete and Complete selective sweeps in Europeans (CEU) and Asian (CHB) populations); Nr: number of enzymatic reactions coded by the genes
under positive selection; Mean: mean connectivity value of the genes under positive selection; Sampling mean: mean connectivity value of the sampling
distribution based on all metabolic genes; p-value: two-sided exact p-value calculated using 10,000 Monte Carlo simulations. P-values < 0.05 are highlighted
in bold.
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In a similar way as for individual pathways, we calcu-
lated whether there is any functional pathway within the
global network enriched in genes under positive selec-
tion. Metabolic functions related to lipid metabolism
(fatty acid oxidation, glycerophospholipid metabolism,
cholesterol and bile acid metabolism) and to membrane
transport are enriched with positively selected genes
(Pearson’s Chi-squared test, p-value < 0.05 in all tests,
see Additional file 1: Figure S6). All these processes are
functionally interconnected since they are involved in
lipid transport and utilization as well as membrane fluid-
ity and permeability.
As expected, there is no one-to-one mapping between

genes and enzymatic reactions in the metabolic network:
61.60% of the genes encode for enzymes that participate
in more than one reaction, and on average, a gene par-
ticipates in 7.44 reactions (see Additional file 1: Figure S7).
The number of functions of a gene or the number of en-
zymatic reactions carried out by the enzyme(s) coded by
the gene is a measure of molecular gene pleiotropy [21].
When comparing the genes under positive selection to the

rest of metabolic genes, we do not find differences in the
number of enzymatic reactions performed by enzymes
coded by positively selected genes, either at inter or intra-
specific level (Permutation test, p-value > 0.05 in all
comparisons).

Discussion and conclusions
With this study, we add evidence that the structure of
the metabolic network matters for the action of natural
selection, both in its constraints through purifying selec-
tion and in the production of innovations through posi-
tive selection.
Purifying selection is stronger in highly connected

genes, as previously described in the metabolic networks
[2, 3, 22] and PINs [1, 4] of other organisms. This rein-
forces the converging evidence of stronger conservation
for genes whose products are important in terms of
connectivity. We have also confirmed using the most re-
cent metabolic reconstruction that in the metabolism, the
generation of the end-product is more preserved than the
initial steps of the pathways [5]: genes catalyzing the last

Fig. 2 Relationship between recent selection in humans and metabolic functions. Individual metabolic pathways were classified based on a
global view of the metabolism as a three-layered system as described in [5]. Mean ± standard error of the residuals of a linear regression of the
Hierarchical Boosting (HB) scores controlling for genomic variables (CDS length, codon bias, and GC content) is plotted for each category. a)
Complete HB scores in CEU, b) Incomplete HB scores in CEU, c) Complete HB scores in CHB, and d) Incomplete HB scores in CHB. Inner Core:
Glycolysis / Tricarboxylic Acid Cycle / Pentose Phosphate and Polysaccharides; Intermediate: Membrane Lipids, Nucleotide, Fatty Acid /
Triacylglyceride, Cofactor, Fatty Acid / Hormone, and Amino acid; Outer: Steroid, Secondary Metabolism and Detoxification. Pair-wise p-values are
adjusted by FDR (ns: p > 0.05; *: p < = 0.05; **: p < = 0.01; ***: p < = 0.001; ****: p < = 0.0001)
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steps of the pathways are more conserved than genes cata-
lyzing the first steps (see Additional file 1: Figure S5a).
The distribution of positive selection in the metabolic

network is complex: at the interspecific level and in the
complete selective events within humans, new adapta-
tions appear in genes whose products are poorly con-
nected in the network. Whereas in the case of ongoing
positive selection (incomplete sweeps), it is detected in
genes highly connected by outgoing links: genes that
code for enzymes whose products are used by many
other reactions.
Long-term positive selection has targeted genes that code

for enzymes that catalyze the first steps of the metabolic
network, supporting the idea that the generation of the
end-product is more preserved in the metabolism. How-
ever, short-term selection, as indicated by the complete
and incomplete Hierarchical Boosting, has targeted prefer-
entially enzymes that catalyze the last steps of the meta-
bolic network (see Additional file 1: Figure S5d).
Even though recent positive selection is stronger in

the inner core of the metabolism (Fig. 2), pointing to
higher adaptation in genes that participate in central
metabolic pathways, there is not a strong difference in
the number of genes under positive selection among the
different layers. Only the intermediate and outer layers
show more genes under an incomplete selective sweep in
CHB than expected. The intermediate and outer layer
comprise, among others, pathways related to membrane
lipids and fatty acid metabolism. When looking at the glo-
bal network, similar functionally related pathways (lipid
metabolism and membrane transport) are enriched in
positively selected genes (see Additional file 1: Figure S6),
suggesting that these metabolic processes have been tar-
gets of positive selection at both inter and intraspecific
level. Recent selection in metabolic pathways related to
carbohydrate, lipid and transport metabolism has been
associated with dietary changes in humans due to the
Neolithic transition in the last 10 Kya (thousand years
ago) [23]. The increased availability of grain-based prod-
ucts and therefore, the increased consumption of carbo-
hydrate-rich foods is a very recent modification of the
human diet [24]. The Hierarchical Boosting was
calibrated using different selection scenarios with select-
ive events occurring in the range of 45 to 10 Kya [20].
Thus, this very recent change on the diet happened on
the limit of the range of the simulations used in the
method. This could explain that we do not detect more
genes under positive selection in pathways of the inner
core of the metabolism that include carbohydrate me-
tabolism (glycolysis and pentose phosphate and polysac-
charides) despite the high HB values.
It is difficult to know how other findings exactly relate

to ours, as previous studies in whole metabolic networks
did not differentiate between incoming (in-degree) and

outgoing (out-degree) links [2, 22, 25]. A highly con-
nected gene in an undirected network could translate in
a directed network into several ways: a highly connected
gene by incoming links (high in-degree), a highly con-
nected gene by outgoing links (high out-degree), or a
gene with both high in-degree and high out-degree.
Therefore, the overall picture is not simple, but a general
pattern emerges: the network structure of the metabol-
ism influences the opportunities of natural selection to
act. The constraint imposed by purifying selection is
stronger in highly connected genes, and in the last steps
of pathways even if the number of reactions in which a
gene participates does not restrict it [25, 26].
Adaptive selection follows a pattern close to that ob-

served in the human PIN [4]: long-term positive selection
has acted in peripheral genes, but very recent ongoing
selection is seen in central genes, specifically highly
connected genes by outgoing links. These results can be
interpreted by considering the hierarchal structure of
metabolic pathways, where upstream or highly connected
genes are expected to have far-reaching effects on the
overall metabolism than downstream or poorly connected
genes [27]. Under Fisher’s Geometric Model of Adapta-
tion (FGM) [28] as the phenotypic complexity of an
organism increases, it will be less likely that a mutation is
beneficial, as not all traits (or dimensions in the pheno-
typic space) can be optimized at the same time. Therefore,
only mutations with small effects will be more likely to be
beneficial. However, this changes if the organism is far
from the optimum fitness. Mutations with large effects are
more likely to be beneficial if an organism is far from the
optimum [27–29]. The pattern found by the Hierarchical
Boosting agrees with a species that has been far from the
optimum at several times during their recent evolution
(out-of-Africa and the Mesolithic-Neolithic transition [30,
31]), generating this result of strong complete selective
events in genes with smaller effects (low connectivity) and
incomplete selective events in genes with larger effects in
the phenotype (higher outgoing links). Thus, the relation-
ship between the action of adaptive selection and gene
connectivity depends on the type of positive selection and
the evolutionary timescale considered [4]. This seems to
be the most remarkable trait of the evolvability of biomo-
lecular networks.

Methods
Reaction graphs of the human metabolic network and
metabolic pathways
We have obtained information of enzyme-coding genes
of the human metabolic network from two sources. The
first dataset corresponds to the most comprehensive hu-
man metabolic network reconstruction (Recon3D) [16].
It was downloaded from https://vmh.uni.lu in MATLAB
format, read using COBRApy Python package [32] and
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transformed into a directed reaction graph [33]. In a
reaction graph, nodes represent enzymatic reactions and
by extension, the genes that encode the enzymes that
catalyze them. We created a directed link between node A
(representing an enzymatic reaction) and node B (repre-
senting another enzymatic reaction) if the products of
node A are substrates of node B. Three types of reactions
were excluded when creating the graph: biomass_reaction,
biomass_maintenance, and biomass_maintenance_noTrTr.
These reactions are different versions of the biomass func-
tion reaction generated to create the stoichiometrically
consistent flux balance model and do not correspond to
real biochemical reactions [16]. The top highly connected
metabolites, the so-called currency metabolites (ADP,
ATP, CO2, O2, H2O, H2O2, H, K, NA1, NAD, NADH,
NADP, NADPH, NH4, Pi, and PPi), where not used to de-
fine the topological structure of the reaction graph to
avoid creating a densely connected graph [2, 34]. Indeed,
given that each of these metabolites is involved in almost
all the reactions, their inclusion would have connected
each node with all the remaining nodes, creating links that
do not correspond to real biological metabolic routes and
hiding the real topology of the network. This procedure
generated one giant connected component and 966 small
connected components. For our purpose, we restricted
our analyses to the giant connected component formed by
9402 reactions, 178,613 links, and encoded by 1769 genes.
Gene coordinates, gene Ensembl stable identifiers, and
HGNC symbols were downloaded using the R (R Core
Team 2017) biomaRt package [35] from Ensembl GRCh37
(release 85) [36] based on EntrezGene identifiers. The sec-
ond data set corresponds to the enzyme-coding genes
present in HumanCyc that are part of base metabolic
pathways analyzed in [5]. From it we selected 843 reac-
tions encoded by 915 genes, corresponding to 275 individ-
ual metabolic pathways. There are 768 overlapping genes
between both datasets.

Comparative sequences
For each human enzyme-coding gene present in Recon3D,
we retrieved its orthologous protein-coding sequences
(CDS) in Chimpanzee, Gorilla, Orangutan, Mouse, and
Rat from Ensembl (release 85) [36] using the python pro-
gram EASER (Ensembl Easy Sequence Retriever, version
1.7.0) [37]. Multiple sequence alignments were generated
using T-coffee (default options, version 7.95) [38] by cre-
ating a protein sequence alignment and back-translating it
to DNA sequence. Only human genes with 1:1 orthologs
in the five species were used in the analysis. Multiple
sequence alignments that covered less than 60% of the
human coding sequence were excluded from the estima-
tions of evolutionary rates, resulting in 1158 genes. From
the human CDS we calculated the following sequence-re-
lated variables: CDS length, GC content, and codon bias

with CodonW (version 1.4.2) [39]. The effective number
of codons (ENC) was used as a proxy for codon bias.

Purifying selection during primate and rodent divergence
The strength of purifying selection at protein level was
measured by the program codeml (model M0) of PAML
4 [40] as the nonsynonymous/synonymous substitutions
rates ratio (dN/dS). Following the procedure in [5], the
model was run five times in the multiple sequence align-
ments, each run with three initial dN/dS values (0.1, 1
and 2), to assess robustness and discard unstable results.

Positive selection during primates and rodent divergence
To detect positive selection along the mammal lineage
we applied two likelihood ratio tests (LRT) between
nested models to the multiple sequence alignments: a)
M7/M8 (model M8) to detect selection events in any of
the lineages, and b) branch-site test of positive selection
(Test 2) to detect selection events in the human branch.
Both models are implemented in the program codeml of
PAML 4 [40] and were run five times, each run with
three initial dN/dS values (0.1, 1 and 2) to discard cases
of convergence to a local optimum. A gene was consid-
ered under positive selection if the p-value was lower
than 0.05 after correction for multiple testing by False
Discovery Rate (FDR) [41].

Positive selection during recent human evolution
Signatures of positive selection during recent human
evolution were obtained from [20] for each enzyme-cod-
ing gene in Recon3D and HumanCyc data sets. We ex-
tracted the boosting score (Hierarchical Boosting, HB)
for the genomic region consisting of 10 kb upstream the
transcript starting point to 10 kb past the transcript end-
ing point. HB values differentiate between complete
selective sweeps (the selected allele is fixed) and incom-
plete selective sweeps (selected allele is at high frequency
but not fixed). Both, Complete and Incomplete HB, were
extracted for the three populations of the 1000 Genomes
Project Phase 1: Utah residents with Northern and
Western European Ancestry (CEU), Han Chinese in
Beijing, China (CHB), and Yoruba from Ibadan, Nigeria
(YRI). The maximum value of all windows overlapping a
genic region was used as a measure of whether that gene
is under positive selection according to the threshold
calculated in [20]. HB was calculated only in autosomal
chromosomes. The analyses have been done using only
CEU and CHB continental populations, as in YRI no
metabolic gene was detected to be putatively under posi-
tive selection.
In total, 1664 genes from the giant connected compo-

nent of Recon3D have a value for at least one boosting
test in one population: Complete boosting CEU (n =
1657), Incomplete boosting CEU (n = 1566), Complete
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boosting CHB (n = 1573), Incomplete boosting CHB
(n = 1573). In the HumanCyc dataset, 915 genes have a
value for at least one boosting test in one population:
Complete boosting CEU (n = 913), Incomplete boosting
CEU (n = 913), Complete boosting CHB (n = 915), In-
complete boosting CHB (n = 915).
For comparative purposes, we retrieved the boosting

score for all human protein-coding genes in autosomal
chromosomes (n = 19,214) following the same proced-
ure: Complete boosting CEU (n = 17,593), Incomplete
boosting CEU (n = 17,585), Complete boosting CHB
(n = 17,677), Incomplete boosting CHB (n = 17,677). We
found no differences in the proportion of metabolic and
non-metabolic genes detected as being under positive
selection in any boosting test in any population (Fisher’s
Exact test, p-value > 0.05 in all cases).

Network analyses
For each node (enzymatic reaction) of the giant connected
component of the global metabolic network we computed
its connectivity using the NetworkX Python package [42]:
normalized degree, normalized in-degree and normalized
out-degree. The position of the nodes within the network
was classified based on their connectivity: top (in-degree =
0), bottom (out-degree = 0) or intermediate (in-degree > 0
and out-degree > 0). Values of the same connectivity
measures were retrieved for HumanCyc enzymatic reac-
tions [5].
Values of genomic variables (CDS length, GC content,

and codon bias), connectivity (degree, in-degree, out-de-
gree), and selection estimates (Complete and Incomplete
HB, dN/dS, dS, and dN) are in Additional file 2: Tables
S5 for the genes and reactions of the giant connected
component (Recon 3D) and in Additional file 2: Tables
S6 for the genes and reactions of the individual meta-
bolic pathways (HumanCyc).

Common topological features of genes under positive
selection
To identify common topological features of positively
selected genes, we compared their connectivity values
with respect to the rest of enzyme-coding genes by a
two-sample randomization t-test (function permTS of R
package perm) [43] using a Monte Carlo approximation
to the exact p-value with 10,000 permutations. We also
tested for differences in the strength of selective forces
(either purifying or positive selection) by dividing the
nodes by connectivity using the 25th, 50th, and 75th
percentiles (< 25%, 25–50%, 50–75%, > 75%). An enzym-
atic reaction can be coded by one or more genes, either
as an enzymatic complex or by isozymes. Thus, if an
enzymatic reaction (node) is encoded by more than
one gene, that node will be associated with as many
values of the selection metrics as genes is encoded

by. Similarly, if the protein encoded by a gene participates
in more than one enzymatic reaction, that gene will be
associated with as many connectivity measures as reac-
tions it participates in. The effect of sequence-related vari-
ables was controlled by applying a linear regression on the
evolutionary estimates controlling for CDS length, GC
content, and codon bias, and using the residuals instead of
the original values. Prior to applying the linear regression
evolutionary estimates were transformed to control for
lack of heteroscedasticity using the BoxCoxTrans function
from the caret R package. If needed a small positive value
was added to the original values to avoid negative or
zero values. Global differences between groups and
pairwise comparisons were assessed by Kruskal-Wallis
and Wilcoxon Rank Sum tests respectively and plotted
by the R package ggpubr [44].

Reviewer’s comments
Reviewer’s report 1
Diamantis Sellis
Reviewer summary: I find the article well written,

very interesting and important not only because of the
findings reported but also due to its interesting meth-
odological approach. The authors combine two different
types of analyses: metabolic networks and population
genetics. These are often studied in isolation and making
a lot of simplifying assumptions. I believe such com-
bined approaches are very promising.

Reviewer comment
Missing dimensions. The authors chose the human meta-
bolic network. This is probably the mostly studied meta-
bolic network but there is a developmental dimension that
is not mentioned in the manuscript. In a multicellular
species with multiple types of tissues different cells have
slight but significant variations. This temporal and spatial
dimension is not at all addressed or commented in the
paper which could lead to a misunderstanding of where
the findings apply. The effect of selection on the metabolic
map is summed across very different cell lines and devel-
opmental phases making it very hard to interpret in terms
of functional effects.
Author’s response: We agree this is an important

dimension not considered in our work and it is beyond
the original goals of this study. Our purpose here is to
illustrate how the integration of different evolutionary
and network scales can explain the evolution of a
complex system. This initial approach of using a general
model of the human metabolism can be further applied to
cell-specific reconstructions. Combined with expression
data it certainly will help gain insights into the functional
changes and the phenotype under selection. This limitation
is now explained at the beginning of the Results section.
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Reviewer comment
Small metabolites: It is not clear to me why the small
metabolites where removed from the dataset. Was this
for convenience of analysis, e.g. cannot treat ATP and
enzymes in the same analysis, or there is a more funda-
mental principle?
Author’s response: Here we study the metabolic net-

work as a reaction graph. In a reaction graph nodes
represent enzymatic reactions (and the genes that
encode the enzymes that catalyze them) and links are
established between two reactions (nodes) if the
metabolites that are products of the first reaction
(node) are taken as substrates by the second reaction
(node). Then, metabolites are only used to determine
the connections between reactions (nodes). We do not
estimate any metric associated with the metabolites,
and we are not interested in the specifics of the
metabolites further than to determine the connections
between the reactions. However, there are the so-
called “currency metabolites”, such as ATP, that are
involved in a huge number of reactions that are part
of unrelated pathways. Had we used ATP to establish
links between reactions we would have linked almost
all the reactions among themselves, creating “artifi-
cial” links and pathways that do not correspond to
real biological processes, hiding the real topology of
the network. For this reason, it is an established
practice to exclude currency metabolites from the re-
construction of the metabolic reaction graph (Vitkup
et al, 2006; Ma and Zeng, 2003). Given that this was not
sufficiently explained in the text, we modified the
Methods section to clarify it.

Reviewer comment
Finding robustness: Would the results still valid and to
what extent if the effect of confounding factors is not
completely removed? In page 6, line 12 the authors
explore the strength of purifying selection on genes and
try to deal with possible confounding factors. It is not
clear if the list of factors is considered exhaustive. Also,
the linear regression is a simple tool to remove possible
effects but also makes a number of assumptions on the
type of the effect of the confounding factors. It is not
clear to me to what extent the results still hold if the effect
of the possible confounding factors is not completely
removed.
Author’s response: Regarding the exhaustiveness of the

confounding factors, we selected the principal factors that
affect the rate of protein sequence evolution. Gene length
and expression level are the major determinants of evolu-
tionary rates (Pál et al., 2001 Genetics; Drummond et al.,
2005 Proc. Natl Acad. Sci.). We used codon bias as a
proxy for gene expression, as it is known to be positively
correlated with protein abundance (Ghaemmaghami et

al., 2003 Nature). This list is by no means exhaustive,
but it accounts for the main known drivers of protein
sequence evolution. Other variables that correlate with
evolutionary rates do so in a smaller measure (Zhang
and Yang, 2015, Nature Review Genetics). It is difficult
to foresee how the results may change if other confound-
ing factors are added. However, considering the current
knowledge on the field, it is unlikely that other variables
may explain more variation at genomic level than those
included here. As in all correlation analysis, caution
must be taken to interpret result in a safe way.

Reviewer comment
Minor point: I would like to bring to the authors atten-
tion two relevant papers that I think they would find
interesting:
http://gutengroup.mcb.arizona.edu/wp-content/up

loads/Mannakee2016a.pdf and https://onlinelibrary.wi
ley.com/doi/abs/10.1111/evo.12548. This is not a sugges-
tion to cite the papers.
Author’s response: We thank the reviewer for pointing

out these papers. As mentioned in another section, while
it is a factor that affects gene evolution, we think that to
analyze metabolic flux dynamics is outside the scope of
our paper. The second paper is very interesting and
related to another paper where the authors also argue
that positive selection targets different parts of the pro-
tein-protein interaction network depending on how far
from the fitness optimum is the organism (Luisi et al,
2015). We have now commented on that hypothesis in
the Discussion.
Reviewer comments to Authors: The authors have

adequately addressed all the issues raised by the re-
viewers and I believe the manuscript have considerably
improved.

Reviewer’s report 2
Brandon Invergo
Reviewer summary: The authors have investigated

how the molecular evolution of metabolic enzymes has
been influenced by the topology of substrate/product
dependencies between them. These dependencies were
represented by a network in which nodes are reactions
and directed edges indicate the use of a product of one
reaction as the substrate of another. The authors thus
compared different metrics of molecular evolution against
network-topological metrics such as connectivity, central-
ity and position. As the authors point out, similar ap-
proaches have been applied to several different kinds of
molecular networks (metabolic, signaling, etc.) at different
scales (pathway, proteomic), and at different evolutionary
time scales (intraspecific polymorphism and interspecific
divergence). The novelty here is an attempt to synthesize
the different network scales and evolutionary scales in the
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context of the metabolic network. The authors show both
interesting similarities and differences between these
different views. The work has the potential to be the “final
say” in topological constraints on molecular evolution of
metabolic enzymes, however it is held back by a lack of
synthesis of the various network results with the under-
lying biology. There are also some potentially serious stat-
istical issues that must be addressed.

Reviewer comment
The relationship between the present manuscript and
the authors’ previous publication (Montanucci et al.
2018. PLoS One) must be made clearer. Only after
reading the manuscript a couple times did I realize that
the HumanCyc pathways aren’t used until page 9, and
then only for the selective-sweep data. Some more sign-
posts in the text relating the current work to the previ-
ous one would be helpful. I would also suggest moving
the introduction to the HumanCyc pathways to the
point where they are used. How much data was shared
between the two papers? I’m not sure from the
methods exactly which new dN/dS values were (re) cal-
culated and how many were taken from the 2018 paper.
I am particularly confused by the last sentence of “Puri-
fying selection during primate and rodent divergence”
(top of page 15). There were evolutionary stats re-
trieved from the 2018 paper for 843 genes, and then
the remaining ones needed for Recon3D were newly
calculated? If that’s the case, the 2018 paper used
Ensembl 75 (Feb 2014) but here they used Ensembl 85
(Jul 2016). The human genome assembly went from
GRCh37 to GRCh38 in that time. I really think it would
be stronger if the 2018 values were recalculated against
the same assembly.
Author’s response: We have clarified in the methods

and main text which data we use from Montanucci et al
2018. We mistakenly wrote that we retrieved dN/dS
values for HumanCyc genes. However, we only used the
list of genes and reactions belonging to base pathways
and their connectivity values (degree, in-degree and out-
degree). While there are 768 overlapping genes between
this dataset and the genes present in Recon 3D, we do
not use the original dN/dS values calculated by Monta-
nucci et al. 2018. We calculated dN/dS for all genes in
Recon 3D, whether they are present or not in the Human-
Cyc dataset.
As a test we compared the dN/dS values for the genes

present in both datasets (n = 768). Although some values
differ, the correlation between the values obtained in
both studies is very high (shown below). We do not think
necessary to repeat the analyses in Montanucci et al.
2018 and reanalyze HumanCyc dataset with a new
Ensembl release.

Reviewer comment
Most of the paper is couched firmly in technical network
terms with very little discussion of the underlying biol-
ogy. The Discussion section, in particular, mostly reiter-
ates the Results when it could be used to tie them
together in the context of the biology. What are the
causes and implications of the observed patterns of
selection? I was surprised that there was no mention of
metabolic flux, especially given the authors’ previous
publications (Colombo et al. 2014. Evolution). Similarly,
no attempt is made to connect the disparate patterns
between the different evolutionary scales (divergence,
complete sweep, incomplete sweep).

Author’s response: In this study we have focused on
the topology of the network and not on its dynamics.
Although it is possible to estimate the metabolic flux
distribution for the whole human metabolic network,
we argue that this approach is better suited for
smaller systems, where compartmentalization or tis-
sue-specific expression is considered. In Colombo et al
2014, the authors selected a small and tissue-specific
network (the core metabolic network of the human
erythrocyte), which is very well studied and endowed
with a high detail of experimental data on the kinetics
of the reactions. This system had been studied with
kinetic, stochastic and constraint-based models and a
robust set of flux values was derived. However, there
is a lack of experimentally determined values for
most of enzymes and finding biologically sounded ob-
jective functions for eukaryotic cells to apply flux bal-
ance analysis (FBA) is not a trivial matter. Even if it
would be extremely interesting, it is outside the scope
of this paper to analyze the effect of kinetics on the evolu-
tionary patterns of metabolic genes. However, we have
commented in the main text the relationship between
metabolic flux and enzyme evolution to highlight that we
do not consider that effect there.
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Reviewer comment
The authors barely touch on the fact that there is a
many-to-many mapping of genes to nodes. That is, one
gene can be present in multiple nodes, and one node
can have multiple genes. This means that the datapoints
in their statistical tests are not independent. Some genes’
selection metrics appear multiple times, and some nodes’
network metrics appear multiple times. For example,
node 3.1.4.11-RXN is listed 117 times in Additional file 2:
Table S6. The authors don’t state how they handle that, so
I have to assume that the node appears 117 times in the
pathway analysis, which over-inflates its metrics in the
statistical tests. At the very least, mean selection metrics
need to be computed for each node and these should be
used in the various statistical analyses. However, they still
won’t be independent, so first some genes and nodes
might need to be removed due to redundancy. Do genes
that share the same nodes tend to have similar selection
metrics? Do nodes with significant gene-overlap have
similar network metrics?
Author’s response: We have clarified how we decided

to address the lack of one-to-one correspondence between
genes and enzymatic reactions in the Methods. An en-
zymatic reaction can be coded by one or more genes,
either as an enzymatic complex or by isozymes. Thus, if
an enzymatic reaction (node) is encoded by more than
one gene, that node will be associated with as many
values of the selection metrics as genes is encoded by.
Similarly, if the protein encoded by a gene participates in
more than one enzymatic reaction, that gene will be asso-
ciated with as many connectivity measures as reactions it
participates in.
We do not calculate an average selection metric value

per node or an average connectivity measure per gene
due to the following reasons:
1) Such calculation will decrease the experimental

error (within or residual variation), thus increasing artifi-
cially our statistical power. Obviously not recommended.
2) It is not necessarily expected that subunits encoded

by different genes will have the same signature of positive
selection, as they can have different functionalities.
Unless there is a compensatory mechanism in the other
subunit(s), only the one(s) with the function related to the
phenotype under selection are expected to have the sig-
nal. Thus, averaging will remove that signature.
3) In the case of isozymes, their expression can be loca-

tion, tissue or development specific. Thus, again it is not
expected that all will have the signature of positive selec-
tion as the context of their activity can vary.
4) We tested whether genes detected under positive

selection by a given test participate in a different number
of enzymatic reactions than the rest of metabolic genes
and we did not find any differences (Permutation test, p-
value > 0.05 in all comparisons).

As reviewer 1 pointed out, the metabolic model used
is simplistic and does not incorporate tissue or devel-
opmental-specific expression. Thus, we have not tried
to differentiate all these possible scenarios and decided
to keep all the possible gene-reaction measures. This
approach is again decreasing our statistical power as
a gene under positive selection can be associated with
several values of degree, increasing the noise in the
analyses. But it increases our confidence that the sig-
nals found are robust to overcome the noise present in
the data.
To answer the reviewer question on whether genes that

share the same nodes tend to have similar selection met-
rics, we performed the following comparison: for each set
of reactions encoded by a given number of genes, we cal-
culated the standard deviation (sd) of the selection
metric. Then we generated a distribution by randomly
sampling the same number of gene selection metric
values for each set of reactions encoded by a given num-
ber of genes (number of permutations = 100) and calcu-
lating the sd. If genes that share the same nodes have
similar selection metrics our expectation was to find a
smaller standard deviation for the genes associated to
the same nodes in comparison to randomly sampled
genes. We compared the sampling interquartile range
(percentile 25th–75th range) between both distributions
for each selection metric (see figure below). The range of
the sd distribution overlaps in all cases, but genes of the
same node have more similar values than those sampled
randomly as indicated by the distribution of real sd
values reaching smaller values than the permutations.
While this result points out that the expectations of the
referee are correct, and that genes associated with the
same node are more likely to have similar selection met-
rics, we still think that the original values and not an
average should be used to avoid an artificial statistical
power inflation.
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Reviewer comment
Since the authors rely on residuals from an ordinary
least-squares regression, they should verify that the re-
siduals meet the assumptions of OLS, namely that they
be homoscedastic. Otherwise, a different method like
generalized linear models should be used. Regardless of
the model used, the residuals need to be standardized to
be comparable to each other. Otherwise, the variance of
the residuals of peripheral data points with higher lever-
age will be smaller than the points at the center, which
will affect the analyses.
Author’s response: In this study we rely mostly on non-

parametric methods and calculation of p-values by permu-
tations to minimize the effect of the deviation of parametric
test assumptions. However, to satisfy the assumption of
heteroscedasticity of the residuals we transformed the vari-
ables prior to applying the linear regression to control for
the confounding factors mentioned. We have added the
explanation in the Methods section and changed the Results
and Discussion accordingly. Even though some specific re-
sults have changed, the main conclusions remain the same.

Reviewer comment
On page 9, the authors state that genes catalyzing the last
steps in the metabolic network have higher HB values both
for complete and incomplete sweeps but that the trend is
weaker in CHB. However, Additional file 1: Figure S5b
shows that the trend does not exist in CHB for incomplete
sweeps. For complete sweeps, the trend is different, not
weaker: the “top” and “intermediate” residual values look
approximately the same between the two populations.
Only “bottom” differs.
Author’s response: Thank you for pointing out this

mistake. We have changed the text accordingly.

Reviewer comment
I think “omega” is a CODEML-specific thing. dN/dS is
probably clearer.
Author’s response: That is correct. We have changed

omega (w) for dN/dS to not confuse readers unfamiliar
with CODEML-PAML terminology.

Reviewer comment
On page 5, the Recon3D interactions are said to be less
reliable. Why?
Author’s response: Recon3D is the result of a general

model of the metabolism, where specific reactions may be
theoretically feasible but in practice be cell specific. In
addition, it is a metabolic reconstruction and must fulfill
the requirements for metabolic modelling. Therefore,
there are reactions that have been included to meet that
requirement that have lower confidence than reactions
with a direct experimental evidence of the gene product

and the biochemical reaction. We have clarified this in
the Background section.

Reviewer comment
On page 6: Purifying selection is stronger in nodes with
more connections (Fig. 1) A bit pedantic, but because
they are using the residuals, I don’t think that’s the cor-
rect interpretation. For example, the “25–50%” connect-
ivity class all average around 0, meaning that their dN/
dS values tend to be as expected given their sequence
characteristics. This kind of language should be checked
throughout the manuscript.
Author’s response: We agree that using the residuals

instead of the original dN/dS values makes the interpret-
ation confusing, but our interpretation of the results is
correct, once we exclude the effect of the confounding fac-
tors, purifying selection (as estimated by dN/dS) is stronger
in nodes with more connections. We have rephrased that
sentence to clarify it and we have checked the language used
in the rest of the manuscript. We have added the Figure 1
with the original values in the Additional file 1 to help
with the visualization of the results (see Additional file 1:
Figure S4).
Reviewer comments to Authors: The authors have

satisfactorily addressed my concerns. I would just like to
clarify that I did not suggest that a flux-based analysis be
performed. I agree that it would be out of scope and
potentially infeasible at this scale. I suggested it as an
important topic that should be discussed somewhere in
the manuscript to help explain some of the observed
patterns of selection (that is, the “network” is a mathem-
atical convenience, but the flux or information flow that
embodies that network is of immediate biological, and
therefore evolutionary, relevance). In any case, this has
now been resolved by the authors.

Additional files

Additional file 1: Figure S1. Reaction graph generated from the
human metabolic network reconstruction Recon3D. Figure S2.
Distribution of the selection estimates calculated for genes with 1:1
orthologs in the 6 species (Human, Chimpanzee, Gorilla, Orangutan,
Mouse, and Rat) in the global metabolic network. Figure S3. Correlation
matrices between variables. Figure S4. Relationship between selection
estimates and connectivity (degree, in-degree and out-degree) in the
global metabolic network. Figure S5. Relationship between selection
estimates and position. Figure S6. Number of genes under positive
selection in each functional pathway of the global metabolic network.
Figure S7. Distribution of the number of enzymatic reactions carried by
a given gene. (DOCX 1804 kb)

Additional file 2: Table S1. Reaction graph. List of edges of the
directed reaction graph generated formed by the giant connected
component of Recon3D. Table S2. Genes under positive selection in the
global metabolic network. Table S3. Genes under recent positive
selection in individual metabolic pathways. Table S4. Connectivity of
metabolic genes under positive selection compared to the rest of
metabolic genes in individual metabolic pathways. Table S5. Global
metabolic network giant connected component gene/reaction
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information. Table S6. Individual metabolic pathways gene/reaction
information. (XLSX 4140 kb)
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